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We present EMAN (Electron Micrograph ANaly-
sis), a software package for performing semiauto-
mated single-particle reconstructions from transmis-
sion electron micrographs. The goal of this project is
to provide software capable of performing single-
particle reconstructions beyond 10 A as such high-
resolution data become available. A complete single-
particle reconstruction algorithm is implemented.
Options are available to generate an initial model
for particles with no symmetry, a single axis of
rotational symmetry, or icosahedral symmetry.
Model refinement is an iterative process, which
utilizes classification by model-based projection
matching. CTF (contrast transfer function) param-
eters are determined using a new paradigm in which
data from multiple micrographs are fit simulta-
neously. Amplitude and phase CTF correction is
then performed automatically as part of the refine-
ment loop. A graphical user interface is provided, so
even those with little image processing experience
will be able to begin performing reconstructions.
Advanced users can directly use the lower level
shell commands and even expand the package utiliz-
ing EMAN’s extensive image-processing library. The
package was written from scratch in C++ and is
provided free of charge on our Web site. We present
an overview of the package as well as several con-
formance tests with simulated data. o 1999 Academic Press
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INTRODUCTION

Over the past decade, an experimental/computa-
tional technique known as single-particle analysis
has been growing rapidly in popularity. In this
technique, transmission electron microscopy is used
to address problems that are difficult to approach
with traditional crystallographic methods. A variety
of statistical and image processing techniques are
applied to a large number of images of identical
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molecules to produce a three-dimensional structure.
This technique offers several advantages over crystal-
lographic methods. First, the macromolecule is typi-
cally embedded in vitreous ice, which preserves its
native state in a biologically relevant conformation.
Second, it is ideally suited to address molecules that
are problematical for X-ray crystallography. The
majority of X-ray structures are for proteins smaller
than 200 kDa. Electron cryomicroscopy, however, is
ideal for large macromolecules and assemblies in the
range of hundreds to thousands of kilodaltons. Fi-
nally, single-particle analysis allows functional states
to be addressed relatively easily (Gabashvili et al.,
1999; Orlova et al., 1996). When the macromolecule
consists of a mixed population of functional states
and is still somewhat structurally heterogeneous,
statistical techniques can, in principle, be applied to
separate particles in the desired state from the
mixed population.

For macromolecules that can be purified to chemi-
cal and structural homogeneity and are amenable to
recording high-resolution images, the biggest limit-
ing factor in applying single-particle methods is data
processing. Data collection and scanning can be
accomplished relatively rapidly, but once the data
are ready for processing, analysis may proceed for
weeks before it is even known whether the quality
and quantity of data are sufficient to achieve the
desired resolution. While several excellent software
packages exist that allow single-particle and other
reconstruction procedures to be performed (Frank et
al., 1996; Schroeter and Bretaudiere, 1996; van Heel
et al., 1996; Whittaker et al., 1995), they are de-
signed primarily for experienced users performing
reconstructions at intermediate resolutions. EMAN
is designed to make this technique more accessible to
inexperienced users and provide tools necessary to
efficiently process large amounts of data for high-
resolution reconstructions.

EMAN is a software package designed specifically
for single-particle reconstructions. Its design and
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implementation are based on three general prin-
ciples. The first is to improve processing efficiency, to
make processing the thousands to hundreds of thou-
sands of particles required for reconstructions be-
yond 10 A feasible. The second is to make single-
particle processing more accessible to inexperienced
users, while still providing the tools necessary to
allow advanced users to perform custom processing.
The third is to introduce a robust method for perform-
ing CTF correction with minimal effort on the part of
the user. This article describes the design rationales
and features of EMAN and demonstrates its applica-
bility with simulated data.

3D RECONSTRUCTIONS IN EMAN

Performing a reconstruction in EMAN is a three-
stage process. First, the particles must be selected
from scanned micrographs or CCD frames. Second,
the boxed-out particles are used to generate a prelimi-
nary 3D model. Finally, the preliminary model is
used as the starting point for the main refinement
loop, which is iterated until the refinement con-
verges. EMAN also allows the CTF of the microscope
to be corrected semiautomatically. In this case, CTF
parameters are determined and phase correction is
performed before the refinement loop. Amplitude
corrections are performed automatically as part of
the refinement loop.

Particle Selection

Before a reconstruction can be performed, the
individual particles must be located in the raw
micrographs or CCD frames. EMAN includes boxer; a
graphical program for manual or semiautomatic
particle selection. This program displays the overall
micrograph in one window and the boxed particles in
another window. The boxed particles are updated
immediately when a new particle is selected or an
old box is moved. Individual boxes may be adjusted
or deleted with a simple mouse click. Contrast
inversion is provided to aid in manually locating
particles in low-contrast images. For very large or
high-resolution micrographs, boxer allows the micro-
graph to be split into several regions of equal size,
reducing the memory requirements of the program.

Boxer also incorporates a semiautomatic selection
procedure. A number of automatic particle selection
methods have been proposed (Frank and Wagen-
knecht, 1984; Harauz and Fong-Lochovsky, 1989;
Lata et al., 1995; Martin et al., 1997; Thuman-
Commike and Chiu, 1995; van Heel, 1982). Several
of these techniques are based on the technique of
generating a rotationally averaged reference image
and locating particles by cross-correlating the refer-
ence with the entire micrograph. Boxer uses a simi-
lar technique with a few additional refinements.

Since projections of particles in different orienta-
tions may have dramatically different appearances,
boxer uses multiple references to ensure accurate
boxing. The user manually selects several particles
from the micrograph, which are then rotationally
averaged and used as templates. Particles are then
located by cross-correlating each template image
with the entire micrograph. The individual cross-
correlation maps, each from a different template, are
then combined by selecting the maximum value at
each pixel location from the set of correlation maps.
The combined cross-correlation map will then con-
tain peaks for each putative particle in the micro-
graph. Since some particles may contain multiple
peaks, this map is then low-pass filtered to a resolu-
tion equivalent to 14 the box size. This minimizes
problems with the same particle being multiply
selected. Instead, this ensures that peaks that are
too close to each other are averaged and a single
particle will be identified. A peak-searching algo-
rithm then extracts the location of all recognized
particles from this map with peaks above some
threshold value.

The only remaining difficulty is determination of
this threshold value. Rather than attempting to do
this automatically, boxer presents the user with a set
of threshold sliders. One slider sets the basic peak
selection threshold, and two additional threshold
values allow particles with excessive or insufficient
mean contrast to be excluded. The second pair of
sliders is used primarily for eliminating areas of
contamination. As the user varies the sliders, the
particle boxes in a 1k X 1k section of the micrograph
are updated interactively. Once all three thresholds
are at appropriate levels, the entire micrograph is
autoboxed. While the selection routine in the current
version does a relatively good job, there is still room
for improvement. Particles that are nonspherical
will be selected less accurately than nearly spherical
particles. This procedure is likely to be improved
considerably in future releases.

Preliminary Model Generation

EMAN’s refinement procedure is model based;
that is, it requires an initial 3D model to use as a
starting point for refinement. The quality of the
initial model required to allow the refinement loop to
converge is a function of many parameters, including
the symmetry of the model, the signal-to-noise ratio
in the individual particles, and the degree of spheri-
cal asymmetry in the model. Generally speaking, if
the data have sufficient signal, the refinement loop
will converge even if a very poor initial model is used.
Nonetheless, some sort of model is required, and the
better the model is, the faster the refinement proce-
dure will converge. Many methods for generating
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initial models have been invented by many different
groups over the years (Baker and Cheng, 1996;
Crowther, 1971; Frank, 1989; van Heel et al., 1996).
One solution to this problem is for the user to select
representative particle views and generate a model
by manually placing geometric objects (cylinders,
spheres, etc.) in a 3D map. Of course, this process
requires considerable effort and ability on the part of
the user and may bias the reconstruction toward an
incorrect result. To avoid this, EMAN contains sev-
eral symmetry-specific routines for automatically
generating initial models.

Naturally, in many cases the symmetry is not
initially known. In general, the actual symmetry of
the molecule must be imposed during the reconstruc-
tion or symmetry-breaking artifacts will occur due to
high noise levels present in the individual particle
images. For example, consider performing a recon-
struction of a molecule with a twofold rotational
symmetry without imposing this symmetry. If no
noise is present, every particle will be assigned one
of two Euler angles with equal probability. However,
if noise is present, it will dominate the alignment
choice, combining constructively to produce symme-
try breaking artifacts in the final reconstruction.
Generally, with twofold symmetry, this will cause
one half of the protein to have much higher mean
density than the other half. The lower the noise
levels are in the individual particle images, the less
this effect will be observed, but in general, the
correct symmetry must be applied to obtain a reli-
able reconstruction from noisy data. The section
below, entitled “Symmetry Determination” discusses
one method for evaluating the symmetry of a model
with unknown symmetry.

For asymmetric particles, those with Cy, symmetry
or those for which the routines with imposed symme-
try do not work well, a generic model-generating
routine is provided. This routine begins by generat-
ing a set of reference-free class averages. That is,
particles that appear to be similar to one another are
grouped together, and then the particles within each
group are mutually aligned and averaged. This
generates a class average for each group, which
should represent one characteristic view of the par-
ticle. This routine has several user-defined param-
eters, which may be adjusted to obtain the best
possible distribution of class averages. Assuming the
distribution of particle orientations is sufficiently
diverse, the set of averages will represent most of the
possible particle orientations. Several of these aver-
ages are then selected manually for use in generat-
ing a 3D model. A Fourier common-lines routine is
used to determine the relative orientations of all of
the selected averages, which are then combined to
generate a 3D model.

For objects known to have icosahedral symmetry,
EMAN uses a very fast initial model generation
routine. This routine searches the complete particle
set for particles with the best five-, three-, and
two-fold symmetries. There is, of course, no guaran-
tee that particles with these precise views will exist
in the data set, but this is generally not a problem.
For each symmetry, EMAN will use the particles
that come closest to having the desired symmetry.
The quality factor for each particle is measured by
calculating the dot product between the particle and
itself after an appropriate rotation. Once the par-
ticles for each symmetric axis have been determined,
each group of particles is mutually aligned and
averaged to generate three characteristic class aver-
ages. These three views are then used to build a
preliminary 3D model. This model is, naturally, very
noisy and visually may appear quite different from
the final refined model. It is, however, usually suffi-
cient for use as an initial model for refinement.

For objects with C, symmetry (a single axis of
rotational symmetry), where n > 2, a procedure
similar to the icosahedral procedure is used. First,
the particles are searched for views with good C,
symmetry. Then a second search is performed for
particles with a mirror or pseudo-mirror symmetry
and a poor C, symmetry. That is, particles that have
both a good mirror symmetry and the worst possible
C, symmetry are located. If we consider the projec-
tions with C, symmetry to be “top” views of the
particle, then this second group represents possible
side views of the particle. Macromolecules with even
n will have a true mirror symmetry. Macromolecules
with odd n will still typically have a pseudo-mirror
symmetry in the side views. Once top-view particles
and side-view particles have been located, they are
aligned and averaged to generate class averages of
the top and one side view of the particle. Since the
group of side-view particles may contain a variety of
side views, one dominant side view from the set is
selected by the alignment routine. A preliminary 3D
model is then constructed from these two orthogonal
views. As expected, the quality of this model will be
very poor; however, we have found it to be sufficient
to achieve convergence in several test cases with real
data and one test with simulated data. While this
method is very fast, it is not robust. It may not
provide an adequate starting model in every case.
However, it is sufficiently fast that it is worth trying
for any molecule with a known or suspected C,
symmetry.

Naturally, other software packages can also be
used at this point to generate an initial model.
EMAN can read models in a variety of formats, so
other packages that provide, for example, multivari-
ate statistical analysis techniques for low-symmetry
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particles (Frank et al., 1996; van Heel et al., 1996) or
Fourier common-lines techniques for icosahedral
particles (Crowther, 1971) may be used to generate
an initial model for subsequent refinement in EMAN.

Refinement Loop

As with other structural techniques like NMR and
X-ray crystallography, the experimental data in elec-
tron cryomicroscopy cannot be directly inverted to
generate an optimal 3D model. In cases like this, the
most commonly used technique is iterative refine-
ment. In this technique, a rough preliminary model
is iteratively refined against the data. True conver-
gence is achieved when the model remains un-
changed for several successive iterations. In EMAN,
we use a less restrictive definition of convergence,
including the noise level of our initial data in the
definition. In this definition, convergence is achieved
when the FSC (Fourier shell correlation) between
successive iterations stabilizes. This is not to say
that the FSC between iterations must fall below a
specific value. Indeed, if the data are sufficiently
noise-free, the FSC may remain above 0.5 at all
spatial frequencies. Rather, we require that the FSC
curve between successive iterations cease to im-
prove, no matter what numerical values the curves
contain. Small, resolution-dependent variations be-
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tween iterations due to high noise levels are unavoid-
able, even when the model has stabilized. However,
this fact can be used to our advantage. Once our
limited definition of convergence is satisfied, any
additional changes between models are due solely to
noise present in the images. This makes the FSC
between successive iterations a rough measure of
the resolution of the model. The point at which the
FSC curve begins to fall is the point at which noise
begins to strongly affect the reconstruction. Typi-
cally, the resolution at which the FSC curve falls
halfway to its minimum value will correspond roughly
to the final resolution of the model as determined by
a t-test. This is not a robust measure of resolution,
but is useful for preliminary estimates as the refine-
ment progresses.

While many of the individual techniques used in
EMAN are conceptually similar to those used by
SPIDER (Frank et al., 1996) and IMAGIC (van Heel
et al., 1996), the overall refinement algorithm, out-
lined in Fig. 1, is different than that used by either of
these packages. EMAN uses particle classification,
but the classes generated in the refinement loop are
not reference-free, as they generally are in an
IMAGIC reconstruction. The projection matching
routine used by EMAN to classify particles is similar
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FIG.1. Aflow diagram outlining the reconstruction process in EMAN. Reconstruction occurs in three phases: particle selection, initial
model generation, and model refinement. The boxed particles are used to generate a preliminary model, which is then refined iteratively
using the same set of particles. The refinement loop is iterated until convergence is achieved. CTF correction (in grey) is optional. Grey line

from projections indicates use as references only.
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to one commonly used Euler-angle determination
technique in SPIDER.

The refinement loop is outlined in the right half of
Fig. 1. The refinement process begins by generating
a set of N projections with uniformly distributed
orientations. These projections are used as refer-
ences for classification of the raw particle data. Each
particle will be associated with one of the projec-
tions, resulting in N classes of raw particle images.
Several techniques for classification are provided,
but the most robust is performed by classesbymra.
This program translationally and rotationally aligns
each particle to each reference image and then
calculates a dot product, which is used to rate the
similarity of the particle to each reference.

A minimum number of projections are required to
provide sufficient angular sampling for a reconstruc-
tion at a given resolution. This minimum number of
projections can be estimated in various ways, but the
well-known wD/d approximation is adequate (where
D is the size of the particle and d is the desired
resolution). In EMAN, the number of projections is
selected by the user and may be increased to improve
the homogeneity of individual particle classes and
provide better angular resolution. This allows the
user to vary continuously between the extreme with
high angular resolution and very little averaging
and the extreme with very poor angular resolution,
but with very consistent, low-noise class averages.

The next step is generation of class averages. The
particles within a class must be mutually aligned
and then averaged. While each particle is grouped
with the projection it most closely resembles, this
does not mean all of the particles necessarily repre-
sent usable data for this orientation. Particles may
be partially denatured, in a different functional
state, radiation damaged, or simply in a patch of bad
ice. If a large angular spacing is used between
projections, individual “good” particles may also look
considerably different due to small differences in
orientation. We do not wish to eliminate particles in
this second class, since they represent true data for
this macromolecule, and the “blurring” effect gener-
ated when they are averaged is expected. This
algorithm attempts to determine which particles are
good and which are bad as they are mutually aligned.
For this procedure to succeed there should be a
reasonable number of images in the class (~10 or
more) and more than half of the particles must be
good. Identification of bad particles is accomplished
through a simple iterative procedure. First, each
particle is aligned to the class average that was used
to generate the class. The particles are then aver-
aged together to generate an initial class average.
Next, each particle is aligned to this initial average.
Once all of the particles have been aligned to the

average, a histogram of similarity between the aver-
age and each aligned particle is generated. The
images represented by the tail of this histogram are
the least similar to the class average and are not
used in generating the new average. They are,
however, allowed to participate in the next iteration.
This process is iterated several times. The number of
iterations and how similar a particle must be to the
average to be included in the new average are
user-defined parameters. Eventually a self-consis-
tent class average is produced. Note that the refer-
ence projection is used only to help speed the conver-
gence and is used only in the first round of alignment.
The final average may actually appear considerably
different than the initial projection the class was
based on. In fact, this difference is the primary
reason the overall refinement loop converges so
rapidly. If CTF correction is enabled, amplitude
corrections are performed automatically as the par-
ticles within a class are averaged together (see CTF
and Envelope Function Corrections).

Generally, the particle classification routine does
an excellent job of assigning particles to the correct
class. However, in some cases the low signal-to-noise
ratio in the electron micrographs will lead to misas-
signment of some particles. In most cases this is not
a problem, and the incorrectly assigned particles will
be eliminated by the alignment/averaging procedure
above. In cases where one orientation is strongly
preferred the problem may be more severe. We begin
by considering the case where the orientations are
uniformly distributed. In this case, the correctly
assigned particles in each class will outnumber the
incorrectly assigned particles. However, if one orien-
tation is strongly preferred, with say 100 times more
particles in a particular orientation, the misassigned
particles may actually outnumber the correctly as-
signed particles within some classes. The alignment/
averaging algorithm will still produce a consistent
average in this case, but the resulting average will
represent the preferred orientation rather than the
correct orientation. This problem is relatively rare,
even in cases where a preferred orientation exists,
but it will have serious consequences if it does occur.
To deal with this potential problem, once the class
averages have been generated, their Euler angles
may be redetermined by projection matching. This
assignment will be more accurate than the initial
classification since the class averages have a much
higher signal-to-noise ratio than the individual par-
ticles.

The class averages with assigned Euler angles are
then used to construct a new 3D model for the next
round of refinement. EMAN uses a Fourier space
reconstruction routine, which is extremely fast and
quite robust for most systems. This is a conceptually
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simple method. Since the orientation of each class
average is known, each class average is simply
inserted into the Fourier volume in the correct
orientation, passing through the center of the vol-
ume. Each inserted class average is weighted by the
number of particles used to generate it. When all of
the class averages have been averaged into the
Fourier volume, an inverse Fourier transform yields
the reconstructed model in real space.

Once the new 3D model has been generated, the
overall process is iterated. The convergence of the
refinement process can be observed by examining
the FSC between the 3D models (Harauz and Heel,
1986) generated in each iteration. This curve will
stabilize once the refinement loop has converged. It
will also generally give a good estimate of the
resolution of the 3D models as described above. An
additional resolution measurement can be made by
performing a simple two-way T test: the raw par-
ticles are split in half and each half is reconstructed
separately. There are different definitions for the
FSC cut-off that defines the resolution of the model,
but we prefer the more conservative 0.5 FSC cut-off
(Bottcher et al., 1997). This method may underesti-
mate the reliability of the model somewhat, since the
quality of the class averages in EMAN depends
nonlinearly on the number of particles used to
generate each class. That is, dividing the number of
particles in a class by 2 may generate a class average
that due to alignment limitations, may be worse
than simply using half the particles would suggest.

Symmetry Determination

A prerequisite for determining an accurate struc-
ture using single-particle analysis is knowledge of
the particle’s symmetry. If there is no prior informa-
tion on the symmetry of the particle, EMAN provides
a procedure for making a preliminary symmetry
determination. The raw particle data are classified
by generating a set of rotational invariants and
using a standard k-means iterative classification
procedure. The particles in each class are then
mutually aligned and averaged, using the same
alignment routine described above in the refinement
loop. This produces a set of reference-free class
averages. Generally, visual inspection of these class
averages will give a good idea of the symmetry of the
model. For a quantitative assessment, a routine is
provided to examine the symmetry quality of each
class average for each possible simple rotational
symmetry, Co—C1,. Multivariate statistical analysis
can also be applied at this point to provide some
additional insight.

In particularly difficult cases, rather than apply-
ing this technique to high-resolution, low-contrast
data, far from focus micrographs can be used in-

stead. These data will have a very high signal-to-
noise ratio at low resolution, but contain little or no
usable high-resolution information. These data can
be used in the above procedure and may even be
carried through a complete 3D reconstruction. The
goal of this exercise is to rapidly generate a low-
resolution model with a high degree of confidence.
This model will generally be sufficient to determine
the symmetry. The symmetry may be broken if a
high-resolution reconstruction is performed later,
but for a new particle with very little initial struc-
tural information, this technique provides a good
place to start.

Once the symmetry has been tentatively deter-
mined, a 3D reconstruction is performed with this
symmetry imposed. Two methods are then used to
test the accuracy of the applied symmetry. First,
projections of the final model are compared with the
corresponding class averages. If the assigned symme-
try is too high, several class averages will not match
any of the projections. If the assigned symmetry is
too low, say C;, when the true symmetry is Cg,
duplicates of each class will appear in the set of
projections. In the second test, the symmetry in the
refinement loop is relaxed, and the refinement is run
for several additional iterations. If the symmetry
assignment was accurate, the refined model will
remain essentially unchanged. Generally, some small
symmetry-breaking mass movement will occur in
this process, but the overall appearance of the model
should still maintain its original symmetry. If the
symmetry assignment was incorrect, the model will
undergo dramatic changes in the first or second
iteration after the symmetry is relaxed. Since refine-
ment progresses much more rapidly and requires
fewer particles with some applied symmetry, this
procedure is more robust than the alternate method
of starting with no applied symmetry and then
applying the predicted symmetry in the second step.

CTF and Envelope Function Corrections

The goal of single-particle reconstruction is to
regenerate the correct three-dimensional structure
of a molecule based on two-dimensional projections
of the molecule. Unfortunately, the images gener-
ated by electron microscopes are not true projections
of the specimen. They suffer from a set of artifacts
including the CTF and the envelope function of the
microscope (Erickson and Klug, 1970; Hanszen,
1971). In addition, noise is present from a variety of
sources. If we assume that astigmatism and drift are
negligible, these effects are all isotropic. The CTF in
particular can cause serious artifacts in a 3D recon-
struction. Without CTF correction, the model pro-
duced by a reconstruction may contain significant
local mass displacements. The high-resolution struc-
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ture will generally be severely distorted, and the lack
of low-resolution amplitude correction can cause
effects such as causing a solid object to appear
hollow. The severity and type of these effects, of
course, depend on many factors, the most significant
of which is the defocus of the data used in the
reconstruction. Nonetheless, if a reconstruction that
is truly representative of the real structure is de-
sired, CTF correction is crucial.

CTF correction has been routine in electron crystal-
lography and helical reconstructions for some time
(Amos et al., 1982; Crowther et al., 1996; Henderson
etal., 1986; Jeng et al., 1989; Mimori et al., 1995), but
it is only now becoming widespread in single-particle
work. This is principally due to the difficulty in
performing this correction on noncrystallographic
data. Several groups have proposed and/or per-
formed CTF correction on single-particle data to
various degrees in the past (Bottcher et al., 1997;
Conway et al., 1997; Zhou et al., 1998; Zhu et al.,
1997), but the existing correction software is still
quite difficult to use.

CTF correction can be performed with varying
degrees of completeness, ranging from simple trunca-
tion of the data at the first zero crossing of the CTF to
complete amplitude and phase correction performed
simultaneously on multiple data sets. The EMAN
reconstruction procedure incorporates complete CTF
amplitude and phase correction that is nearly fully
automated. A graphical utility, ctfit, allows the user
to determine the CTF parameters for the particles in
each micrograph. Multiple micrographs with a range
of defocus values should be used to sample Fourier
space as uniformly as possible. Ctfit stores the CTF
parameters in the header of each particle and per-
forms phase correction. The complete set of particles
from the entire set of micrographs is then combined
into a single file for reconstruction. CTF amplitude
correction is then performed transparently as part of
the reconstruction procedure. To provide a complete
description of how EMAN performs CTF correction
the mathematical methodology will be discussed in
some detail.

The envelope function and CTF are best examined
in Fourier space. At this point in the discussion, we
will ignore the effects of drift and astigmatism,
which cause asymmetries in the CTF and envelope
functions. The Fourier transform of the true 3D
structure of the molecule is called the structure
factor of the molecule, F(s, 6, ¢), where the overbar
indicates a complex valued function. As discussed
earlier, in Fourier space, a projection of the 3D
structure is represented by a slice passing through
the origin in Fourier space. This means CTF and
envelope functions that are circularly symmetric in
the images are also spherically symmetric when

extended to 3D. This is a crucial point if we wish to
correct for the CTF during a reconstruction. The
final goal of the reconstruction is to produce F(s, 6,
¢). The data measured in a transmission electron
microscope can be described by

M s, 0, &) = C()E(s)F(s, 0, d),

where M(s, 0, ¢) is the measured data, C(s) is the
CTF, E(s) is the envelope function, and N(s, 6, ¢)
represents random noise with a consistent spectral
amplitude profile. If we wish to obtain F(s, 0, ¢), we
must first know C(s) and E(s). N(s, 6, &) cannot be
subtracted directly, since all we know is its mean
intensity. We rely on averaging to reduce the mean
noise level, which we monitor by examining the
signal-to-noise ratio as the reconstruction progresses.
To determine C(s) and E(s), it is more convenient to
examine the rotationally averaged power spectra

M(s)* = F(s)*C(s)E(s)* + N(s)?,

where N(s)? is the mean noise intensity and F(s)? is
the one-dimensional structure factor of the molecule
(rotationally averaged power spectrum). To perform
the 3D correction, we must determine C(s) and E(s)
for each micrograph. To properly weight the data
between micrographs, we must also know N(s).

Parameter Determination

We know M(s) for each micrograph and C(s), E(s),
and N(s) can all be parameterized based on theoreti-
cal or empirical models as shown below. In two-
dimensional crystals or helical arrays, N(s) can be
determined independently by examining the back-
ground between the crystallographic peaks or layer
lines. In single-particle processing, the signal is
distributed continuously throughout Fourier space
rather than in discrete peaks, making this approach
impossible. However, since C(s) varies sinusoidally,
information about N(s) can be obtained from the zero
crossings of C(s). Even with this fact, the overall
fitting problem is impossible for a single data set
without first determining F'(s).

The functional forms used for C(s), E(s), and N(s)
are

C(s) = A(y1 — C% sin (y) + C4 cos (v)),
C\3s*  AZ\s?
+
4 2

where vy = 27

E(s) = e B

N(3)2 — nlenz+n332+n4\s“‘s‘
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This gives a total of eight parameters used for fitting:
A, C4, AZ, B, and n;4. The model for N(s) is
completely empirical and encompasses a wide range
of different physical effects, including incoherent
scattering, film noise, and scanner noise. This model
has worked well with data from four different micro-
scopes (JEOL 1200EX, 4000EX, 2010F, and 3000SFF),
but could potentially require modification for other
microscopes. In particular, we anticipate micro-
scopes with energy filters to produce a substantially
different noise distribution. C(s) is provided by the
well-known weak phase approximation with ampli-
tude contrast corrections (Erickson and Klug, 1970).
A five-term theoretical expression exists for E(s),
encompassing microscope parameters as well as
effects such as specimen movement. In practice,
however, a simple Gaussian is experimentally indis-
tinguishable from this aggregate expression in most
cases. It is also worth noting that there are currently
no parameters to compensate for astigmatism. Ctfit
is capable of measuring astigmatism angle and
defocus difference, but no corrections are currently
made for this effect. As single-particle reconstruc-
tions approach atomic resolution, however, the astig-
matism present even in excellent micrographs may
become significant. EMAN can be easily modified to
compensate for this, but a considerable speed pen-
alty would be imposed. In addition, specimen charg-
ing will induce apparent defocus changes and astig-
matism within a single micrograph, and beam tilt
will cause resolution-dependent phase shifts. These
effects are ignored at present, beyond avoiding par-
ticles in micrograph areas with obvious charging.

As mentioned above, before C(s), E(s), and N(s)
can be determined accurately from individual micro-
graphs, we must determine F(s)2. Once this has been
accomplished, parameter determination becomes a
straightforward fitting problem. We will discuss
three methods for determining F'(s)2. The first method
is to perform a solution X-ray scattering experiment
on the macromolecule under study (Schmid et al.,
1999; Thuman-Commike et al., 1999). This provides
an isotropically averaged one-dimensional structure
factor that will be nearly identical to F(s)? above.
There may be discrepancies due to the differences in
X-ray and electron scattering cross sections for spe-
cific charge distributions (Mitsuoka et al., 1999). In
addition, the solution scattering experiment will
provide a structure factor that is completely isotro-
pic. If the orientations of the single particles in the
electron cryomicroscopy experiment are not distrib-
uted uniformly, the structure factors may contain
noticeable differences. Even in this case, however,
the structure factor will generally be sufficient to
determine C(s), E(s), and N(s).

The second method for determining F'(s)? is to take

one or more micrographs of the sample in ice depos-
ited on a layer of continuous carbon. By selecting
areas of the micrograph containing only continuous
carbon, the CTF parameters can be determined
directly by assuming a one-dimensional structure
factor for the carbon film (approximated as a con-
stant for low to intermediate resolutions). These
parameters can then be used to determine the
structure factor of the macromolecule in the same
micrograph. That is, we determine C(s) and E(s)
from the carbon film alone and then use these
parameters with the macromolecule data in the
same micrograph to determine F'(s)? of the macromol-
ecule. Of course, this F(s)? will be very inaccurate
near the zeros of the CTF in an individual micro-
graph, so an average F(s)? must be determined by
combining the information from several micrographs
at different defocus settings.

The final method for determining F'(s)? is the most
general and requires no additional data collection,
but is the most difficult to implement. F(s)? is a
function solely of the macromolecule being studied.
That is, it is the portion of the data that is constant
when microscope parameters such as defocus are
varied. When data taken at multiple defocuses are fit
simultaneously, this fact provides an additional con-
straint, which makes the fit feasible. As long as the
distribution of particle orientations remains fairly
consistent, any micrographs of the same protein will
do. In the most general case, this would still be an
underdetermined fitting problem. However, the oscil-
latory nature of the CTF combined with a monotoni-
cally decreasing envelope function provides the nec-
essary additional constraints to make the fitting
problem converge. After the fit has been performed
once, with several micrographs, the resulting F(s)?
can be used to determine C(s), E(s), and N(s) for any
number of additional micrographs. While relative
amplitudes and B-factors can be determined, there is
always an arbitrary overall scaling factor and an
arbitrary overall B-factor that cannot be determined
without a known reference. Currently this technique
requires some manual fitting to be performed, but a
fully automated solution may be possible. Despite
the difficulties, we have successfully applied this
method to several problems in which results from
one of the other methods were also available, and the
F(s)? determined by the two methods matched ex-
tremely well.

Performing the Corrections

Once the parameters have been determined, the
actual CTF correction is performed when aligned 2D
single-particle images are averaged to generate a
class average. The averaging is performed in Fourier
space. The basic method is to perform a weighted



90 LUDTKE, BALDWIN, AND CHIU

average of the images, where the weights vary with
spatial frequency. We wish to choose the weights
such that data are used optimally; that is, the
signal-to-noise ratio is maximized in the final aver-
age image at all spatial frequencies. The parameters
for C(s), E(s), and N(s) provide a measure of signal-to-
noise ratio as a function of spatial frequency for each
individual particle. Since F(s) is the same in all of the
data for a given particle, we can eliminate it and
define the relative signal-to-noise ratio for each
particle as R,(n) = [C,(s)?E ,(s)2]/IN,(s)?], where the
subscript, n, denotes particle number. To simplify
the expression, we assume that N,(s) is approxi-
mately the same between exposures. The solution in
which N,(s) is allowed to vary is somewhat more
complex, but is easily derived. Note that some inaccu-
racy in N,(s) will not have a significant effect on the
accuracy of the results; it will simply cause slight
over- or underweighting of certain particles. In prac-
tice, this effect is negligible for data collected on a
single microscope. The final class average is ex-
pressed as a simple linear combination of the indi-
vidual aligned images

T(s, 0) = O, k,(s)M,(s, 0),

where s and 0 represent polar coordinates in Fourier
space, and k,(s) are the weighting coefficients to be
determined. The signal-to-noise ratio of the class
average, T(s,0) is then just

Ry(s, ) = D k()R (s, 0).

We wish to determine k,(s) such that R r(s) is maxi-
mized at all s, 2, C,(s)E,(s)k,(s) = 1 at all s and that
the CTF and envelope functions are corrected. The
result of this maximization is

1 R(s)  C9E,s)
CuOE() S R(5) D, Co(s)E,(s)?

k.(s) =

That is, for an optimal class average, the weighting
coefficients, k, are proportional to R,(s), the relative
signal-to-noise ratio within each image. This method-
ology makes optimal use of the available information
in all of the images. When an image contains no
information at a particular spatial frequency, it does
not contribute to the final image. In addition, this
technique is relatively insensitive to small inaccura-
cies in the CTF model and/or parameters. The typi-
cal effect of fitting inaccuracies would be slightly
over- or underweighting a particular image when
averaging. Since all the images represent the same

structure, this simply causes a slight reduction in
the statistical definition of the result.

TESTING

Each routine in EMAN has been subjected to a
variety of tests, with both real and simulated data.
Discussing all of these tests would make this paper
prohibitively long, so we will limit this discussion to
two of the most fundamental tests. First, a basic test
of the 3D projection/reconstruction routines at high
resolution is described, since this procedure is some-
what novel for the single-particle community. Sec-
ond, a complete reconstruction test using simulated
data is presented. EMAN has successfully repro-
duced and, in fact, improved several reconstructions
using real data as well. Again, to limit the complexity
of this paper, these results will be published sepa-
rately. All of the data and specific program param-
eters used in the tests described here are available
for download with the EMAN distribution.

EMAN uses a direct Fourier space reconstruction
routine, whereas most reconstruction packages use
filtered real-space methods (Frank et al., 1996; van
Heel et al., 1996). The direct Fourier algorithm offers
several advantages over typical real-space methods,
the most important of which is speed. In many other
reconstruction schemes, construction of a 3D model
is a time-limiting step. The described Fourier algo-
rithm is one to two orders of magnitude faster than
typical back-projection methods.

To verify the robustness of EMAN’s Fourier algo-
rithm, a simple projection/reconstruction test in the
presence of high noise levels was performed. A 3D
electron density map of a trimer of the outer shell
protein of the bluetongue virus (VP7) was generated
from PDB data (1BVP). The PDB model contains a
dimer of trimers (Grimes et al., 1995). The electrog
density map of a single trimer was generated at 3-A
resolution. Two thousand five hundred projections of
this model were generated using real-space projec-
tion with trilinear interpolation. Noise was then
added to each projection at typical levels for electron
cryomicroscopy. Figure 2 shows representative pro-
jections with and without noise and a plot of the
mean signal-to-noise ratio in the noisy particles. No
CTF or envelope function was applied in the first
test. All 2500 projections with predefined Euler
angles were then used to generate a 3D model. A
Fourier space reconstruction routine was employed
with 2 X 2 X 2 voxel Gaussian interpolation and 20%
zero padding. For quantitative comparison, the FSC
between the original and the reconstructed models
was calculated as a function of spatial frequency
(Fig. 3, black line). Naturally, with the added noise, a
perfect reconstruction is not possible. Some noise
will always be present in the final model. To provide
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FIG. 2. Particles used for both of the conformance tests described in the text. (A) A few raw projections of the bluetongue virus capsid
trimer from PDB data. (B) The same projections with added noise selected from those used in the first test. (C) Representative projections
with applied CTF, envelope function, and noise. Each particle shown represents a different simulated defocus. These are a few of the
particles used in the second test. (D) The mean signal-to-noise ratio in the individual images shown in B. The curve represents the

structure factor of the macromolecule divided by the applied noise level.

a standard for comparison, the signal-to-noise ratio
of the original particles was used to calculate the
maximum FSC that could be obtained by an ideal
reconstruction algorithm (Fig. 3, gray line). While
there is a one-to-one relationship between FSC and
signal-to-noise ratio, the relationship contains an
integral with no analytical solution, so the conver-
sion is calculated numerically. Note that this calcula-
tion does not account for the numerical errors in-
duced by the trilinear interpolation used in

generating projections, so this curve actually slightly
overestimates the best possible FSC. Even without
accounting for this affect, the Fourier space recon-
struction routine performs extremely well. Also
shown in Fig. 3 are two representative views of the
original and reconstructed models at 4-A resolution.
Clearly, the two models are nearly indistinguishable.

In the second test, the overall reconstruction rou-
tine, including CTF correction, was tested with
simulated data. The same BTV trimer was used as a
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FIG. 3. Results of the first test. A side view and a thin slice of the top view are shown for the original and the reconstructed models. The
plot shows the FSC between the reconstruction and the original model. Also shown is the maximum FSC possible with an ideal
reconstruction routine with the given data set at the noise level shown in Fig. 2.

test model. In this test, five sets of 500 random
projections were generated. To make the test realis-
tic, we used CTF and noise parameters taken from
experimental measurements made on a JEOL 2010F
electron microscope with a field emission gun oper-
ated at 200 keV with an objective lens spherical
aberration coefficient of 0.5 mm. Parameters were
determined from a measurement of carbon film fit

using ctfit. These parameters were then applied to
each of the five data sets, with each set simulating a
different defocus. Figure 2C shows representative
projections with noise and applied CTF at various
defocus settings. A reconstruction was then per-
formed as described above. An initial model was
generated using the simple symmetry search algo-
rithm for a single three-fold rotational symmetry.
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This model was then refined against the complete
data set with CTF correction. Figure 4 shows the
results after zero to three refinement iterations. The
FSC indicates a final resolution of ~5 A, close to the
theoretical limit with the applied envelope function
and noise levels in the original particles. The struc-
tures appear nearly identical at this resolution.

INDIVIDUAL PROGRAMS

EMAN contains a number of individual programs
that are useful for general purpose electron micros-
copy image processing. All of the necessary process-
ing steps in the reconstruction procedure are embed-
ded in a small number of straightforward commands.

Initial Iter. 1

Iter. 2

93

A graphical user interface is provided to allow rapid
analysis of the results and provides instructions to
take a novice user through the reconstruction system-
atically. For advanced users, lower level commands,
as well as a complete set of C++ classes, are
provided to allow custom processing in cases where
the general reconstruction procedures are insuffi-
cient. For a typical macromolecule, a refined 3D
structure can be generated from boxed out particles
with a sequence of three commands. Aside from
evaluating results, no user interaction is required
during the refinement procedure.

Despite its relative ease of use, generating a final
structure and verifying its correctness are not en-
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FIG. 4. Results ofthe second test. In this test, a complete reconstruction was performed with 2500 particles of simulated data. The plot
shows the FSC between the model after each iteration and the “true” model used to generate the original particle data. The plot
demonstrates that the refinement converged by the fourth iteration with a final resolution of ~4.5 A. Representative views of the model
after each iteration are shown above the plot. The leftmost views represent the preliminary model generated by the automatic symmetry
search algorithm described in the text. The rightmost model is the true model. Models after iterations 1-3 are shown in the middle. All

models were smoothed to 6 A with a Gaussian filter.
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tirely trivial. A novice user may, for example, overes-
timate the quality of an early model of a new
macromolecule or be unaware of the pitfalls that
may exist in making initial symmetry assumptions.
Even with fairly automated software, user experi-
ence will play a role in generating a robust model. In
the future, EMAN will be expanded to include addi-
tional routines to ease the analysis procedure and
provide additional user guidance. The initial version
of the software is usable by novices, but they should
expect a considerable amount of trial and error
before they begin obtaining robust models.

The graphical user interface in EMAN is packaged
in several separate programs. Screenshots of two
graphical programs are shown in Fig. 5. The main
program, called eman, allows graphical browsing of
images and command history. Every time an EMAN
command-line program is executed, a log-file entry is
made, recording the exact command parameters,
command run-time, and accessed files. This is per-
formed automatically with no additional effort on the
part of the user. This command history can be
interactively browsed and searched with eman. This
provides a mechanism for recording the history of a
reconstruction, as well as allowing the user to easily
rerun commands with small variations. Eman also
contains a complete image browser and specific tools
for evaluating the results of a reconstruction. Indi-
vidual 2D or 3D image files can be viewed directly in
a window in eman with interactive brightness, con-
trast, and inversion controls. Additionally, when
intermediate files from a reconstruction are viewed,
eman provides a variety of useful features including
comparison of projections with class averages and
individual images in a class with reference projec-
tions.

As mentioned above, EMAN contains a program
called ctfit, which allows parameters necessary for
CTF correction to be interactively determined. This
program also acts as a complete CTF simulator for
determining good defocus values for future micro-
scope sessions and comparing parameters from differ-
ent microscopes. It also has the ability to apply CTF,
envelope function, and/or noise to a set of images to
generate simulated particles for testing purposes.
With a 3D model, this can be used to predict how a
given particle will appear visually on a microscope in
ice.

Helixhunter and sheethunter are nongraphical pro-
grams that facilitate the location of alpha helices and
beta sheets in 4- to 8-A reconstructions. Proc3d is a
3D processing program that can perform most com-
mon image processing operations on volume data,
such as filtering, centering a model, calculating a
difference map, and scaling. In addition, it can take

pairs of models and calculate Fourier shell phase
difference, Fourier shell correlation coefficients, R-
factors, etc. Align3d is provided to automatically
perform rotational alignment of two 3D models.

For isosurface visualization, an excellent solution
is VisbD (http://www.ssec.wisc.edu/~billh/vis5d.
html), a freely available program written by the
Space Science and Engineering Center at the Univer-
sity of Wisconsin, Madison. EMAN includes mrc2v5d
and mrc2v5dt, utilities to convert 3D MRC models to
the format used by Vis5D. Vis5D provides extensive
tools for visually comparing models, generating con-
tour slices, creating small animations, and dozens of
other useful features.

EMAN is provided completely free of charge with
full C++ source. No modification is necessary for
compilation on SGIs or Linus based machines. It was
written with portability in mind and should compile
with relatively little effort on other Unix based
machines. Graphical programs were written using
the freely available QT toolkit (http://www.troll.no/),
which compiles on virtually all Unix based ma-
chines. Fourier transforms are performed with the
free FFTW library (http:/www.fftw.org/), which pro-
vides performance comparable to that of machine-
specific optimized code (http:/www.fftw.org/benchfft/).
While the MRC and IMAGIC file formats are used by
default, EMAN can also read and write a variety of
other formats, including SPIDER, TIFF (currently
only 8 bit), GIF, etc. Machine byte order swapping
(MSB first vs LSB first) is handled automatically by
the image reading functions. Users are encouraged
to modify our examples and write their own utility
programs. Any useful programs may be submitted to
the NCMI for inclusion in future releases of the
package. Complete documentation, sample data, and
the software itself can be obtained on the NCMI Web
site: http:/mcmi.becm.tme.edu/.

DISCUSSION AND CONCLUSIONS

EMAN was written with the ambitious goal of
eventually generating 3- to 5-A resolution reconstruc-
tions from single-particle data. The largest problem
in generating such a high-resolution reconstruction
is the rapid increase of the number and size of
particles such as reconstruction requires. Clearly,
the amount of image data scales as the square of the
reciprocal of the resolution. That is, the individual
particles for a 5-A reconstruction will be twice the
size and contain four times as much data as the
particles used for a 10-A reconstruction. Not only do
the individual particles become larger, but the re-
quired angular accuracy scales linearly with the
reciprocal of the resolution. Since there are two
Euler angles, this means the number of reference
projections used for Euler angle determination also
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FIG. 5. Sample screenshots of two of the graphical programs included with the EMAN package. Ctfit is shown performing a fit of two
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scales as the square of the reciprocal of the resolu-
tion. This factor does not cause an increase in the
required data, but does cause an increase in the
processing time for a reconstruction.

In addition to these two factors, we must also take
into account the increase in number of particles
required due to the low signal-to-noise ratio in the
data. There is a direct correspondence between FSC
between two independent data sets and signal-to-
noise ratio. This means that the number of required
particles is inversely proportional to the signal-to-
noise ratio at the desired resolution. Since the enve-
lope function causes the signal-to-noise ratio to fall
off as 25, the number of particles required rises
very rapidly beyond s = \J’ﬁ. This makes the quality
of the microscope imaging system extremely impor-
tant. For example, with images with B = 200 A2,
going from 20- to 10-A resolution will require a factor
of 20 increase in the number of particles. However, if
B = 100 A2, the same resolution improvement will
require only a factor of 4 increase in particle count.
In addition, the signal-to-noise ratio is also propor-
tional to the structure factor of the particle. Aside
from localized peaks, the structure factor of most
macromolecules falls off rapidly from 100 to 10 A,
requiring a further increase in the number of par-
ticles (Thuman-Commike et al., 1999).

Combining these factors, we immediately see that
processing becomes a limiting factor very rapidly at
high resolution. Even if we discount the structure
factor, a 5-A reconstruction with B = 50 A2 data will
require approximately 300 times more computa-
tional time than a 10-A reconstruction with the same
data quality. If the 10-A reconstruction required, for
example, a day of processing time, the 5-A reconstruc-
tion would take nearly a year of continuous process-
ing. Improving B to 25 A2 would reduce this time to
~2-3 months. Even so, improvements in processing
efficiency and availability of parallel processing are
critical for higher resolution reconstructions to be
achieved.

EMAN is already performing reconstructions in 24
h that previously required a month of user-intensive
work. Several novel techniques for rapid projection
matching promise another order of magnitude in
speed improvement in the near future. In addition,
all of the time-limiting steps in the reconstruction
have been parallelized for use on shared-memory
supercomputers. Single-particle reconstruction is ide-
ally suited to parallel processing, since in most steps
the particles or classes can be treated independently,
allowing very coarse-grained parallelization. Paral-
lel code is currently implemented using the pthreads
library supported by virtually all UNIX machines.
Support for distributed processing on clusters of
machines should exist by the next release.

One assumption that is frequently made when
approximating the feasibility of high-resolution re-
constructions is that data with an arbitrarily small
signal-to-noise ratio can be recovered if a sufficient
number of particles are averaged together. Unfortu-
nately, this is not the case. When the signal-to-noise
ratio falls below a particle specific value, alignment
routines will no longer be able to accurately align the
data at high resolution. If the alignment is not
sufficiently good, the data at the corresponding
resolution will no longer add coherently, no matter
how many data are provided. A very rough estimate,
based on our experience with EMAN and various
microscopes, any data with a signal-to-noise ratio
less than ~0.02 will be unrecoverable. With this
requirement and typical dose conditions of ~10
e~/A2, we estimate that B ~ 2d2 provides a reason-
able estimate of the largest B capable of providing a
reconstruction at a given resolution, d, given an
unlimited number of particles. This approximation,
of course, ignores the structure factor of the macro-
molecule, which can have a significant effect. Ctfit
provides the tools necessary to make a more precise
estimate for a specific macromolecule on a specific
macromolecule on a specific microscope.

Another factor to consider in performing high-
resolution reconstructions is CTF correction. When
collecting data for reconstructions beyond 10 A, it is
virtually impossible to avoid multiple oscillations of
the CTF. Pictures would have to be taken so close to
focus that there would be virtually no contrast in the
images, and low-resolution information would be
almost completely absent. A more reasonable ap-
proach is to combine further from focus images,
which provide much greater total signal-to-noise
ratio, with a robust CTF correction algorithm. How-
ever, even with a robust algorithm, there are limits
to the defocus that can be successfully used at a
given resolution. When the defocus becomes such
that multiple CTF oscillations occur from one pixel
to the next at high spatial frequency in Fourier
space, reliable corrections can no longer be made. In
most cases, this turns out to be a relatively modest
requirement. For example, for the 200-keV scope
used in earlier examples, defocuses as high as 1.5 pm
(first zero of the CTF at ~20 A) should still produce
data correctable to 5—6 A.

In summary, EMAN provides the tools necessary
for achieving the next level of resolution in single-
particle reconstructions, while also allowing low-
resolution reconstructions to be performed rapidly
and routinely. As data with B = 50 A? or better
become available, single-particle reconstructions at
below 10 A resolution should become routine. As
resolution improves, EMAN will continue to be im-
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proved to provide an up-to-date tool for single-
particle reconstructions.
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