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Image processing theory
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Fourier synthesis and analysis

Central section theory and 3D reconstructions
Contrast transfer theory

B-factors, resolution, radiation damage




from Wikipedia

Joseph Fourier

» Jean Baptiste Joseph Fourier

Born 21 March 1768
Auxerre, Yonne, France
Died 16 May 1830 (aged 62)

Paris, France

from: The Fourier Transform and Its Application
by Ronald N. Bracewell (1921-2007)

Baron Jean-Baptiste-Joseph Fourier introduced the idea that an
arbitrary function could be represented by a single analytic
expression. Fourier came upon his idea in connection with the
problem of the flow of heat in solid bodies.

The formula
x/2 =sin x - (sin 2x)/2 + (sin 3x)/3 - - -

was published by Leonhard Euler (1707-1783) before Fourier.

from: David Keston article in Today in Science
Fourier’s Analytic Theory of Heat ad its experimental verification.

Fourier used a polished iron ring of diameter ~30cm held in place by
wooden supports and heated by an adjustable Argand burner. Six
holes were drilled halfway into the ring, four of which held
thermometers on the Réamur scale (the space between the ring and
the thermometer being filled with mercury - as were the other two
holes). To achieve the steady state one point in the ring was heated
while rest of the ring was allowed to radiate heat freely and on the
whole results agreed very well with Fourier's theory.



Some 1D examples of Fourier series
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The first four Fourier
series approximations

for a square wave.

http://www.ies.co.jp/math/java/trig/graphFourier/graphFourier.html




A minimum of equations about Fourier analysis
from E.G.Steward: “Fourier Optics an introduction” (1987, 2004)

Some different ways to express 1D Fourier summations, where D = repeat distance (unit cell)
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How to find the Fourier coefficients in 1D

The coefficients are derived in an analogous way
and we have the pair of equations
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Derivation of Euler’s expansion - see
http://www.1es.co.jp/math/java/trig/graphFourier/graphFourier.html

Example: a simple Fourier series

We now use the formulae above to give a Fourier series expansion of a very simple function.
Consider a sawtooth function (as depicted in the figure):

flx)=z, for —w<a<m,
flz+27) = f(z), for —o0< 2z <oc.

In this case, the Fourier coefficients are given by
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And therefore:
flz) = 02_0 + Z la, cos(nx) + b, sin (nx)]
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from Max Perutz, Nobel Lecture 1962
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W. de Beauclair, "Verfahren und Gerdte zur mehrdimensionalen Fouriersynthese",

Reproduced, by permission, from
Akademie-Verlag, Berlin 1949.)



from Taylor & Lipson , 1964
Optical Transforms




from Taylor & Lipson (1964) “Optical Transforms”




Fourier transform of a helix — from Holmes & Blow, 1965

c

Fig. 32. (a) Optical transform of a continuous helix. (b) Optical transform of a
helix with 10 points per turn. (c) Optical transform of a helix with 5 points per
turn.




from Misell, 1978: effect of lattice disorder on the diffraction pattern
reproduced from Harburn et al, Atlas of Optical Transforms, 1975




from Misell, 1978: Optical transforms: spatial filtering of ‘Mickey Mouse’
reproduced from Harburn et al, Atlas of Optical Transforms, 1975




Optics
Diffraction from a grating Dsin0 = nA
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from E.G.Steward: “Fourier Optics an
introduction” (1987, 2004)

Crystallography in 3D
Bragg’s law 2dsinf = n\

Note different definition of 6
crystal tilt angle is half the
diffraction angle

X—ray beam

from Holmes & Blow: “The use of X-
ray diffraction in the study of protein
and nucleic acid structure” (1965)



IO, incident beam
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from Misell, 1978: “Image analysis, enhancement and interpretation”
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Focus series of a thin carbon film, plus gold particles to assist in focusing. The optical
diffractograms are alongside each image: (a) optimum defocus, (b) 150 nm underfocus, (c) 210
nm underfocus, (d) 250 nm underfocus. C, and Af are determined by measuring the radii (or
diameters) of the dark circles corresponding to minima in the optical transform. E, = 125 keV,

image bar = 10 nm, diffraction bar = 3.0 nm ™. (P. Sieber, unpublished.)
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0.7 um Typical CTFs: from Baker & Henderson
] International Tables Vol.F (2000,2011)

CTF for 200keV electrons
Cs =Cc =2.0mm

Thick line: B = 0.3 mrad
m AE =1.6¢V, simulating a
tungsten electron gun

1
14.0 um [\ ﬂ

Thin line: $ =0.015 mrad
AE = 0.5¢V, simulating a
field emission gun (FEG)

CTF
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o From Wade (1992) Ultramicroscopy, 46, 145-156.  femporal incoherence
Spatial incoherence

0.03.0.07. 1.4 mrad “A brief look at imaging and contrast transfer AE = 0-6»1{1-2» 24eV
h , Cs=14,kV =100

¥=-27t/MAF0?%/2 — C 0%/4)
CTF = -sin(%)
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spatial frequency = f
defocus =z
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3D specimen

Different 2D projected images

2D Fourier transforms

2D transforms are sections of 3D Fourier transform

Fourier Inversion
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Number of particles in projection/um?2 in 800 A thick ice film (separation)

Concentration

M.W. 10mg/ml 2mg/ml 0.5mg/ml 0.1mg/ml 20ug/mli

10 kD | 48000 (45A) | 10000 (100A)| 2500 (200A) | 500 (450 A) | 100 (1000 A)
50 kD | 10000 (100A) 2000 (220A) 500 (400A) | 100 (1000A) | 20 (0.2um)
250kD | 2000 (220A) 400 (500 A) 100 (1000 A) | 20 (0.2um) 4 (0.5um)
1 MD 500 (400A) 100 (1000A) 25 (0.2um) 5 (0.4um) 1 (1um)
5 MD 100 (1000A) 20 (0.2um) 5 (0.4um) 1 (lwm)| 0.2 (2.2um)
25 MD 20 (0.2um) 4 (0.5um) 1  (1wm)| 0.2 (2.2um) | 0.04 (5um)

Table of expected number of particles in cryoEM.

"Given the concentration of the molecules of interest, how many particles per square micron
should you see in the image if the frozen specimen has the same concentration of molecules
that you expect from the sample concentration?". The number/um? as well as the expected
particle separation is given. If you make a grid and find either many more or many less
particles than you expect, then something fishy is going on. For example all the particles might
be sticking to the carbon (if too few are seen in the holes) or the blotting operation might be
concentrating the particles (if there are too many), but you can make up hundreds of
explanations.




Rotational power spectral analysis: Crowther & Amos (1971), RFILTIM
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Key individuals and key concepts

Joseph Fourier
Ernst Abbe
Lawrence Bragg™
Max von Laue*
Fritz Zernike*

F. Thon

Otto Schertzer
Ernst Ruska™

Fourier analysis & synthesis

Abbe theory of the microscope

Bragg’s law for diffraction geometry

observation of X-ray diffraction from crystals
Zernike phase plate & phase contrast microscopy
Thon rings

Schertzer focus

inventor of electron microscope

Fourier analysis & synthesis
Cross correlation, real and complex
Convolution

Fourier shell correlation (FSC)
Contrast Transfer Function (CTF)
Modulation Transfer Function (MTF)
Detective Quantum Efficiency (DQE)




