
Programming for
Absolute Beginners

Steven J. Ludtke, PhD

IN PYTHON

Preface

Preface

ii

I first learned to program when I was about 10 years old, when my father
purchased our first computer, a TRS-80 Model I. Most of you have probably
never heard of this computer, as the year was 1978, and this was one of the
first ‘personal computers’ to come to market. There were no home video
games yet, and such devices were quite rare. In those days, there were no
hard drives, and even floppy drives weren’t available yet. The sole
mechanism for storing programs was on an audio cassette tape. The
computer had the ‘BASIC’ programming language built in to it, but otherwise
came with no software at all. If you wanted to play a game, you had to type
in a program from a magazine first. Needless to say, such games were
primitive even by the standards of what you might find on a cell-phone ten
years ago. Nonetheless, it was cutting edge at the time.

My father made a deal with me. I could play games on the computer, but
only if I went through the ‘learn to program’ book that came with the
computer. This book was really quite amazing even by modern standards. It
had little cartoons, and took you step by step through the art of
programming in BASIC. I still remember bits of it, even 30 years later, and
once I started learning how to get these fascinating machines to do
something, I was hooked. After all, you really couldn’t do much interesting
on the machines without knowing how to program.

Of course, The world has changed. Nowadays, you can buy or download a
program for just about any task you can imagine. Some of these programs
even include little programming languages of their own.

So, why learn to program at all ? Seriously, why ?

The same question could be asked of any hobby. For example,
carpentry. You can go out and buy virtually any piece of furniture
you could ever need, generally for less than it would cost to make
yourself. If you learn how to do it yourself, you’re doing it for fun,
for the pleasure of creating something useful with your own
hands. If you’re good at it, you could turn it into a career, but
fundamentally, you do it because you enjoy it.

So, before you start the journey to learn how to program, put
yourself in the right mindset. Very likely you can find an existing
program to do just about anything you need done. Sure, knowing
how to program will give you a bit more flexibility in how you use
programs, but for most people, the time you save will be less than
the time you invest. You should learn how to program because
you're honestly interested in how programming works. This
should be a fun process, not a stressful one. While I’m no artist,
and have no hope of producing something with quite the same
spirit as the book I remember from my childhood, hopefully I’ve
achieved something with a somewhat lighter spirit than your
typical programming tome. The focus is on doing fun and
interesting things rather than on learning the sort of formal
programming you’d do as a professional. Certainly you can take
what you learn in this book and turn it into something more formal
later on if you find yourself inspired, but that's an afterthought,
not a goal.

This book will introduce you to programming through a language
called ‘Python’. While languages such as C++ and Java may be

more widespread among professional programers, Python is also
quite widespread, and it is far easier to learn as a beginner.
Knowing quite a few programming languages myself, I can also
say without reservation that Python is the by far the most fun to
program and work with. So, relax and enjoy your journey !

Python ?
Why name a programming language after a big snake, you
may ask ? The answer is, it isn’t ! In fact, Python is named
after another Python of British TV fame (try Wikipedia if you
can’t figure it out). So, when you run across odd references in
the Python documentation, you’ll know where they come from.
This also makes it a doubly good language to use for this
particular book.

NOBODY expects the Spanish Inquisition!

iii

Chapter 1

Getting
Ready to
Program
Python is, itself, a program you run on your
computer, which interprets the programs you enter.
This chapter takes you through the process of
setting your computer up to use Python, and some
initial examples to show you what Python can do.

Conventions
I tried to write this book so it would be understandable to someone learning
programing for the very first time. If you already know a little bit of programming
from somewhere, you could also use this book to learn Python, though you may
find some of it a little simplistic. To add a little spice, you will find occasional boxes

that look like this: box , with notes for more advanced readers. If you're a
beginner, you can ignore these.

There are a few basic conventions we use in this book that it’s important to be
familiar with, so you find the process fun, not frustrating. Most people will find
these things pretty obvious, but let’s just make sure everyone’s on the same page.
First, if you see text that looks like this, you are supposed to (or can if
you like) type exactly what you see into the computer. Generally you should press
<enter> at the end of each line. When you see something between <> characters,
this represents a key you are supposed to press, such as <p>, <space> or
<enter>. Please note also that <enter> is the same as <return>. Different
keyboards give it different names. Sequences like <ctrl-c> mean you should hold
down the ‘ctrl’ key and press c. Text like this is text you should expect to see
displayed on the screen.

Section 1

SUMMARY

1. Text to type

2. Text you see on the screen

3. <key> to press

4. Example code at

5. Chapter ? contains a review of concepts

How This Book Works

5

The first chapter will explain how to install and run Python, and
then give you a series of little examples just to demonstrate some
of Python’s capabilities, and to give you a flavor of what’s to
come. Later in the book, we will take apart some of these
examples and see how they do what they do.

Too much Typing
This book has quite a lot of code (programs) that you need to
type in. You will get the most out of the book if you actually go
through the examples and type them in when you see them. In
fact, don't be shy, go ahead and play around. Change the
examples, and see what happens. It's pretty hard to do any
serious harm with anything we're doing in this book. If we're
playing with anything really risky, like deleting files from the hard
drive, I'll warn you in advance. For the most part, however, if you
find that you are playing around and things become completely
messed up, you can just exit Python and start it up again from
scratch.

If you're feeling lazy (or type really slowly), there is one alternative.
Most of the significant chunks of code in this book are all
assembled into one neat package at

Concepts
This book introduces new concepts gradually as we need them in
each of the various fun little projects. The fun projects are
presented in order such that we can introduce new concepts a

steady, but hopefully not overwhelming, pace throughout the
book. However, that means if you wanted to use this book as a
reference, it could be challenging to remember exactly where a
new idea was introduced. For this reason, we have Chapter ?,
which contains a review of the concepts in the book, complete
with additional examples. If you find a concept too difficult when
it's first introduced, check this chapter for more examples that
may help clear up your confusion. This chapter will also serve as
a good reference after you finish the book. Also note that there
are plenty of good resources on the web for learning about
specific concepts if you still find something hard to grasp.

6

The Good
Python is, quite simply, a fun language to use. Whereas many programming
languages force you to do any specific task one specific way, and make you
carefully define every aspect of your program before you can actually do anything,
Python is very relaxed, and free-form. For any given task, it is generally possible to
come up with a half-dozen different ways to accomplish it in Python. While it
permits you to be very rigid in your software design, it also gives you the freedom
to simply play around (which is what we will spend most of this book doing).

Python is widespread enough that it is included as a standard part of most (but not
all) modern operating systems. The specific version of Python you will have will
vary with how old your OS is. When I started writing this book, Python 2.x was still
dominant, but now we are beginning to see Python 3.x installed most (but not all)
places. While the two versions are almost compatible, there are some important
differences, so it’s important to make sure you have Python 3.x installed.

While I may make some minor comments when there are differences between the
two, we won’t cover everything.

The Bad

Section 2

SUMMARY

1. Python installation is platform-dependent
(Linux, Mac, Windows).

2. This book will use Python 3.x.

3. We also install some useful Python libraries
which aren’t part of the standard
distribution.

4. Wherever text appears in this font, this
is an indication of something you are
expected to type into your computer.

Installing Python

7

Python is what is known as an interpreted programming
language. When you write a program in a language like C++ or
Fortran, your program is first passed through a compiler, to
produce an executable. This executable runs directly on the CPU
of the computer, and is very fast. In Python, your program runs
immediately, without a compiler. However, since it hasn’t been
compiled, it may run a LOT slower than the same program written
in a language like C++. On the bright side, Many of the libraries of
functions provided as a standard part of Python ARE compiled,
and run at full speed. So, Python is often used as a scripting
language to make other, faster programs and libraries do
precisely what you want them to.

The Ugly
Many professional programmers, particularly those trained in
formal C++ and Java programming, dislike Python’s free-form
style. They claim it encourages bad programming habits. To some
extent, they are correct. If you were writing the software system
for a Bank, where everything had to work exactly according to
specific rules, and 50 programmers all had to work together to
produce one gigantic piece of code, you, too, might be fond of
rigid rules and guidelines. In such situations, if one guy decides to
do things ‘their own way’, the next thing you know, someone’s
bank account has accumulated an extra $1m due to a
programming 'error'. Python can, and has, been used for very
large projects, but it really shines in situations where a lone

programmer or a small group is trying to get something done
quickly.

The Makers
Since 2011 or so you may have noticed the term "maker"
occurring all over in popular media. Makers are people who like to
build their own gadgets, often computerized. One of the most
popular tools for doing this now is the Raspberry Pi, which is
basically a fully functional Linux computer on a small ciruit-board
which costs well under $50. These little computers are
surprisingly powerful, and surprise, are often programmed in
Python, which comes pre-installed with all of the Linux
distributions on the Pi !

Installing Python

Mac Users
Luckily and unluckily for users of Macintosh computers, Python
comes preinstalled with the operating system. Unfortunately, the
Python on the Mac is still (2016) Python 2.x. If you open a
terminal window, and type

python --version

you will see what you have. Alas this means you will need to
install Python 3 from somewhere. On the bright side, Python2 and
3 are installed independently, and it is perfectly fine to have both
installed on a single machine. Normally Python 3.x is executed

8

with the command "python3". The simplest way to get a reliable
version of Python3.x is from www.python.org. Simply click on the
Download link and find the most recent Python3.x link. This will
be downloaded as an installer you can just double-click on to set
up.

If you think you will be doing a lot with Python and want to be
able to easily set up hundreds of different Python libraries, you
might want to try a "Superpackage", like Anaconda: https://
www.continuum.io/downloads. If you do this, don't be confused
by references to "Anaconda 4.x" or somesuch. The anaconda
versions have nothing to do with Python versions. Indeed, you will
find two downloads available for Anaconda x.x, one for Python2.x
and one for Python3.x. Clearly you want to get the second one.
This package is not much harder to install and gives some really
impressive capabilities, even if you won't use most of them until
you are well past the end of this book.

To make Anaconda actually work, you will need to make some
changes to your environment so the system Python isn't still
used. On my machines I do this like this:

unset PYTHONPATH
export PATH=/anaconda/bin:$PATH

Windows Users
Python will not be preinstalled on windows, however, a python
installer for virtually any version of Windows is available from

www.python.org. Simply download the appropriate (Python 3.x)
installer and run it. On Windows, you can launch python in two
different ways, which we'll talk about later.

You may also consider installing the more capable Anaconda
"superpackage", which includes Python3 and many standard
libraries, and makes hundreds of others easy to install:

https://www.continuum.io/downloads.

Linux Users
As of the time of writing (2017) Linux Python has gotten a bit
confusing. It used to be that python ran Python2.x and python3
ran Python 3.x, but a few distributions have changed things up
and you have to type python2 to get Python 2.x and python will
get you Python 3.x. Sometimes only one of the two will be
installed by default. Uggh! The solution? Type:

python --version

If that returns a 2.x number, or if it returns an error type:

python3 --version

if one of these has led you to an already installed Python3.x
version, make a note of which command to use, and use it
throughout the book. If not, you will need to use the package
manager for your specific version of Linux and install Python3. I
can't give you specific advice at this point, as there are many

9

http://www.python.org
http://www.python.org
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads
http://www.python.org
http://www.python.org
https://www.continuum.io/downloads
https://www.continuum.io/downloads

different flavors of Linux, and several different tools they use for
managing installed software. Regardless, all are easy to use, and
if you are using Linux in the first place, you can probably handle
this.

Many Python libraries and tools are already easy to install on
Linux, but like the other platforms, if you install the Anaconda
"superpackage", you will gain easy access to hundreds of
different Python libraries, which may be useful as you become
more advanced:

https://www.continuum.io/downloads

IPython
In addition to the standard interactive mode that comes with
Python, there is an open source project called IPython, which
gives you an interactive mode with some additional
capabilities. If you install Anaconda, you will already have this
tool. If not, and you are feeling adventurous, you may consider
downloading and installing IPython in addition to the normal
python interpreter, and using ipython rather than python,
when prompted. Some of the capabilites of IPython will be
discussed later in the book, but if you go this route, for the
most part you’ll need to read the manual to sort out how to
use some of its advanced features. If you get frustrated easily,
and are new to programming, you may want to hold off on
trying IPython for the moment.

iPad Users
Originally Apple didn’t permit programming languages on its
iDevices, however sometime in 2011 they reversed this policy,
and you can now purchase at least one version of Python for the
iPad/iPhone. However, it may be challenging to continuously
switch back and forth between this book and your iPad, and a
few things we’ll do will not be possible on the iPad due to its
security restrictions, so my advice would be to read this book on
your iPad and practice programming on the computer, but it’s
completely up to you. It is also worth noting that, at the time of
this writing, turtle graphics is one of the thing the Python
interpreter on the iPad doesn’t support, and we use this for a
number of the more entertaining early examples, so this may not
be an optimal choice.

10

https://www.continuum.io/downloads
https://www.continuum.io/downloads

Starting Python
There are two fundamentally different ways you can use an interpreted language
like Python. First, you can use a text editor to create a file containing your
program, then you can run the program just like you do any other application on
your computer. Alternatively, you can run Python in interactive mode, and just
type commands into it one after another. It will immediately respond to each
command. We will make use of both methods in this book. However, we will begin
with the interactive mode, and use this for many of the simple exercises in the
book.

On any of the three computer platforms we cover, Python can be run by opening a
command prompt, and typing python. While you can start it using an Icon on
most platforms as well, there are some reasons not to do it that way just yet.

So, go ahead and give it a try. Once you enter python, you should receive a
prompt, looking something like:

odd% python
Python 3.5.1 |Anaconda 2.4.1 (x86_64)| (default, Dec 7 2015)
[GCC 4.2.1 (Apple Inc. build 5577)] on darwin
Type "help", "copyright", "credits" or "license" for more in-
formation.
>>>

Section 3

SUMMARY

1. You can start Python by typing python (or
python3) at the command-prompt.

2. Python can be used to do basic math like a
calculator, for example 2*5+10. If you need
scientific functions, like sqrt() or cos(), first
you have to type: from math import *

3. A string can be created by surrounding text
with double quotes, such as : "a test".
You can also perform addition and
multiplication with strings.

4. Python has built-in Turtle graphics, which
can be used to do simple drawing
operations. This emulates a real Turtle
robot drawing with a pen.

Taking Python Out for a Spin

11

>>> is the Python prompt. If you opted to use IPython instead of
Python, you will see a prompt like In [1]: instead, but it has
exactly the same meaning. Either way, this is the place where you
type all of the nifty Python commands we’ll be learning in the
interactive exercises.

Your First Python Commands
Next chapter we will start learning Python properly, but let’s get
started with a few quick examples showing you some easy things
you can do.

Python as a Calculator
This is where almost any introduction to Python starts, mainly
because it’s easy, and can be useful. At the prompt, type: 1+1
and press <enter>.

If everything is working as it should, you should see ‘2’ followed
by another prompt. Cool, huh ? Ok, ok, perhaps that was a little
simple. How about something a little more complicated. Try this:

for i in range(10):
! print(i,i*i,i*i*i)

This one is a little trickier. Note that the second line is indented.
This indentation is critical to python, as code that is indented the
same amount will be executed together (we’ll discuss this more in

the next chapter). For now, just make sure you either use one or
more spaces or a <tab> character to indent the second line.

You’ll also note that after you enter the first line, the prompt will
change from >>> to This means Python is waiting for you
to complete a command you didn’t finish on the first line. After
you enter the command on the second line, you will see
another ... prompt. At this prompt you will need to press
<enter> again on an empty line to let Python know you don’t have
any more commands to give.

Whew, quite a long explanation for 2 lines of code, huh ? Don’t
worry, things will get easier once you learn a few of these simple
rules. If you typed everything correctly, you should have seen:

0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

That is, the numbers from 0 - 9 and each number squared and
cubed. Still not rocket science, but easier than doing the same
thing with your pocket calculator.

12

Note that if you were using Python2.x, this program would be
exactly the same, except the () would be removed from the print
statement. This is one of the more irritating changes between
Python2 and Python3.

Just to get it out of the way, let’s list the basic mathematical
operators in python:

a+b add a/b divide

a*b multiply a//b integer divide

a-b subtract a%b remainder

a**b a to the b
power pow(a,b) a to the b

power

Those take care of all of the basic math you’ll need to do. We’ll
get to more complicated math later on.

Floating Downstream
There are a few oddities when you first start programming, which
may seem a bit odd. Enter the following: 5/2, 5//2, 5%2

You should see:

(2.5, 2, 1)

The "," operator combines several different math expressions into
one, so you get 3 results on 1 line. There are 2 different kinds of
division in Python, floating point division, '/' and integer division,

'//'. When you do integer division, you also need the ability to
find the remainder, hence '%'.

It is important to understand that Python, and computers in
general, treat integers and decimal values in fundamentally
different ways. We'll get into this more later in the book.

Fractions
Many people grow up hating fractions, and for many parents,
their kids confronting them with homework involving fractions is
their worst nightmare. Now, while this isn’t true for your typical
programmer, it’s nice to know that Python has your back. Give
this a try:

from fractions import Fraction
Fraction(3,45)
Fraction(2,9)*Fraction(3,4)+Fraction(1,2)

You’ll note that it automatically simplifies the resulting fractions
for you.

Mathematical Functions
Now lets try something a little more complex. Let’s say we want
the square root of a number. Try typing sqrt(5.0).

Aack! You probably got an error saying it doesn’t know what sqrt
means. What’s up ? Did I misspell sqrt ? No, this is simply our

13

first introduction to modules in Python. All of the math functions
live in a module called ‘math’. So, let’s try one more time. Do this:

from math import *
sqrt(5.0)
cos(.25)

After typing that first line, you suddenly have access to
mathematical functions of all sorts. What functions ? Quite a few
to choose from. Try this:

import math
help(math)

This will give you help on the entire math module. Note that after
you see the first page of math functions, you get a : prompt
instead of the typical >>>. This prompt tells you that python has
more than one page of stuff to show you. Press <space> to see
the next page, and when you get tired, press <q>.

Strings
Strings ? Musical instruments ? Subatomic particles ? No, in
programming, a string is a sequence of characters (letters,
punctuation, numbers). While math is undeniably important, most
of what we do with computers involves words too, so let’s see a
few simple things we can do with strings.

First, consider a simple string, letters between double quotes:

s="This is a string"
print(s)

If you enter this, you will create a variable, s, and print it (the
string) on the screen. Great ! We have “This is a string” in a
variable. Other than print it out, what can we do with it ?

print(len(s))

Ah ha ! The length of the string ! Useful for some things, but not
earth shattering.

print(s.count("i"))

We can find out how many “i”s there are in the string. Why ?
Well, why not.

print("".join(sorted(s)))

That one is a just a bit less obvious. It sorts the letters in the
string in alphabetical order. Probably not the most useful
example, but it gives you a feel for some of the possibilities. Later,
we'll have a whole chapter on programming for word games. How
about math with strings ?

"2.0"+"3.0"

14

You should try this one yourself. If you haven’t done much
programming before, you might guess that this would produce
“5.0”, when in reality, it produces “2.03.0”. So, strings can be
added, but with strings this means they should be joined together
(concatenated), not added mathematically. Strings can be
multiplied as well:

"2"*4

This produces the same thing "2"+"2"+"2"+"2" would, that is
"2222".

Of course, there are many more interesting things we can do with
strings, but that will have to wait until the next chapter. For now
you just need to understand that they are fundamentally different
than numbers, even if they seem to contain a number.

Turtles
Before the days of high resolution color monitors, there were
simple black and white display, capable of showing only letters
and numbers. No graphics at all.

Before this, were the TTYs: Imagine a typewriter connected to a
computer. As you typed, each letter was printed on the paper, but
was also sent to the computer. The computer’s responses were
then ghost-typed on the same paper. In these days, the idea of
“graphics” on a computer was whatever you could do with letters
and numbers on a printed piece of paper. Not only was there no

color, but there weren’t even lines, aside from the -, |, / and \
characters.

Ok, why am I boring you with history ? Back in the 50’s, early
robots known as ‘turtles’ were developed. In the late 70’s/early
80’s, these turtles were adapted to be educational tools as
graphics devices for the computer. The turtle had a pen which
could be moved up and down, and the robot could be given
simple commands like move forward, turn 10 degrees left, etc.
This could be used to draw pictures on paper. While the actual
turtle robots aren’t very common any more (though you can still
get/make them), the concept is still alive and well. Most of the
time the turtles are now little triangles that move around on your
computer screen, trailing a line behind them if the "pen" is down.

Now that our history lesson is over, let’s try it:

from turtle import *
s=Screen()
goto(0,0)

Look ! A window appeared, and when you typed goto(0,0), a little
arrowhead (the turtle) appeared in the middle of the window.
What fun ! What next ?

for i in range(36):
! forward(10)
! left(10)

15

Look, a circle ! (we have to start somewhere, don’t we ?) How
about something with a little more flair (Example 1.1):

reset()
goto(-125,-125)
clear()
for i in range(61):
! forward(250)
! left(118)

Ever play with a Spirograph before ? You can do interesting
things with turtles without much effort. Note that the turtles are

intentionally slowed down so they act more like a turtle robot
might. Clearly the computer is capable of drawing a lot faster
than this.

Example 1.1 What you should see

16

While you haven’t really been ‘taught’ anything yet, if you’re
clever, you may be able to figure out the examples you’ve seen
enough to try your hand at a few simple problems. Of course, the
answers are provided as well.

Problem 1 - Print the integers from 0 to 10 and the square root
of each.

Problem 2 - Modify the turtle examples and see if you can draw:

a) A hexagon

b) The spirograph example is loosely based on triangles, modify
it so its based on squares instead.

Section 4

Problems

17
Scroll through the images to see the solution.

Solution 1.1

Again, start by running python.

Solution 1.2

Chapter 2

Turtlerific

Turtles have the most potential for doing something
interesting quickly, so we'll take a couple of turtle
examples apart to see what we can learn from
them.

Let's start with our spirograph example from the last chapter:

from turtle import *
s=Screen()
reset()
goto(-125,-125)
clear()
for i in range(61):
! forward(250)
! left(118)

This example shouldn't be too difficult to figure out. Let's start with the turtle
graphics functions: Screen(), reset(), goto(), clear(), forward() and left(). These
functions wouldn't be available except for the first line:

from turtle import *

Import
Python comes with a wide range of standard libraries to do all sorts of useful and
interesting things. We've seen two of these libraries in the examples in the first
chapter: math and turtle. While these libraries are distributed with the Python

Section 1

SUMMARY

1. Python has many built in modules,
including math and the turtle graphics
module we have already used. To use a
module you must either import module
or from module import *.

2. Python has a built-in help function, which
can be used to get documentation for
modules or functions, such as
help(math).

3. There are over 20 different commands you
can give the turtle. The most useful of
these are summarized.

4. Lists can be created using square brackets
and commas, such as: [1,2,3,4].

5. The for loop allows us to repeat an
operation for each element in a list.

Spirograph Example

19

language, to use them, you still have to let Python know that you
want to use each one in any given session.

The import command is how this is done. There are three different
ways this command can be used. It's good to understand all
three, since you will run across all three at one point or another.
The three methods are (don't actually type these):

import module
from module import *
from module import name1, name2

The first form makes module available, the second form makes
all of the functions from module available without having to type
module before them, and the third form makes only the specific
functions name1 and name2 available.

Let's use the math module as an example. Say we need to use
the cos() function. We could do this three different ways:

import math
math.cos(0.5)

from math import cos
cos(0.5)

from math import *
cos(0.5)
tan(0.5)

In the first example, we get access to the entire math module, but
we have to put math. in front of any function we use. The second
form gives us access to just the cos function, but we can omit the
math. The third form gives us access to the entire math module,
and we don't have to use math. for any of the functions.

At first glance it would seem like the 3rd form is always going to
be the best choice. After all, it saves you from having to type an
awful lot of math.'s everywhere, and it gives you access to all
functions without having to name them all individually. Why then
would we not want to do this ?

The problem arises when the same function exists in more than
one module. math is a particularly good example for this, because
there is another module called cmath, which has a virtually
identical set of functions. Why would this be so ? The cmath
module contains routines for complex math. The difference isn't
terribly important here, and could be rather confusing for people
who haven't taken a lot of advanced math. Suffice it to say that in
the math module sqrt(-1) returns an error, and in the cmath
module it doesn't.

So, if we do this:

from math import *
from cmath import *
print sqrt(-1.0)

20

What happens ? Do we get an error, or do we get an answer ?
You can try it, but you'll find that indeed, no error is raised. When
we import cmath, it overwrites all of the functions from math.

One solution to this problem is to use the other form of import:

import math
import cmath
print cmath.sqrt(-1)
print math.sqrt(-1)

You'll find that the second print statement now raises an error.

So, when we do a from turtle import *, we are making the
entire set of turtle graphics functions available for use. Note that it
is perfectly acceptable to do both import turtle and from
turtle import * within the same session. While this may
seem a bit odd, there are several reasons why it might make
sense to do this, particularly in an interactive Python session.

Help
One of python's most useful features, particularly when you're
starting out, is its built-in help system. Of course we didn't
actually use this when we did the examples last chapter, but now
is a good time to introduce it. Try this:

import turtle

help(turtle.goto)

This will give you fairly detailed help on whatever function you call
it on. Even more useful, though perhaps a bit overwhelming, is:

help(turtle)

which will give you help on the entire module, including all of the
functions it contains. While I personally much prefer the well
formatted documentation available from www.python.org,
help() can still be very useful when you forget how to use a
function. Note, however, there is no absolute requirement for
module developers to write the sort of detailed help you find in
the turtle module, but you'll find that the help for most Python
libraries is quite good.

Back to Turtles
While the names are pretty self-explanatory, let's consider each of
the turtle functions we used in our example:

• Screen() - creates a turtle graphics window and opens it

• reset() - resets the turtle to the origin (0,0), default orientation, ...

• goto(x,y) - moves the turtle to an absolute location (x,y)

• clear() - erases the current display, but doesn't move the turtle

• forward(d) - moves forward in the direction the turtle is pointing
by d units (generally pixels)

21

http://www.python.org
http://www.python.org

• left(a) - turns the turtle to the left by a degrees

As you can see, these are pretty simple commands. Picture the
turtle as sitting on a piece of graph paper. Let’s say the center of
the paper is at (X,Y) coordinates (0,0). Just like graphing functions
in grade-school, moving to the right corresponds to an increase in
X, and moving up corresponds to an increase in Y. We can move
the turtle in two fundamentally different ways: we can use goto()
to move to a specific location on the paper, optionally leaving a
line in its wake, or we can use commands like left(), right(),
forward() to move relative to the turtle’s current location.

Robot Turtles
If the turtle were a physical robot with a pen, then obviously,
saying something like goto(10,10) would require Python to
know where the turtle currently was, then convert the
goto(10,10) into relative move commands, because all the turtle
can do in reality is move one of its 3 motors: one to move
forward/backwards, one to change direction, and one to raise/
lower the pen. All of these subtleties would be handled by
Python for you, and give you the flexibility to control the turtle in
many different ways.

So, while we’re discussing turtle graphics, let’s look at a list of the
most important turtle commands. Note that many commands
have one or more equivalent abbreviations:

Function &
aliases Parameters Description

left
lt angle - default degrees Turn the turtle left by

a specified amount

right
rt angle - default degrees

Turn the turtle right
by a specified

amount

forward
fd distance - how far to move Move forward by the

specified amount

back
backward

bk
distance - how far to move Move backwards by

the specified amount

goto x,y move in a straight
line to position (x,y)

seth angle - default degrees Set the direction the
turtle is pointing

penup
up
pu

Start drawing when
moving

pendown
down

pd

Stop drawing when
moving

pencolor name - “red”, “green”, ...
(r,g,b) - 0-255 for each Color of the ‘pen’

fillcolor name - “red”, “green”, ...
(r,g,b) - 0-255 for each

When filling, use this
color instead

22

Function &
aliases Parameters Description

width pensize - a positive number Width of the pen

reset

Clears the screen,
and resets the turtle

to starting
parameters.

clear
Clear the current

page, but leave the
turtle alone

dot [size] - dot diameter
[color] - see pencolor above Draw a dot

circle
radius - size of circle

extent - how much of the circle
(default degrees)

Draw a circle. Center
is radius to the left of

the turtle.

speed speed - 1 (slow) - 10 (fast)
0 (fastest)

How fast the turtle
should move.

This list is not exhaustive, and there are a couple of categories of
functions we haven’t covered, but we’ll get to those later. As you
can see, even with this list, there are quite a few things we can
have our turtle do.

However, before we get to that, we need to have a look at the one
line of our example program we haven’t explained yet. Amazingly
enough, that one line involves no fewer than four critical concepts
in the Python language.

What Lives in One line
The line we need to discuss is:

for i in range(61):

The first concept we will discuss is embodied in i, the second in
range(61), the third in for ... in, and finally, the last
concept is embodied in the humble : .

Variables
If you’ve programmed before, please skip this particular
subsection. For everyone else reading this book, think back to
grade school, or maybe Jr. High, and remember from math class
the simple concept of a variable, like x in 5=3+2x. You may think
I’m being condescending here, but I’m not. While variables in
programming are similar to variables in math, they aren’t exactly
the same thing, and this often leads beginners to some
confusion. This statement is perfectly valid in Python:

x=10*20+30

However, this is not:

5=3+2*x

And this one is valid, but it doesn’t mean what you may think:

x=5*y

23

What the heck ?

In math, when you say something like x=5*y, you are establishing
a relationship between the variables x and y. You are saying that x
is 5 times the value of y, and correspondingly, y has a value 1/5 of
x. In programming when you make this statement, you are saying
“give x the current value of y times 5”. If y changes, x does not
change. For example, after this:

y=3
x=y*5
y=4

the value of x is 15, NOT 20, and the value of y is 4. That is, in
programming when you say x=..., you are not saying “x is equal
to” you are saying “make x equal to the current value of ..., right
now”. This is a somewhat subtle point, but a very important one.

Another less subtle point is that variables in programming aren’t
limited to holding numbers. For example:

x=”abc”+”def”

Is perfectly acceptable, and print(x) will produce abcdef.
Variables can contain many other things as well, but so far we’ve
only talked about numbers and strings. However, that leads us
directly to the second important concept in that line of code :

Lists
Try this:

print(list(range(5)))

You should see [0,1,2,3,4]. This is a list of integers. A list is a
single object, which contains an ordered group of other objects.
Let’s try this example:

a=[0,1,2,3,5,7,9]
print(a[0])
print(a[2])
print(a[5])

You should have gotten 0, 2 and 7 back out. It should be obvious
by this point in time that the print function is used to display the
results of an expression. In an interactive python session, you
could have omitted the print statement, and it would have shown
you the corresponding values anyway, though in a slightly
different form (try it). Regardless, the key here is that a is a list of
numbers, and we are able to extract specific elements from the
list using [].

This may be a little confusing at first, after all, you created the list
by putting a bunch of comma-separated items inside square
brackets. Surely that would mean that we could have said a=[2]

24

and made a list with a single element, and indeed, this is true. The
trick is in the =. The statement a=[2] is assigning the one
element list containing the number 2 to the variable a. The
expression a[2], however, is retrieving the third element from the
existing list a (if the list has at least 3 elements).

Now, at this moment, if you’ve absorbed the whole '=' thing,
you’re probably saying, “Hang on a second. You said a[2], but
then you said the third element of the list !?!? Must be a typo in
the book !” Alas, no. It is not a typographical error. Python, like
most programming languages, uses zero-indexed lists. The first
element in the list is a[0], the second element is a[1], ... Don’t
worry too much about why this is true for the time being, but
there are some good reasons to do things this way. This also
explains why, when we said range(5), we got a list from 0
through 4, not 1 through 5. Almost everything in Python is zero
indexed.

Since we’re talking about lists anyway, now is probably a good
time to introduce a couple of other interesting features about lists:
negative indices and slicing. What do you think this would
produce (feel free to try it) ?

a=[0,1,2,3,5,7,9]
print(a[-1])
print(a[-2])

The answer ? 9 and 7, of course ! Yes, that’s right, if you use
negative indices to access elements in your list, you start at the
end and count backwards, so, a[-1] refers to the last element in
the list, however long it happens to be, and a[-2] is the second
from last element. Neat trick, right ?

Now I have a really tricky one for you: what are a[7] and
a[-7] ? If you try this, you will find yourself with a nasty looking
error message “list index out of range”. No funny tricks
here. If you ask for an element of a list that doesn’t exist, you will
get yelled at.

We’re ready to move on to slicing now. Let’s say you want a new
list which contains elements 2-4 of the old list. We could do it like
this: b=[a[1],a[2],a[3]], but that might get a little
unpleasant if we wanted elements 197 to 536 from a larger list.
Happily python offers us a bunch of interesting shortcuts using
the slicing operator. We could equivalently say b=a[1:4]. Why
4 ? Is Guido van Rossum (the author of Python) just being
perverse ? No, again, there are some really good reasons for it.
For now, just realize that the first index when slicing is inclusive,
and the last index is exclusive. That is, a[1:4] says start with
element 1 (the second element) and give me all of the elements
up to, but not including element 4 (the fifth element). Trust me, it
will take a little getting used to, but in the end everything will fall
into place.

25

There are a number of other clever things we can do with slicing.
For example, we can omit either the first or last index in a slice,
implying the beginning or end of the list, respectively. Here are
some examples:

a[:4]! ! # returns list elements 0 through 3
a[2:]! ! # returns elements 2 through the end
a[-3:]! ! # returns the last 3 elements
a[:-3]! ! # returns all but the last 3 elements

Clear ? Hang on, I slipped something in there. The lines up above
are valid Python code, even the bit after the #. The # character in
Python begins a comment. That is, anything after this character
on any line of Python code will be completely ignored. If you
typed a line of code that said:

a=[1,2,3]

it would do absolutely nothing. This is used to document your
code. That is, to explain to others, or yourself 3 years later, what
exactly you intended that bit of code to accomplish. It isn’t very
useful when we’re using Python in interactive mode, but if we
were writing a program in a text file, it is considered very good
form to add comments liberally throughout the code.

The last thing to introduce in dealing with lists is assignment. You
can change the contents of a list:

a=[1,2,3,4,5]
a[2]=10
print(a)

As you see, the third element of the list has been changed to 10.
There are many other ways of manipulating lists, which we will
cover later, but this should be sufficient for now.

for ... in
On to the third important component of our one line of code. The
for statement is used to iterate over the elements of a list. This
is called a loop. We use it by saying:

 for variable in list: something

variable is the name of any python variable, and list is any python
list (or a variable containing a list, which is the same thing). This
statement will assign each element in the list to the variable, and
then do something before moving on to the next item.

Let’s try a simple example to demonstrate this:

for i in [1,2,4,6,9]: print(i)

You’ll need to press enter a couple of times here. You should see:

1
2

26

4
6
9

Additionally, after the loop finishes, i will still exist and have the
value 9. So, you can see, it sequentially assigns each value from
the list to the variable i, then executes the statement print(i).

While this is a fairly simple concept, this is one of the most useful
and heavily used statements in Python. The next thing we need to
consider is the 4th important point from our one line of code, if
you still remember that far back:

The all important “:”
In the example above, there is a : character separating the list
from the print statement. The : separates the for statement
from the code that gets executed inside the loop. In our simple
example we just put a single print statement after the :, and
indeed we could have put any one single command there, and
been fine. However, what if you want to execute more than one
command inside the loop ?

The answer is actually very simple. You do it like this:

for i in range(5):
! j=i*2
! print(i,j)
print(“loop is done”)

Now, this isn’t a very interesting example, but it demonstrates the
idea. Instead of putting the command on the same line
immediately after the :, we hit <enter> and start a new line, then
put our code there. How then does Python know which code to
execute inside the loop, and what code to execute after the loop
is complete ?

The trick is the indentation before the second and third lines.
Anything indented to the same level will be executed inside the
loop. The amount of indentation is arbitrary. You could indent one
space, or with a single <tab>, or with 3 spaces. As long as you
indent exactly the same way on each line, it will work. When you
stop indenting, the code is outside the loop, meaning it won’t be
executed until the loop completes.

Where are the { } ?
If you’ve programmed in any other programming languages,
particularly C, C++ or Java, you’re probably expecting the code
after the for statement to be inside curly braces. Sorry, Python
doesn’t do things that way. { } are used for a completely
different purpose, and indentation is the sole way of denoting
blocks of code in Python. This, at least, has the advantage of
making Python code more readable than a lot of C++ or Java

27

That’s it, we’re done. We’ve considered all aspects of our simple
little turtle example. Let’s finish off this section with one more
simple example program using the techniques we’ve learned.
You’ll have to type this one in if you want to see what it does.

from turtle import *
Turtle()
reset()
a=[90,180,90,90,180,90,0,180,-90,90,180]
fdr=[100,50,50,50,100,0,50,25,100,25,50]
fnd=[0,0,0,0,0,25,0,0,0,0,0]
ht()
for i in range(11):
 left(a[i])
 forward(fdr[i])
 up()
 forward(fnd[i])
 down()

28

Totally Random Walks
So far, we’ve introduced two modules: math and turtle. Let’s go ahead and add
one more to our repertoire. Try this:

import random
for i in range(10): print(random.randint(1,100))

As you’ll see, this program will print 10 random numbers between 1 and 100
(possibly including 100). If you run the program again, you’ll get a different list of
numbers each time. There are a number of other functions available within the
random module as well, for example, random.uniform(1,100) will return a
random floating point number between 1 and 100. random.gauss(80,10) will
return a ‘Gaussian’ (a bell-shaped curve) centered at 80, with a width of 10. That is
it will be more likely to return values close to 80. The farther you get from 80, the
less likely it is to produce that number, but technically it could return 1000. It’s
simply very unlikely.

Let’s try applying this to turtle graphics:

from random import *
from turtle import *
a=Turtle()
speed(0)

Section 2

LOREM IPSUM

1. The random module provides functions for
making random numbers of different sorts.

2. Less Random Walks

3. Traveling Circle

4. Making Decisions

Random Walk

29

for i in range(250):
! forward(10)
! left(gauss(0,40))

Doing this, you will see something like (but not exactly) one of
these. It can be fun to watch (a couple of times, anyway), so don’t
just rely on my screenshots. Give it a try :

Less Random Walks
So, we now have a turtle which knows how to wander around
randomly on the screen. Not all that useful, though you could
learn something about the behavior of random walks by playing
around with that program. Let’s see if we can make a walk that’s
random, but not completely random. Start by remembering if we
do something like this:

reset()
for i in range(36):
 forward(10)
 right(10)

we get a circle. Now, let’s do the same, but with a little
randomness thrown in:

reset()
for i in range(500):
 forward(10)
 right(gauss(7,3))

Kind of like scribbling circles with a pencil. A little different each
time, but vaguely circular. You can play with the parameters inside
gauss() and see what effects you can achieve.

30

Example 2.1 Random walks

Traveling Circle
Lets take the next step and see if we can get our circle drawing to
follow a path. Go ahead and exit your python session (by typing
exit() or <ctrl-d>), then start it up from scratch, and give the
following program a try:

from turtle import *
from math import cos

radians()
goto(-200,0)
clear()
for i in range(500):
! forward(10)
! left(0.2-cos(heading())/50.0)

You should see this:

Example 2.2 Random circles

31

Let’s take a closer look at this program. Note that we aren’t doing
anything with random walks this time. This is basically the same
as our circle drawing program with the exception of : left(0.2-
cos(heading())/50.0). So, how does this result in drifting in
a particular direction ?

The cos() function you may remember from high school. Cos()
takes an angle as a parameter and oscillates between -1 and 1. In
your math textbook : cos(0)=1.0, cos(90)=0, cos(180)=-1.0 and
cos(270)=0. However, things are a little trickier than this. You can
measure angles in 3 different ways. Generally in school, you learn
to measure angles in degrees, with a right angle being 90 degrees
and 360 in a full circle. However, you can also measure angles in
radians. In radians, a right angle is π/2, and a full circle is 2*π. In
basically all programming languages, sin(), cos() and tan(), take
radians as arguments rather than degrees. By default, turtle
graphics works with the more familiar degrees. However, since we
want to work with cos() from the math library, radians are better.
The radians() function tells the turtle to use radians for
everything instead of degrees.

You’ll also note that we didn’t say from math import *, but
rather just from math import cos. As it happens, the math
module has a function called radians() too. As you may recall, if
there is a conflict between two libraries, whichever one you
imported LAST will be the function you see. So, rather than

running into potential problems, we can import only the functions
we plan to use.

So, we’ve explained a bit about cos() now, but how do we relate
cos() to the direction the turtle is going ? There is another set of
turtle functions we haven’t talked about yet. The ones we studied
in the last section allowed you to control the turtle’s actions. The
second set of functions allows you to ask the turtle for
information about where it is and were it’s pointing:

Function &
aliases Returns Description

position
pos (x,y) - in pixels Current turtle position

xcor pixels X location

ycor pixels Y location

heading angle - radians or degrees
depending on settings

Direction the turtle is
pointing

In this example program, we use heading() to change how much
we turn, depending on which direction we’re going. If we’re
pointing up or down (π/2 or 3 π/2) then cos() is 0, and we draw a
normal circle, but if we’re pointing right, cos() is 1.0 and we turn a
little bit slower than normal, so we go a little farther than we
should. If we’re facing left, then cos() is -1.0 and we turn a little
faster than usual, so we end up going a bit less in that direction

32

than we would for a circle. The result is what you see. We’ll get
back to this in the problems at the end of the chapter.

Making Decisions

Everything we’ve done so far has been based on simple
sequences of operations. One key concept we’re still missing is
how to make decisions. Say we want to do a random walk, but
we want to try and keep the walk inside some particular region of
the screen. We need to be able to tell the program to act
differently when certain conditions are met. This is accomplished
in Python (and many other programming languages) through the
if statement. Try this:

from random import *
from turtle import *
a=Turtle()
speed(0)
for i in range(750):
! forward(10)
! left(gauss(0,40))
! if xcor()>100 : seth(gauss(180,30))
! if xcor()<-100 : seth(gauss(0,30))
! if ycor()>100 : seth(gauss(270,30))
! if ycor()<-100 : seth(gauss(90,30))

What's happening here ? If the turtle moves out of a box going
from (-100,-100) to (100,100), then it points the mouse generally
back towards the center of the box. Technically it could still

migrate out of this region, but it's very unlikely. To do this,
however, we have to test whether the turtle is outside the box or
not.

To make a decision in Python, we simply say:

if expression : do something

Expression is the (mathematical) question we're asking. If this
question is true, then whatever is after the ":" gets executed,
otherwise it doesn't. In this case True can also mean "not zero".
To make these sorts of decisions, Python provides a number of
Boolean Operators. These are very much like simple math
operations (+ ,- ,/ ,* ,...) but each one returns either True or
False, not a number. Without adieu, here are Python’s boolean
operators:

> greater than < less than

>= greater or
equal <= less or equal

= equal != not equal

is identical is not not identical

and both are True or either are True

not T->F, F->T in item in list

With these operations you can have Python ask virtually any
question you need answered. For example, consider:

33

 (x<23 or x>35) and y<17

As you can see, parentheses can also be used for grouping
terms, just as they can with normal mathematical expressions.

34

1)

Section 3

Problems

35

Chapter 3

Sudoku

In this chapter, we'll learn how to create and solve
Sudoku puzzles. Even if you don't know Sudoku or
don't like them, this chapter will introduce many
useful concepts.

Sudoku, if you aren't familiar with it, is a popular puzzle game of pattern
completion. While the rules are simple, they can be extremely challenging to solve.
This chapter will introduce a large number of new concepts, so don’t feel bad if
you don’t get everything immediately. Take it easy, and remember to try and have
fun doing it!

The Rules
Before we can start thinking about how to write a program to solve or create
Sudoku puzzles, we need to understand the rules. If you're already familiar with
the rules, you can skip this section.

Sudoku is a pretty simple game. It's played on a
9 x 9 square grid. each square holds a number
between 1 and 9. The trick ? Each row, each
column and each 3x3 smaller square can only
have one of each of the 9 numbers. An example
of a solved Sudoku is shown to the right. When
you have a book of Sudoku puzzles, some of
the numbers are missing. The goal of the game
is to fill in all of the missing numbers. The more
that are missing, the harder the puzzle.

Section 1

LOREM IPSUM

1. The Rules

2. Scrambled Sudoku

3. Functions

4. Sudoku Storage

5. Advanced Slicing

6. Sudoku Scrambler

7. Writing Actual Programs

Making A New Sudoku

37

1 2 3 4 5 6 7 8 9

4 5 6 7 8 9 1 2 3

7 8 9 1 2 3 4 5 6

2 3 4 5 6 7 8 9 1

5 6 7 8 9 1 2 3 4

8 9 1 2 3 4 5 6 7

3 4 5 6 7 8 9 1 2

6 7 8 9 1 2 3 4 5

9 1 2 3 4 5 6 7 8

A Solved Sudoku

How would you go about making a Sudoku from scratch ? One
simple approach would be to begin with an empty grid, then start
filling in random numbers in squares. Each time you insert a
number, you check to see if it's legal. If it isn't, then you try
another. You then repeat until the whole puzzle is filled in. Then
you can remove a few entries to form the unsolved puzzle.
However, this isn't a very efficient approach. It could take a lot of
time to compute a new Sudoku this way.

Scrambled Sudoku
A much better approach is to start with a valid solved Sudoku
and change it following specific rules to make another valid
solved Sudoku. Then remove a few of the numbers. There are
some simple rules for changing a solved Sudoku so it remains a
legal solution. Take a look and see if you can figure it out.

Consider for a moment what would happen if you took 2 rows of
the solved Sudoku and swapped them. Since the whole row stays
intact, you know that you haven't broken any rules within the row.
Also, from the perspective of the columns, all you've done is
swapped the position of two existing numbers. Again, that could
never make the solution illegal. So, the only thing to consider then
is what would happen to the 3x3 squares. Again, the answer is
pretty straightforward, as long as you swap the rows within a 3x3
box rather than in-between boxes, you'll also keep a valid
solution. Clearly the same arguments could be made for columns.
So, to change an existing Sudoku, you can swap any pair of rows

or columns within a 3x3 group. By repeating this swapping
process multiple times, you should be able to achieve lots of
different solved puzzles.

However, this won't get you every possible solved puzzle. There
is one more operation we can perform which should always give a
valid solution. We can take any pair of numbers, like 3 and 6, and
change every 3 to a 6 and vice-versa. Like the row & column
swapping, this operation can never produce an incorrect solution.
If you think about it, there is nothing magical about the numbers
1-9. If we wanted, we could just as easily use the letters A-I. That
is, when we exchange all 3s for 6s, we're just changing the
symbols we're using, not the actual logic of the puzzle.

Functions
We could just take what we know and write a program to
generate Sudoku puzzles now, but this is an excellent opportunity
to introduce one of the most important concepts in programming:
the function. You're probably already familiar with the basic idea
of a function from math. In math I could say something like
f(x)=5+3*x+x2. Then f(2) would be 15. In math this is a way of
taking an equation that you will use often and giving it a name, f(x)
in this case. The same concept exists in programming, but it's a
little more general. Like other concepts in programming the idea
of a function doesn't just apply to math but can be used with
strings, lists, etc.

38

Let's start with our example above, but express it in Python, just
as a comfortable starting point:

def f(x):
! return 5.0+3.0*x+x**2.0
print(f(2))
print(f(5))

As you can see, the def statement is used to tell Python that we
want to define a new function. The return statement is used to
say what value the function returns to the caller. In this example
the print statement calls the function f, and the return value is
printed. The name of the function doesn't matter. Any name you
could use for a variable could also be used for a function. You just
need to be careful about existing built-in functions. For example,
you could define your own function called open(), but if you did,
you'd be in trouble the next time you needed to open a file !

While this is a fine example to start with, functions are far more
powerful than this. Let's try another example:

def squarelist(x):
! ret=[]
! for i in x: ret.append(i*i)
! return ret

mylist=[1,2,3,4,5]
print(squarelist(mylist))

So, we've defined a function called squarelist(), which will return a
new list with each element squared. Now, we could do this a
completely different way:

def square_inplace(x):
! for i in xrange(len(x)):
! ! x[i]=x[i]*x[i]

mylist=[1,2,3,4,5]
print(square_inplace(mylist))
print("--------")
print(mylist)

You may find this example confusing at first. Look at it very
carefully. The first print statement doesn't show anything at all.
That's because the function we defined doesn't have a return
statement, so it doesn't return anything at all. However, it
changes the contents of the list we pass into it. So, when we print
mylist after calling the function, it doesn't contain the original
values any more. This type of function is described as acting by
side-effect. In the field of functional programming, this approach
is considered extremely poor style, and in many languages it is
impossible. However, it can be a useful method, and in some
situations it is a practical necessity. Unfortunately, it can also be
confusing. Give this example a try, for instance:

def test(x):
! x=x*x

39

y=10.0
test(y)
print(y)

You may have been expecting to see 100 printed out on the
screen, right ? What you actually got, though, was 10. So, what's
the difference between this example and the previous example ?

The answer is a little subtle, and may take a while before you
completely understand it, if you aren't familiar with programming.
In the first example, mylist contained a reference to a specific list
that we defined. In our function, we made it so the temporary
variable x pointed to the same list as mylist, then changed the list
itself. We didn't do anything to change mylist, but rather, we
changed the contents of the list that mylist was pointing to.

In the second example, y contains the number 10. When you call
test(), it assigns the value of y, that is, 10 to the temporary
variable x. You then change x so it's 100, but this has no impact
on y. When you exit the function, the temporary variable x ceases
to exist, and y is unchanged.

This simple example may help, if you still feel confused:

list1=[1,3,5,7,9]
list2=list1
list2[2]=99
print list1

print list2

In this example, list1 and list2 both point at the same list, so if you
change one, you change the other.

As a closing note, it's also possible to define functions of more
than one variable:

def hypot3(x,y,z):
! return sqrt(x**2+y**2+z**2)

Sudoku Storage
Before we can scramble our Sudoku, we need to decide how we
will store the numbers. Clearly we want to use a list of some sort.
There are several different ways this can be done, including a list
of lists, or an array object from
a module called NumPy.
However, the simplest
organization will be the easiest
to explain with what we know
right now. So we will work with
a single list, 81 (9x9) numbers
long, arranged as shown in the
table to the right.

Now, before we write the overall
scrambler program, we'll start by writing functions to do each of

40

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53

54 55 56 57 58 59 60 61 62

63 64 65 66 67 68 69 70 71

72 73 74 75 76 77 78 79 80

Storing Sudoku as a List

the rearrangements we discussed. Given how Sudoku numbers
are arranged in the list, we need to figure out a way to swap rows
and columns. Rows are more straightforward with this data
arrangement, so we'll start with that.

The basic issue we need to address here is how to swap the data
in two rows in the simplest possible way. You're probably thinking
"Ahh, we're going to use a for loop !" Nope. Turns out there is a
better way.

Advanced Slicing
If you recall our earlier discussions of slicing, we can use
expressions like a[3:7] to pull out pieces of a list. What we didn't
discuss earlier is that it's also possible to assign to a slice. Try
this:

a=[0,0,0,0,0,0,0,0]
a[3:6]=[1,2,3]
print a

So, it's possible to modify a block of values in an array all at
once. Now, here's another puzzler for you to try:

a=[1,2,3,1,2,3,1,2,3]
print a[::3]
print a[1::3]

We learned about slicing with a[from:to] previously, but what
we didn't learn is that you can put a second : in. This second :
lets us do a[from:to:step]. The third value lets us take every
step value from the list. If you still find this a bit confusing, try
this one:

a=[1,2,3,4,5,6,7,8,9]
print a[::3]
print a[1::3]

Now think about this in terms of our big Sudoku list. Lets say we
want all of the numbers from the 3rd column. Nothing simpler:
a[2::9] !

Now we need one final trick. In most programming languages if
you want to swap the values of two variables, you have to go
through a three-step process:

a="abc"
b="def"
print(a,b)
x=a
a=b
b=x
print(a,b)

However, in Python you can do two assignments with one
statement, making swapping a breeze:

a,b=b,a

41

If we put these three concepts together, we could swap row 'n'
with row 'm' in a Sudoku list 'a', like this:

a[n*9:n*9+9],a[m*9,m*9+9]=a[m*9,m*9+9],a[n*9:n*9+9]

We can swap columns as well:

a[n::9],a[m::9]=a[m::9],a[n::9]

lots of nines...

We're now ready to start constructing our first serious program!

Sudoku Scrambler
Note: Don't immediately start typing all this code in yet. Just read
it and try and understand what it does. In the next section we will
discuss packing all of these functions into a usable program

We're now ready to write the three functions we need for the three
scrambling operations :

def swap_row(sod,n,m):
! if n==m : return
! sod[n*9:n*9+9],sod[m*9:m*9+9]=sod[m*9:m*9+9],
sod[n*9:n*9+9]

def swap_col(sod,n,m):
! if n==m: return
! sod[n::9],sod[m::9]=sod[m::9],sod[n::9]

def swap_numbers(sod,a,b):
! if a==b: return
! for i in range(81):
! ! if sod[i]==a : sod[i]=b
! ! elif sod[i]==b : sod[i]=a

Let's also write a function to print a Sudoku out on the screen:

def show(sod):
! "Print a Sudoku list nicely on the screen.
Any zero entries will be shown as a blank"
! for a in range(0,81,9):
! ! if a in (0,27,54) : print("-"*25)
! ! for b in range(a,a+9):
! ! ! if b%3==0: print("|",end="")
! ! ! if sod[b]==0 : print(" ",end="")
! ! ! else : print(sod[b],end="")
! ! print("|")
! print("-"*25)

Note two new additions in this function. First, some of our print
calls include end="". The default is for end to start a new line.
That is, end="" causes the next print statement to continue on
the same line of text on the screen.

The other new addition is that there is a string by itself on the line
right after the def statement. This is a documentation string. You
remember Python has a built-in help() interface, right ? This

42

string is how you make your own functions work with help().
After entering the show() function, try typing help(show).

We can now make use of these four functions to randomize a
good starting Soduku and produce a brand new puzzle:

from random import randint,choice
sud=[1,2,3,4,5,6,7,8,9, 4,5,6,7,8,9,1,2,3,
7,8,9,1,2,3,4,5,6, 2,3,4,5,6,7,8,9,1,
5,6,7,8,9,1,2,3,4, 8,9,1,2,3,4,5,6,7,
3,4,5,6,7,8,9,1,2, 6,7,8,9,1,2,3,4,5,
9,1,2,3,4,5,6,7,8]

we do one of each type of swap 20 times
some will be skipped (if e1==e2)
for i in range(20):
! tri=choice([0,3,6])
! e1=randint(0,2)
! e2=randint(0,2)

! swap_row(sud,tri+e1,tri+e2)

! tri=choice([0,3,6])
! e1=randint(0,2)
! e2=randint(0,2)
! swap_col(sud,tri+e1,tri+e2)

! e1=randint(1,9)
! e2=randint(1,9)
! swap_numbers(sud,e1,e2)

ans=sud[:]! # This copies the list
n=int(raw_input("How many numbers to exclude? "))

set a random number of elements to 0
for i in range(n): sud[randint(0,80)]=0

show(sud)

if raw_input("\nDo you want the answer ? (y/
n)")=="y" :
! show(ans)

The only new concept that we've used here are the choice()
function from the random module. As is probably pretty obvious,
choice() randomly selects one item from a list.

Writing Actual Programs
You now have all of the pieces you need for a program you can
run to produce Sudoku puzzles, but how do we take all that code,
put it together and run it as a program ? Clearly we don't want to
type it all in by hand every time we want a new puzzle.

The basic idea is pretty simple. You create a plain text file, for
example "myfile.py" then instead of just saying python, you say
python myfile.py, and it will execute whatever you put into

43

the file instead of giving you an interactive prompt. How we
handle this, though, depends on the type of computer you're
using.

Anaconda
If you have opted to install Anaconda (regardless of platform). It
includes two different built-in editor and execution
environments. One (spyder) is a traditional editor with a
debugging environment, and the other (ipython notebook) is a
web-based interactive notebook environment, sort of like
Matlab or Mathematica. Both are excellent choices!

It is critical to understand that plain text files are not just .doc files
or .rtf files which have been renamed with a .py extension. These
software specific file formats contain a lot of information other
than the text itself, and Python (nor any other programming
language) will read these. We need files containing plain text.

Windows Users
While there are word processors on Windows machines that edit
plain text files, such as the built in notepad.exe, the easier
solution is to use the editor that comes with the Windows Python
installation (or see the Anaconda box above). Instead of typing
python in a terminal window, you need to launch the IDLE
development environment, which includes both an interactive
Python session as well as a text editor. When you launch IDLE, it
opens the interactive session window, but not the editor window.

You will need to go to the File menu and select New Window to
get an editor.

IDLE has many features beyond simple editing, but let's start with
the basics. Try typing in any of the simple examples you've done,
then go up to the File menu and select Save or Save As, and
give your program a name (doesn't matter what you call it really,
but use a .py extension). Once you've done this, you can go to
the Run menu and select Run Module.

This will cause your program to start in the interactive Python
session window. When it finishes, either with an error, or because
it's finishes normally, you'll get a Python prompt back again. If
you typed something wrong, just go back to the editor window,
fix it, then try running the program again.

Also note that once the file is saved with a .py extension, if you
find the file on your desktop or with Windows explorer, you can
just double-click on your program to run it inside Python. It will
open a terminal window, run the program, and when it finishes,
close the window again. Be forewarned, if your program doesn't
ask for user input (like our last little program does), the window
will pop open and then pop closed again before you can even see
what it's doing. One solution is to put a raw_input() at the end
of your program to stop it from exiting until you press <enter>.

44

Linux Users
On Linux machines, there are many different options. Most Linux
systems will have Python preinstalled, but many won't come with
the IDLE editor described in the Windows section installed. It's a
separate package on Linux. However, it IS an available package
on virtually every Linux distribution, so you can search for it using
your package manager, and install it. There are also dozens of
other (free) editing options for Linux. I personally like a text editor
called kate, but there are many many other choices as well.
Hard-core programmers will usually also learn a non-graphical
text-editor such as emacs or vi, but this isn't necessary for our
purposes. For the most part, I will simply assume that you are
using IDLE, and you can read through the instructions in the
Windows section.

There is one other major difference between Windows and all of
the other platforms. On Windows, if you save the file with a .py
extension, it will know that it's supposed to run that file using
Python. On Linux or other UNIX systems, the file extension isn't
used this way. The easiest solution, from the command-line is to
simply type:

python mycommand.py

This will run your program within the existing terminal window.
When the program completes, it will exit python and give you
another system command prompt.

The Harder Way
It sure would be nice if we could skip the python part, and just
type myprogram.py at the command prompt, or equivalently,
double click on it from a browser. So, what would that take ? To
accomplish this, you need to do two things. First, the first line of
your python program must be this:

#!/usr/bin/env python

This tells Linux that the rest of the file should be run through the
Python interpreter. Second, we need to tell Linux that this is a
program we can run. We do this with this command:

chmod a+x myprogram.py

After doing this, you can just type myprogram.py to run it.

Mac users
Like Linux users, Mac users will already have Python installed on
their computers when they get them. In addition, they will find
IDLE installed as well. Great, right ? Well, that depends. If you are
using MacOS Lion (10.7) or newer (and you should be), then yes.
Just read through the Windows instructions.

If you find yourself in that situation, the Mac does come with a
simple text editor called TextEdit.app. You can use this to edit
your files, then run them using python from the command
prompt, but you must remember to save the files as Plain Text

45

! The default for TextEdit is to save as Rich Text, which will
not work at all.

There are also any number of other decent choices of text-editors
on the Mac that you can use as well. Some even have integrated
interpreters like IDLE does. The Mac App Store has a number of
good choices that only cost a few dollars. Just make sure
whatever you use can edit plain text files. Again, the Anaconda
solution mentioned above is also an excellent choice.

Back to Sudoku
To try the Sudoku generating program out, you'll need to type in
the 4 functions: swap_row(), swap_col(), swap_numbers(),
show() as well as the main program into your editor, in that
order, into a single text file. Once entered, you can run it as

discussed earlier. If you aren't big on typing, remember that you
can download the full set of of source code from this book at:

One little bug in this program is that, given the way we randomly
select the elements to exclude, it's possible that we may not
exclude exactly the requested number of values every time. Other
than this, however, this program should produce valid Soduku
puzzles every time.

46

So far we've gotten by with simple for loops and lists. Before we move on, we're
going to introduce not one, but two core concepts in programming: nested loops
and recursive functions.

Nested Loops
Nested loops shouldn’t really be a very difficult concept to grasp, but sometimes
it can take a little practice to understand when to use them, and some people
develop a bit of a mental block. The for loops we've already used operate on a
single list. Now consider a table (like the 9 x 9 elements in our Sudoku puzzle).
While it's absolutely possible to do what we did with the Sudoku puzzle, and
'unwrap' our table into a single list, it can also make our programs a lot more
complicated.

To think about the alternative, let's think about a simple problem: printing a
multiplication table. We'll do the same thing two different ways, one using a single
for loop, and one using a nested loop.

The Old Approach
If we want to make a multiplication table with a single for loop, we need to know
the total number of entries in the table, and then figure out which row and column
we're in for each item in the loop. We also have to jump through a few hoops to

Section 2

SUMMARY

1. A nested loop is a loop inside another loop.
It is used to loop over more than one
dimension. For example, all of the rows and
columns in a table.

2. A recursive function is a function that calls
itself. Recursion has many uses, and while
it is a bit difficult to absorb, in some cases
there is virtually no other good way of
achieving the same results.

Nesting and Recursion

47

decide when to start a new line. For simplicity, we'll do a 9x9
multiplication table. That means (like the Sudoku) we will have 81
elements in our table. We can use division and the modulus
(remainder) operator, %, to compute the row and column for each
iteration of the for loop.

print(" ",end=””)
for i in range(1,10):
 print("{:^3}".format(i),end=””)
print("")

for i in xrange(81):
! r=i//9+1! ! # rounds down
! c=i%9+1
! if c==1 : print("{:<2}".format(r),end=””)
! print("{:^3}".format(r*c),end=””)
! if c==9 : print("")

So, we have to use r=i//9+1 and c=i%9+1 to compute where
we are in the table. Then we have to use if c==1 and if c==9
to detect the beginning and ending of each row. This works
perfectly well, but it's a bit awkward.

One other thing we need to talk about is the statements like:

print("{:^3}".format(i),end="")

The issue we ran into with this program is the need to keep the
rows and columns nice and neat. We didn't have this issue with
Sudoku puzzles because all of the numbers are 1 digit. In a
multiplication table, we have some one and some two digit
numbers. The format() method, allows us to change how
numbers and other variables are represented when we print them.
The method used here was a very simple, but not very obvious,
statement. {:^3} says that the number should occupy 3 spaces
and should be centered. We will get back to the details of
formatting in a later chapter.

Let's get back to nested loops. Here is an alternate version of the
same program:

48

print(" ",end="")
for i in range(1,10):
print("{:^3}".format(i),end="")
print("")

for r in range(1,10):
! print("{:<2}".format(r),end="")
! for c in range(1,10):
! ! print("{:^3}".format(r*c),end="")
! print("")

This program has exactly the same output as the previous
program. While it is only 1 line shorter than the previous program,
conceptually it's much simpler. No trying to compute indices, no
tricky if statements. Also, if we want to expand our multiplication
table to go to 15 instead of 9, for example, we just need to
change the upper limit of 3 range statements.

It should be pretty clear how this program works. The first for
loops over the variable r. This is called the outer loop. The
second for loops over the variable c, and is called the inner
loop. The inner loop covers each value of c for each value of r.
This process is called nesting. The second for is nested inside
the first for.

As we'll see in some later examples, this isn't limited to one loop
inside another. There is no reason you can't have a loop inside a
loop inside a loop, if you like. Of course, say each loop was

covering 10 different values. If you made a nested loop 5 deep,
that means anything inside the innermost loop would be executed
100,000 times ! Nonetheless, there are some very good reasons
for doing this sort of thing.

Recursion
The other concept we need to discuss is recursion. This is one of
only a handful of basic programming concepts which is
universally taught. There are some problems which can only be
effectively solved using recursion. The definition of recursion
sounds very simple. A recursive function is a function which calls
itself. While the definition is simple, actually using recursion is a
bit trickier, and it's pretty easy to wind up in a situation where
your recursive function goes forever. On some older computers,
you could even crash the entire computer this way. Take a look at
the following example:

def f(x):
! return f(x-1)*x

print(f(4))

You can see what would happen if you did run this program. It
would compute:

f(4) which is
f(3)*4 which is
f(2)*3*4 which is

49

f(1)*2*3*4 which is
f(0)*1*2*3*4 which is
f(-1)*0*1*2*3*4 ... forever

Now it turns out if you actually run this example, it won't run
forever. Python has a safety mechanism to prevent infinite
recursion, but the program will crash. If we want recursion to do
something useful, we have to have some test that makes it stop.

def f(x):
! if x<=1 : return 1
! return f(x-1)*x

With this if statement, f(x) will keep getting smaller until it it
reaches 1, then it will stop, and the chain of function calls
collapses, and a number comes out. The reason we said x<=1 in
our condition rather than x==1 was an error prevention measure.
If we said x==1 and someone called f(-1), it would never reach
the termination condition.

So, what is this function ? If you look at the example above, you
will see that it's basically doing 1*2*3*4*5*...*x. In other words,
this is the factorial function. Of course, this isn't really the most
efficient way to write a factorial function. We could have just done
this:

def f(x):
! r=1

! for i in range(2,x+1): r*=i
! return r

So, what then is the use of recursion ? We'll see some good uses
for it in upcoming sections, but here is a simple example of a
program which is easy to write recursively, but difficult to write as
a loop:

def numbers(digits,base=""):
! ret=[base]
! if digits<=0: return ret
! for i in range(digits+1):
! ! ret.extend(numbers(i-1,base+str(i)))
! return ret

print(numbers(6))

If you can't figure out what it does, give it a try. Then see if you
can come up with a program that does the same thing without
recursion.

50

Let's turn the problem around now. Let's say we have a Sudoku with missing
numbers. How would we go about filling in the missing values (correctly) ?

Regardless of how we try to fill the numbers in, we will need to define a function
that checks to see if a given 'Sudoku list' is a legal solution or not. This is pretty
straightforward conceptually. We just need to loop over all of the rows, columns
and 3x3 regions, and check if all of them have exactly 1 of each number 1-9. If any
fail the test, then we return False. Otherwise we return True.

Sets
To do this efficiently, we need to introduce yet another type of Python object: the
set. Like a list, a set contains other objects, such as numbers or strings.
Unlike a list, a set has no order, and the items in the set are unique. That is, if
you have a set containing 1,3 and 5, then add 3 to the set, the set will still have 1,3
and 5 in it. With a list, if you had [1,3,5], and appended 3 to the list, you
would have [1,3,5,3]. Give this a try:

a=[1,2,3,4,3,2,5,7,9,12,3]
b=set(a)
print a,b

Section 3

SUMMARY

1. Sets

Solving Sudoku

51

Sometime in grade school, you probably learned about sets (and
most likely thought they were the most useless things you'd ever
heard of). Sets in Python are pretty much the same thing, and you
will soon learn they are a lot more useful than you may have
thought in grade school. You can do all of the normal set
operations with them: union, intersection, difference, ...

So, why use a set ? Say one of the rows in our possible Sudoku
contains the numbers [1,3,7,6,9,8,5,4,3]. We need to know if this
is a valid set of numbers for the row. To be valid, there needs to
be exactly 1 of each number somewhere in the list. How do we
do it ? Here is one simple approach:

r=[1,3,7,6,9,8,5,4,3]

def check(x):
! for i in range(9):
! ! if z.count(i)!=1 : return False
! return True

print(check(r))

This works, but it's slooow. If we have to check many thousands
of possible solutions, this will make our program painful to use.

What else could we try? How about this:

r=[1,3,7,6,9,8,5,4,3]

def check(x):
 x.sort()
 if x!=[1,2,3,4,5,6,7,8,9] : return False
 return True

print(check(r))

This is very slightly more efficient than the previous program, and
is certainly easier to read, but it still isn't really a very optimal
approach. It also has the side-effect of changing the ordering of r,
which may not be desirable.

Sets give us a much easier solution. If we know that our list is
only going to contain numbers from 1 to 9, then if there are 9
unique values in the list then we know the solution is valid (for
that list). If there are less than 9 unique values, then the solution
isn't valid:

def check(x):
! if len(set(x))!=9 : return False
! return True

Sudoku Checker
Based on this concept, we can go ahead and write a complete
Sudoku checker:

def check(x):

52

! """This function checks a Sudoku list for
correctness. x must be a list of exactly 81
integers from 1-9."""
! # rows
! for r in range(0,81,9):
! ! if len(set(x[r:r+9]))!=9 : return False

! # columns
! for c in range(9):
! ! if len(set(x[c::9]))!=9 : return False

! # 3x3 blocks
! for b in [0,3,6,27,30,33,54,57,60]:
! ! bl=x[b:b+3]+x[b+9:b+12]+x[b+18:b+21]
! ! if len(set(bl))!=9: return False

! return True

How does this work ? It simply takes each possible row, column,
and 3x3 square, makes a set for each one, and makes sure the
set has 9 values in it. If it has fewer than 9 values, we can assume
that there is a duplicate.

With this function, we could write a program that tries many
different possible solutions, and checks to see if each one is ok.
We only need one (and in most cases there can be only one).

Solving a Sudoku
We're ready to try and write our full sudoku problem solver now.
There are several different ways we could try and do this. Say we
have this (extremely) simple unsolved puzzle:

2 4 5 6 7 8 9

4 5 6 7 8 9 1 2 3

7 8 9 1 2 3 4 5 6

2 3 4 5 6 7 8 1

6 7 8 9 1 2 3

8 9 2 3 4 5 7

3 4 5 6 7 8 9 1 2

6 7 8 9 1 2 3 4 5

9 1 2 3 4 5 6 7 8

This particular Sudoku can be solved using simple rules. One of
the missing squares is in a row where only one number is
missing. Filling that number in produces another blank with only
one possible answer, and so on. However, not all Sudokus are
this simple. We can't just write a program that will assume that
one answer will just fall out.

Dumb but Persistent
It may sound a little intimidating to try and write a program to
"look at" the puzzle and figure out what each number is and fill
them in. While doing that isn't really as bad as it sounds, there is
a very simple solution to the problem, which is guaranteed to

53

work. It just isn't guaranteed to be very quick about it. There are 7
missing numbers in our Sudoku. We can simply try every possible
number (1-9) in each empty slot, then check if each solution is
legal. With 7 missing values, that basically means we to look at
every possible 7 digit number containing no zeroes. This will be 97
= 4,782,969 different solutions to test.

When writing programs, novice programmers used to be taught a
technique called "flowcharting" a method for drawing a diagram
indicating the sequence of operations in a program. The flowchart
would then be converted into a program. We are going to take a
simpler approach and simply outline the steps required in our
program. This is an excellent way to start when writing your own
programs. For our simple Sudoku solver, we need to:

1. Define a function for the user to enter a Sudoku
2. Define a function for testing a Sudoku
3. Define a function to print a sudoku
4. Define a recursive function to give us numbers to fill in
5. Call function 1
6. Make a list of where all of the missing numbers are
7. Use function 4 to generate possible Sudokus

1. Test each answer for correctness
2. If we get a valid answer, print it and exit

We'll start with a function that asks the user to enter the puzzle,
putting a 0 in wherever there is a missing value. To do this, let's
introduce the raw_input() function. This function will display a

string, then wait for the user to type something and press enter.
Whatever the user typed is returned by the function. so:

name=input("What's your name: ")
print "Hi ",name

will ask for your name, wait for you to enter something, then say
hi. Now, back to Sudoku.

It would be annoying for the user to have to type a lot of spaces
or commas, so the user is asked to simply enter the Sudoku as a
string of numbers for each row, such as 020456789 for the first
row of our unsolved puzzle:

def enter_puzzle():
! print "Enter the puzzle using 1-9 and 0 for
unknowns. 9 numbers per line:"
! ret=[]
! for r in range(9):
! ! ln=input(": ")
! ! for c in ln: ret.append(int(c))
! return ret

This doesn't do any error checking, so the user will have to enter
the puzzle exactly correctly. The next two steps, a function to
check Sudoku and one to print Sudoku we've already written. So,
all that's left is to write function 4, and the main program that
calls the functions.

54

So, how do we write a function to generate the values to fill in ?
One of the examples in the recursion section did something very
like what we need in this case. We basically need a list of all
possible N digit numbers containing the values from 1-9, then we
can replace the N 0's in the Sudoku with the digits from the
number. While this idea is fine for our current 7 missing number
puzzle, if we had more missing values than this, we would start
running into problems having a list of hundreds of millions of
numbers.

If we think about it, however, we don't really need to make an
actual list of all possible numbers. We could check each
possibility as it gets created instead, and when we find a good
answer, print it and exit:

def find_answer(puzzle):
! z=-1
! for i in range(81):
! ! if puzzle[i]==0:
! ! ! z=i
! ! ! break
!
! #this means there are no zeroes
! if z==-1:
! ! if check(puzzle):
! ! ! show(puzzle)
! ! ! sys.exit(0)
! # fill in the first zero and recurse
! for i in range(1,10):

! ! puzzle[z]=i
! ! find_answer(puzzle)
! puzzle[z]=0
!

There are three parts to this function. First we look for the first
zero in the array. If we don't find one, then the puzzle is full, and
we need to check it. If we do find one, we fill it in with each
possible value, and iterate to look for the next one.

We also used a new command in the first for loop: break. This
command has a simple purpose. It exits a loop before it's
complete. That is, say you have a for loop looping over a list of 10
numbers, but you execute the break command while the 5th
number is being processed. The loop will stop immediately, and
the last five numbers won't get looped over.

To actually run this program, you're going to need to put the four
functions: find_answer(), check(), show() and enter_puzzle()
into a single file, followed by:

puzzle=enter_puzzle()
find_answer(puzzle)

Then you can run the program. I'd suggest starting with the
simple example puzzle shown at the beginning of the section.
This example puzzle should only take a couple of seconds to run,
but if you try a puzzle with, say, 15 missing values, you may sit
waiting for a VERY long time.

55

A Little Smarter
Since most Sudokus will have quite a few missing values, clearly
we want to be a little more intelligent about how we look for
solutions so we don't sit around for a month waiting for the
answer. So, rather than blindly trying every value in every empty
slot, let's take the next step, and for each open slot, we'll
compute which values are possible given the rest of the values
that are already available in the puzzle.

The actual change to the find_answer() function is pretty simple.
we're just going to change:

for i in range(1,10):
to

for i in choices(puzzle,z):

Now all we have to do is write the choices() function, which will
return a list of available values for a specific zero position, z. Even
this function isn't very hard to write, since it will be based on the
Sudoku checking function:

1. Make a set containing 1-9
2. Make a set containing the values from the same row
3. Union with a set containing the values from the same column
4. Union with a set containing the values from the same 3x3
5. subtract set 4 from set 1

If we used lists, this would be really messy, but with sets making
sure we never have duplicates, it's quite straightforward:

def choices(puz,z):
! """This function finds permitted values for
location z in a Sudoku."""
! row=z//9
! col=z%9
! # This is the first element in each block
! blocks=[0,3,6,27,30,33,54,57,60]
! sq=blocks[col//3+(row//3)*3]

! bad=set(puz[row*9:row*9+9])!! # row
! bad.update(puz[col::9])!! ! # column
! # the 9 values from the local 3x3
!
bad.update(puz[sq:sq+3]+puz[sq+9:sq+12]+puz[sq+18
:sq+21])

! good=set(range(1,10))-bad

! return good
!

The math here may not be completely obvious. If you find it
confusing reference back to the figure where we outlined how
sudokus are stored as a list. Still there are a few items that might
seem odd, like (row//3)*3. Mathematically this seems idiotic,
right ? The trick is that row//3 is not the same as row/3.0.
row//3 is integer math, which always rounds down, so (row//

56

3)*3 has the result of rounding row down to the nearest multiple
of 3. We could also have done the same thing with (row-
row%3).

The only new element we introduced in the choices() function
was the update() method. Try this:

a=set(1,2,4)
b=set(2,5,6)
a.update(b)
print a

As you can see, update allows you to merge the contents of one
set with another.

If we consider the overall program, the simple replacement of
range(1,10) with choices() makes a massive difference.
With the old program, even a puzzle with only 12 missing
numbers would take hours to finish. This seemingly small change
can solve the most difficult class of Sudoku puzzles, with 53
missing numbers, in under a second.

You can find the source for the entire program in the usual place
at:

Here's an example of the entire program running:

This demonstrates the solver running on a very challenging puzzle with
53 of 81 values missing.

Example 3.1 An example of the sudoku solver running

57

Lorem ipsum dolor sit amet, ligula suspendisse nulla pretium,
rhoncus tempor placerat fermentum, enim integer ad vestibulum
volutpat. Nisl rhoncus turpis est, vel elit, congue wisi enim nunc
ultricies sit, magna tincidunt. Maecenas aliquam maecenas ligula
nostra, accumsan taciti. Sociis mauris in integer, a dolor netus
non dui aliquet, sagittis felis sodales, dolor sociis mauris, vel eu
est libero cras. Interdum at. Eget habitasse elementum est,
ipsum purus pede porttitor class, ut lorem adipiscing, aliquet sed
auctor, imperdiet arcu per diam dapibus libero duis. Enim eros in
vel, volutpat nec pellentesque leo, temporibus scelerisque nec.

Ac dolor ac adipiscing amet bibendum nullam, massa lacus
molestie ut libero nec, diam et, pharetra sodales eget, feugiat
ullamcorper id tempor eget id vitae. Mauris pretium eget aliquet,
lectus tincidunt. Porttitor mollis imperdiet libero senectus
pulvinar. Etiam molestie mauris ligula eget laoreet, vehicula
eleifend. Repellat orci eget erat et, sem cum, ultricies sollicitudin
amet eleifend dolor nullam erat, malesuada est leo ac.

Varius natoque turpis elementum est. Duis montes, tellus lobortis
lacus amet arcu et. In vitae vel, wisi at, id praesent bibendum
libero faucibus porta egestas, quisque praesent ipsum

fermentum placerat tempor. Curabitur auctor, erat mollis sed
fusce, turpis vivamus a dictumst congue magnis. Aliquam amet
ullamcorper dignissim molestie, sed mollis. Tortor vitae tortor
eros wisi facilisis. Consectetuer arcu ipsum ornare pellentesque
vehicula, in vehicula diam, ornare magna erat felis wisi a risus.
Justo fermentum id. Malesuada eleifend, tortor molestie, a fusce
a vel et. Mauris at suspendisse, neque aliquam faucibus
adipiscing, vivamus in.

Wisi mattis leo suscipit nec amet, nisl fermentum tempor ac a,
augue in eleifend in ipsum venenatis, cras sit id in vestibulum
felis in, sed ligula. In sodales suspendisse mauris quam etiam
erat, quia tellus convallis eros rhoncus diam orci, porta lectus
esse adipiscing posuere et, nisl arcu vitae laoreet. Morbi integer
molestie, amet suspendisse morbi, amet, a maecenas mauris
neque proin nisl mollis.

Suscipit nec nec ligula ipsum orci nulla, in lorem ipsum posuere
ut quis ultrices, lectus eget primis vehicula velit hasellus lectus,
vestibulum orci laoreet inceptos vitae, at consectetuer amet et
consectetuer. Congue porta scelerisque praesent at, lacus
vestibulum et at dignissim cras urna.

Section 4

Problems

58

Chapter 4

Wordgames

In this chapter, we’ll use strings in Python to provide
solutions for some common word-games, or
perhaps, even create some new puzzles.

More Ify Statements
While we could just jump right in and start writing programs again. Let's take a
break and introduce a few more concepts first.

Let's start by going back briefly to our discussion of the if statement. Actually,
there's even more to it than we've seen. The full description of if is:

if expression : do something
elif expression : do something else
else : do something completely different

This sequence of commands lets you ask a sequence of linked questions. If the
first question is True, then it executes do something and skips the rest. If the first
question is False, then it asks the second question. If that's True, then it
executes do something else, and skips the else. If that one isn't True either, it
executes do something completely different. You can put as many elif
statements in as you like, but there can only be a single else at the end, which
happens only when everything else in the list is false.

This sequence is often used to do things like ask the users questions. Let's try
using input() with our new extended if statement as an example:

Section 1

LOREM IPSUM

1. More Ify Statements

2. While Not

3. Strings

Preliminaries

60

s=raw_input("What do you say ? ")
if s=="hi" or s=="hello" : print "Hi to you too"
elif s=="bye" : print "Adios"
elif s=="huh" : print "You COULD say hello"
else: print "Sorry, I didn't understand"

If you type this little program interactively, you'll find that it asks
you "What do you say ?" before you even have a chance to finish
entering everything. You'll have to actually answer the question
before you can finish typing the program in. This is rather
inconvenient, so you may want to start putting some of these new
examples into .py files and running them, as we did in the last
chapter. Alternatively, if you are using the ipython notebook
system, you can paste in an entire block of code into one in[]
section before pressing <shift-enter>.

While Not ?
We've finished with if now, and already learned about for, but
there are two more commands that it would be useful to know for
the programs to come: while and continue.

We'll start out with while, which is very much like for in many
ways. It repeats a block of code over and over again. However,
for executes the block once for each item in a list, whereas
while lets you decide how long the loop should continue using
an expression like the one used with an if statement. Give this a
try:

a=1.7
while a<3.0 :
! a=a+0.1
! print(a)

Even someone who didn't know any programming could probably
figure out what this is supposed to do. As long as the condition
a<3.0 is met, it will execute the code inside the loop over and
over again. Based on that, if you changed a=a+0.1 to a=a-0.1,
you would be in real trouble, as the program would keep running
forever (the condition would always be true).

Just as a little side-note, if you do find yourself in this situation (a
program that's running forever), on most machines <ctrl-c> in the
terminal window is the best way to force it to stop. Alternatively,
closing the window it's running in will generally also kill the
program.

Let's get back to while for a while. As we've seen, while
continues as long as a specific condition is true. Consider this
example:

a=1.7
while True:
! a=a+0.1
! if a>=3.0 : break
! print(a)

61

Seems like it would run forever, right ? Well, not quite. If you
recall from an earlier chapter, the break statement causes a loop
to exit. It works for while as well as for for loops, and gives a
little more flexibility. Specifically, it allows you to exit a loop in the
middle rather than having to wait until the while condition is
tested again.

The continue statement also allows us to manipulate how the
loop executes. Here's another example:

a=0
while a<20:
! a+=1
! if a%3==0: continue
! print(a)

Give this a try and see what happens. You should see numbers
from 1 to 20, however, if you look carefully, you'll notice that any
number divisible by 3 is missing. If you didn't catch it earlier, the %
operator is the modulus operator. It returns the remainder after
integer division. For example 7/3 is 2R1, and 7%3 is thus 1.

Of course, what we're actually interested in here is the continue
statement. While break causes loops to end prematurely,
continue skips only the current cycle of the loop. That is,
continue jumps immediately to the beginning of the next cycle.

Strings

We already introduced strings briefly in Chapter 1, but we need to
know a lot more about them if we want to play word-games.
Previously we created a simple string with an expression like
"ABCDEFG". Somewhat unusually, Python includes no fewer than
4 ways to define a string:

"abcdef"
'abcdef'
"""abcdef"""
'''abcdef'''

All four of these lines produce exactly the same string. So, why
then would Python have 3 different ways to do the same thing ?
For the first two methods, it solves one problem, which isn't really
a problem. Let's say you wanted a string: I can't make it.
How would you do that. If you used a single quote string:

'I can't make it'

then the apostrophe would end the string, and you'd get an error,
but if you use double quotes, then everything is fine. This is more
of a rationalization than a reason for adding a new feature to a
language, but it's all I've got.

The difference between single quotes and triple quotes (of both
types) is a bit more practical. If you want to put an entire
paragraph of text into a string, including multiple lines, triple
quotes let you do it. for example:

62

"""This is an example of a string
that spans
three lines of text"""

While this may not seem very useful at first, later on when we
learn how to add documentation to our programs, you'll see that
it can be extremely convenient.

Slicing Strings
You remember when we discussed lists, you learned that you
could pull out pieces of lists using [n:m] ? Well, the same things
you can do with lists can also be done with strings. Here are a
couple of examples:

a="A test string"
print(a[2])
print(a[2:8])

You can even use for to iterate over the letters in a string:

for L in a:
! print(L)

Changing Strings
You can't.

What ? What do you mean, I can't ? Sorry. It's true. Once you
create a string, you can't change it. What you can do is make a
new string, which is a changed version of the old one.
Unfortunately, that means that you cannot do something like
a[4]="X". Instead, you would have to do the, much more
complicated :

a=a[:4]+"X"+a[5:].

This has exactly the same effect as a[4]="X" would have, but
creates a new string rather than changing an existing one. On the
bright side, there are plenty of convenience functions provided
which allow you to create modified strings in useful ways. For
example "A Test String".lower() will return a new string,
"a test string". You can get a list of all of these useful
functions with help(str).

Mutable Strings
Ok, I just said strings weren't mutable, and it's true, they aren't.
You can't change them. However, for the more advanced
programmer who really needs a string-like object they can
modify, there is the bytearray. This object is very string-like,
but retains full mutability, much like a list. You'll have to make
a foray into the manual for more details, though.

Lists: They Aren't Just for Numbers any More

63

When we talked about lists, we were dealing with numbers. We
talked about range(n), which gave us a list of n numbers.
However, if we want to check a word to see if it's acceptable,
we'll need to put the 'good' words somewhere. As it happens,
lists can store pretty much anything, not just numbers. So, this is
completely acceptable:

a=["this","is","a","list","of","words"]

Now, since we have a list of words, we can do things like a[0],
which will return "this", or a[-2] which is "of". So, what do
you think a[0][3] would be ? If it isn't obvious to you that it's
"s", try thinking about it as (a[0])[3]. In other words, [3] is
applied to a[0], which is "this", so we get "s".

It's also worth mentioning that while you can't modify a string,
you can replace any string within a list with another string, such
as, a[1]="was" which will replace "is" with "was" in the list
above, or a[0]=a[0].upper() which will replace "this" with "THIS". In
this situation, it is the list that's being changed, not the string.

Finally, let's say you want to take a list of strings and combine
them into a single string. For example, let's say we want to turn a
into a sentence with a space between each word. You already
know enough to do it like this:

sentence=""
for s in a: sentence+=s+" "

print sentence

However, while this will work, it's really inefficient, since it creates
a bunch of partial sentences before it's done, and it leaves a " " at
the end, which we don't really need. Since this is something that
you may need to do fairly often in certain types of programs,
Python has a shortcut for this operation: the join() method.
With this, the solution is much easier, and doesn't have the
spurious " " at the end:

sentence=" ".join(a)
print(sentence)

join() will combine all of the strings in a list to make a new
string. The string you call the method on (the " " at the beginning)
is the spacer that's put in between words.

64

There are a lot of games which involve making words from random letters, some
involve dice, some involve tiles. What they all share in common is a set of random
letters.

Once again, when settling down to write a program to do something, the first thing
we need to do is describe exactly what the program would do, step by step. Think
of it as explaining the steps of the process to a six year old. You need to cover
every step in detail.

So, in this section, the problem we want to solve is to take a list of N (could be 5 or
7 or whatever you like) letters, and rearrange them to produce any possible word.
We would also like to know that what we have produced are real words, not just
random strings of letters.

Break it Down
Now that we have a broad definition of the problem we want to solve we need to
go into more detail. We'll start out with a simplified version of the problem. Say, we
have 5 letters: A,B,C,D,E. In most games, the rule is that you can use each letter
only once when you make words. We'll deal with that eventually, but let's start out
without that restriction, just to make things easier. That is, we have an "A", so we
can use "A" as many times as we like. Let's summarize the rules of our little
"game":

Section 2

WORDGAMES

1. Building words programmatically

2. How to read and write information to files
on disk

What Words Can You Make ?

65

We have 5 letters

Each letter can be used as many times as we like

Words will be exactly 5 letters long

Words must be real dictionary words

Now, let's consider how we would write such a program. We'll
stick to a simple outline-style plan for our program:

1. Get a list of letters from the user

2. For each possible output word

2.1. For each letter in the word

2.1.1. Pick one of the letters from the list

2.2. Check to see if the created word is a real word

2.3. If it is, print it out

This is pretty straightforward, and we should already know all of
the Python commands we need to accomplish it with one
exception: task 2.2, "check to see if the created word is a real
word". How are we going to accomplish this ?

Finding a Dictionary of Words
Obviously, if we want to tell if a word is a "real" word, we need to
define what "real" means ! This isn't as obvious as it might seem.
For example, most games exclude things like abbreviations and
proper names, but some may not. Is "OK" a valid word ? How
about "okay" ?

In the end, we need to separate the decision about what is and
isn't a word from the program itself, and simply say that the user
will provide a dictionary containing a list of all valid words. Where
the dictionary comes from and what's in it is the user's problem.
In writing the program we just read the words from the dictionary,
and check each word we make against it.

Now, as a user, where would we get a dictionary from ? There is
a popular web site which contains free, open-source software
projects called SourceForge. One of the projects they host is a
freely available dictionary useful for word games. Unfortunately,
such things cannot always be relied on to remain around forever,
but at the time I'm writing this, you can get a free dictionary file
at: http://sourceforge.net/projects/scrabbledict. Go ahead and
download this, or search the web for some other text file
containing a dictionary. We'll need it in just a little while.

Reading and Writing Files
Now that we have our dictionary, we need to convince Python to
take that information from the file on disk and turn it into a list of
strings in Python. Dealing with files containing text isn't really all
that difficult. It is important to reiterate that we're talking about
text files. The same sort of files that contain your Python program.
If you create a .doc file with a word processor, you don't have a
text file, you have a word processor "document" file, which
contains all sorts of other information in addition to the letters and
numbers you typed. Such files are quite difficult to do anything

66

http://sourceforge.net/projects/scrabbledict
http://sourceforge.net/projects/scrabbledict

with. As long as we stick with plain text files, our task is pretty
straightforward.

We'll introduce three basic operations for now: opening files,
reading from files and writing to files. There are a few more
advanced things we can do, but we'll get to those in a later
chapter. Even though all we need to do here is read from a file,
we'll go ahead and introduce writing as well.

Before you can do anything with a file, you need to open the file.
This is done with the aptly named open() function, which is
built-in (no need to import anything). To open a file, we need the
path to the file.

Here is an example:

myfile=open("twl.txt","rU")
words=[]
for word in myfile:
! words.append(word.strip())

This example, in fact, does everything we need for the wordgame
programs we're going to write. The first line calls the open()
function, which returns a file object (or prints an error if it can't
fine or open the file). "twl.txt" is the name of the file we want
to read from. In this case, the file needs to be in the same
directory where you ran python. If you want to open a file some
other place on your computer, you'll need to provide the full path

to the file, such as "/home/stevel/myfile.txt" or (on Windows) "C:/
myfile.txt". Finally we have "rU". "r" means you want to open the
file for reading rather than "w", which would open for writing. The
"U" is a bit tricky to explain, but basically it deals with a subtle
difference between text files created on Windows machines and
Linux machines. If you're really interested, the Python manual will
explain in more detail. Otherwise, just go ahead and add "U"
when reading text files.

Once we have the file open, we create an empty list to fill with the
words as we read them in. Then we use a for loop. While myfile
is a file object, not a list, the for statement is smart enough to
know that we want it to loop over the lines of text in our file rather
than the items in a list. Each pass through the for loop will return
the next line of the open file. Unfortunately, when it reads the line
from the file, it also reads the character at the end of each line,
which marks the end of the line. Once in a while you'll see this
character, "\n" in a string. Try this:

print("This is\na test\nwith 3 lines")

So, if the first line in the file is "test", what we'll get in word is
"test\n". To deal with this, we introduce the strip() method.
This method will remove any whitespace (spaces, linefeeds, ...)
from the beginning or end of a string.

67

The only other method we need to consider is append(). This
method, when applied to a list, will add a single new item to the
end of the list.

So, after we run this program we will have a list of strings, each of
which is one line from the file. Since any dictionary file you're
likely to run into will have one word on each line, this will do
exactly what we need for our wordgames.

Since we've learned how to read files, we might as well learn
basic file writing as well. Writing to a file is exactly like reading
from a file, but in reverse. Here's our example:

words=["a","list","of","words","to","file"]
outfile=open("words.txt","w")
for word in words:
! outfile.write(word+"\n")

As you might guess, this will create a new file (we opened it in
"w") mode, and write a list of words, one per line. One important
thing to notice here is the +"\n". When you print a string, it
puts a "\n" at the end of the line for you. When you write() to a
file, you have to do it yourself.

Danger Will Robinson!
When you open a file for writing with "w", if the file already exists,
it completely erases the existing file and starts from scratch.
There is no way to undo this if you do it by mistake. Your file will

be gone forever. There are other options you can use which will
allow you to modify an existing file without erasing it first. Very
briefly (again the details are in the manual). If you use "a" instead
of "w", then it will append anything you write to the end of an
existing file. If you use "r+" it will open the file for reading (at the
beginning of the file), but you can also write(). If you do, it will
overwrite the contents of the file starting at the current location
for as many bytes of data as you write(). The rest of the file will
be unchanged. There are more advanced methods for moving
around within files and reading and writing at arbitrary locations,
but we're getting ahead of ourselves a bit here. If you forget the
rest, just remember the warning about "w" erasing your files!

Back to the Word Game
Now that we know how to read words from a file, let's write the
first simple version of our wordgame program as outlined at the
beginning of the chapter. You can skip typing the '#' comment
lines if you like, but remember to indent :

Ask the user for letters until we get 5
letters=[]
while len(letters)!=5 :
! letters=input("Enter 5 letters :")

Read the file containing good words
remember twl.txt must be in the same folder
myfile=open("twl.txt","rU")

68

goodwords=[]
for word in myfile:
! goodwords.append(word.strip())

one loop for each letter
words=[]
for l1 in letters:
! for l2 in letters:
! ! for l3 in letters:
! ! ! for l4 in letters:
! ! ! ! for l5 in letters:
! ! ! ! ! word=l1+l2+l3+l4+l5
! ! ! ! ! if word in goodwords :
! ! ! ! ! ! words.append(word)

print(words)

Go ahead and try running this program, and give it a couple of
different 5 letter sequences to start with. Assuming you used a
decent sized file containing "good words", you may have noticed
that this program can take a little while to run. We'll talk about
that in a minute. First, though, let's look at one other little
peculiarity. If you enter a word like "alpha", and look at the output
"good" words, you'll see that each good word is replicated four
times! Why did this happen ?

(Think about it yourself before reading on)

The reason isn't really very complicated. Since we have two a's in
the list of letters, each a can be used once in each position, so
any word with two a's in it will come out of our program four
times. So, what can we do about this ?

One simple solution would be to simply make sure that we don't
add words to the list if they're already there. If we change:

if word in goodwords :

to
if word in goodwords and word not in words :

we will immediately see that our duplicates are gone. Is this the
best solution ? Well, that opens up a whole new area of
discussion.

A World of Possibilities
We're going to take a little diversion from learning how to
program, and talk a bit about philosophy.

In programming, the first priority is obviously having the program
work properly. That is, accept input from the user and provide the
correct output. Clearly a program that doesn't meet this
requirement, be it by crashing, giving the incorrect answer, or
simply being so confusing that the user cannot operate it, is not a
useful program. Within that limitation, however, there is still a lot
of flexibility. This raises a number of other concerns we can
consider.

69

Speed
One important consideration for users is, of course, speed. If a
program gives the correct answer, but takes two years to finish
running, it's probably out of the 'useful' range. So, we would like
our programs to be reasonably efficient. The process of taking a
slow program and turning it into a fast program is known as
optimization.

When optimizing a program, it is critical that our need for speed
not obscure priority #1 (getting the correct answer). For this
reason, in general, you should always write a working program
first, using very straightforward logic. Only after you have the
program working should you go back and consider ways to make
it run faster.

Readability
Another concern when writing software is making the program
easily readable. This doesn't only mean that someone else should
be able to pick up your code and figure out how it works, but it
also means that if you look at your own code again 2 years later,
you should be able to figure out how it works. Again, this
depends a bit on the purpose. If you are writing a program that
you will use exactly one time, right now, to do something, then
you're going to throw it away, you may not need to pay as much
attention to this point. Then again, except for truly trivial
programs, I generally hang on to any little bit of code that I write,
in case I happen to need to do something similar in the future.

Elegance and Beauty
My, how dainty! Seriously, though, if you talk to seasoned
programmers, they will often refer to code as "elegant" (or not).
Unfortunately, as in art, this is a difficult term to define precisely.
Or perhaps a better way to phrase it is "you'll know it when you
see it". Most of the time, "elegant" code is code that is space-
efficient, without being unreadable; having the shortest readable
program that can accomplish the given task. However, even this
is not a complete description. Consider, for a moment, this
example from our program:

#Start by opening the file
myfile=open("twl.txt","rU")

#create an empty list to store the results
goodwords=[]

loop over the lines in the file
for word in myfile:
! # add each word with whitespace removed
! goodwords.append(word.strip())

In Python there are many different ways to accomplish the same
goal. This program is functionally equivalent to the code above:

wordfile=open("twl.txt","rU")
goodwords=[word.strip() for word in wordfile]

Now, how about even more dense (this is one line):

70

goodwords=[word.strip() for word in
open("twl.txt","rU")]

Now, take a look at how far you can take this concept: http://
preshing.com/20110926/high-resolution-mandelbrot-in-
obfuscated-python/.

While such efforts as this final Mandelbrot set are amazing, and
certainly qualify as art, "elegant" is really no longer the correct
term. These have entered the realm of intentional obfuscation.

Balance in All Things
In the end, you must decide which of these three secondary
factors should dominate your code. In scientific programming, the
focus is often on speed, and that's probably appropriate in most
cases. If elegance makes your program slower, it's probably best
to skip it, even if it's clever. Readability is most critical in cases
where you or someone else is likely to have to change the code
down the road. You may not always be able to predict this, so it's
probably a good idea not to obfuscate things too much.

Back to the Code !
After our brief philosophical detour, let's go back to our example
program again (if you still remember it). As you may recall, the
program was working when we left it, but it took a fairly long time
to run. Let's take a look at some possible things we could do to
to make the program run faster.

As it turns out, we've already learned everything we need to make
the most productive speedup, and it's very simple. Simply
change:

goodwords=[]

to

goodwords=set()

and

goodwords.append(word.strip())

to

goodwords.add(word.strip())

Now try running the script again. You should find that it runs
about 50 times faster. Why does this happen ? The problem is
(was) this line:

if word in goodwords:

When goodwords is a list, every time you ask whether word is in
the list, it has to loop over all 178,000 words from the twl.txt file.
Sets on the other hand don't work this way, and looking for a
member in a set takes dramatically less time than looking for a
member in a list. The longer the list/set is, the more profound the
effect.

Once we've managed to achieve a 50x speedup and brought the
time a program takes to run down to below 1 second, it probably
isn't really necessary to keep going, unless you plan to run the
program for 50,000 different 5 letter combinations or somesuch.

71

http://preshing.com/20110926/high-resolution-mandelbrot-in-obfuscated-python/
http://preshing.com/20110926/high-resolution-mandelbrot-in-obfuscated-python/
http://preshing.com/20110926/high-resolution-mandelbrot-in-obfuscated-python/
http://preshing.com/20110926/high-resolution-mandelbrot-in-obfuscated-python/
http://preshing.com/20110926/high-resolution-mandelbrot-in-obfuscated-python/
http://preshing.com/20110926/high-resolution-mandelbrot-in-obfuscated-python/

However, even though it may not really be worthwhile this is an
excellent place to look at all of the different ways in which you
can accomplish the same task.

If you recall a few pages ago we changed our program to avoid
duplicates in the output list by adding an extra clause to our if
statement. If you look carefully you'll notice that our output in this
case is a list, when, once again, it would make a lot of sense if it
were a set instead. So, we could change these three lines (they
aren't together in the source):

words=[]
if word in goodwords and word not in words :
! words.append(word)

to

words=set()
if word in goodwords:
! words.add(word)

While this change should be satisfying from the perspective of
elegance of coding style, if you measure the time the program
takes to run, you will find that it made no significant difference,
since there simply aren't enough items in words to have an
effect.

If you'll recall back to chapter 3, when we introduced the concept
of nested loops, we also introduced the concept of recursion. A
recursive function was something that you could use to avoid
nested loops, particularly in situations where the number of levels

of nesting wasn't known in advance. In our simple little example,
we know we have 5 letters in our word, so we know that we have
to have one nested level for each letter. However, what if we
wanted to allow the user to specify the number of letters in the
output word? Now we have a problem. If we want to continue to
write the program with nested loops, we'd have to write each
possible set of loops up to some reasonable limit, then call the
correct routine based on the user's selection. That would be the
exact opposite of elegant coding style!

For the sake of completeness I will mention one other
solution to this problem, without invoking the concept of
recursion. Self-modifying code! This is one of the dirtiest
phrases in the programmer's encyclopedia. Of all of the
programming practices that you could come up with, that's
the one that most seriously violates the readability criterion,
and in some professional programming environments using
it might be enough to get you fired. The basic idea is simple.
You write a program which, itself writes a program, which
then gets executed. There are a few situations where this
practice may actually be worth the stigma associated with it,
and I must confess, I did actually use it once (without
getting fired) in the days when I programmed professionally.
We'll introduce this concept briefly in Chapter 5.

A good solution to this problem involves recursive programming,
but for our simple example here, it isn't really well motivated. So,

72

let's go ahead and take the next step to write a program with
some more reasonable game-playing uses.

The Scrabble Problem
We'll call this "the Scrabble problem", but it is basically the same
for a whole host of other word games, like "Words with Friends"
and other games of that ilk. The idea is that you have a set of
letters (tiles) to work with, and you need to combine those letters
to make valid words. In the case of Scrabble, you'd normally have
7 letters, and you might try and make words of any length with
them (if you don't know how to play Scrabble, it might be worth
looking it up). There is also the possibility that you're working off
other letters on the board, so you might need to consider
combinations of more than 7 letters at a time.

This is more complicated than our previous problem in a couple
of ways: first, the words can be of any length, and second, we're
only allowed to use each letter one time. If we want to make a
word with two a's in it we have to have two a's in our list.

The code for reading in the list of valid words is going to be the
same in this new program, so we can just leave that alone.
However, the rest of the program will have to be written a little
differently. If we wanted to do it the way we wrote the previous
program, not only would we have to have our nested loop 7
layers deep, we would also have to add code at each layer of
nesting to check to see if we had a valid (shorter than 7 letter)
word. Very messy and definitely not elegant.

From a programming perspective, it is actually easier to write this
program to simply go through the list of words and check to see if
each one can be made from the list of available letters. So, let's
write a function which checks to see if a single word can be made
out of a provided list of letters:

def goodword(word,letters):
 tmp=list(letters)
 for letter in word:
 if letter in tmp:
 tmp.remove(letter)
 continue
 return False
 return True

This is actually a lot simpler than it might seem like the task
should be. tmp=list(letters) makes a copy of the list of
letters, so we can modify it without hurting the original list. We
then go through each of the letters in the word to be tested, and
see if we have the necessary "letter tile" available to make it. If we
do, we remove that letter from the list so we don't re-use it. If we
make it to the end of the word without a failure, then we have
successfully formed the word, and we return True.

With this function, the rest of the program is pretty trivial. We just
loop over all of the words in our list and check to see if each one
is valid:

letters=input("Enter letters: ")

73

words=open("twl.txt","r")
for word in words:
 if goodword(word.strip(),letters) :
 print(word,end="")

That's it, a fully fledged, "what words can I make from this set of
letters" program!

Now, generally, longer words are better than short words, game-
wise, so how about sorting our output so the longer words come
out first. We'll use the same "goodword" function, but replace the
body of the program:

words=open("twl.txt","r")
goodwords=[]
for word in words:
 if goodword(word.strip(),letters) :
 goodwords.append((len(word)-1,word.strip()))

for word in reversed(sorted(goodwords)):
 print(word[1])

This introduces a couple of new functions. Instead of just printing
out any word we find is good, we add the word to a list of
goodwords. However, rather than just making a list of the words,
we make a list containing tuples. The first element of the tuple is
the length of the word, and the second element is the word itself.
Once we've done this, we can use the sorted() function to
return a copy of the list sorted first by the length of the word, and

then alphabetically by the word itself (when the length is the
same). The behavior of sorted() is to return a sorted version of
a list based on a number of common-sense rules. If you gave it a
simple list of strings or numbers, it would sort the list
alphabetically or numerically respectively. If the list contains
tuples, it first sorts based on the first element of the tuple, then
the second element as a tiebreaker, and so on. The behavior of
reversed() should be pretty obvious.

74

Lorem ipsum dolor sit amet, ligula suspendisse nulla pretium, rhoncus tempor
placerat fermentum, enim integer ad vestibulum volutpat. Nisl rhoncus turpis est,
vel elit, congue wisi enim nunc ultricies sit, magna tincidunt. Maecenas aliquam
maecenas ligula nostra, accumsan taciti. Sociis mauris in integer, a dolor netus
non dui aliquet, sagittis felis sodales, dolor sociis mauris, vel eu libero cras.
Interdum at. Eget habitasse elementum est, ipsum purus pede porttitor class, ut
adipiscing, aliquet sed auctor, imperdiet arcu per diam dapibus libero duis. Enim
eros in vel, lorem ispum volutpat nec pellentesque leo, temporibus scelerisque
nec. Ac dolor ac adipiscing amet bibendum nullam, massa lacus molestie ut libero
nec, diam et, pharetra sodales eget, feugiat ullamcorper id tempor eget id vitae.
Mauris pretium eget aliquet, lectus tincidunt. Porttitor mollis imperdiet lorem
ipsum libero senectus pulvinar.

Etiam molestie mauris ligula eget laoreet, vehicula eleifend. Repellat orci eget erat
et, sem cum, ultricies sollicitudin amet eleifend dolor nullam erat, malesuada est
leo ac. Varius natoque turpis elementum est. Massa lacus molestie ut libero nec,
diam et, pharetra sodales eget, feugiat ullamcorper id tempor eget id vitae. Mauris
pretium eget aliquet, lectus tincidunt. Porttitor mollis imperdiet libero senectus
pulvinar. Etiam molestie mauris ligula eget laoreet, vehicula eleifend. Repellat orci
eget erat et, sem cum.

Section 3

LOREM IPSUM

1. Lorem ipsum dolor sit amet

2. Consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua.

3. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat.

4. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat
nulla pariatur.

Word Search

75

Chapter 5

MATH

Lorem ipsum dolor sit amet, ligula suspendisse
nulla pretium, rhoncus tempor placerat fermentum,
enim integer ad vestibulum volutpat. Nisl rhoncus
turpis est, vel elit, congue wisi enim nunc ultricies
sit, magna tincidunt. Maecenas aliquam maecenas
ligula nostra.

Integers, as you probably know, are numbers without any fractional part, ranging
from -∞ to ∞. Floating point numbers on the other hand are numbers with
fractional values, expressed on computers using decimal notation rather than
fractions (in most cases). In Python and most other languages, if you do math with
only integers, the result is also an integer, but if either value is floating point, the
result is floating point.

Section 1

LOREM IPSUM

1. Lorem ipsum dolor sit amet

2. Consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua.

3. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat.

4. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat
nulla pariatur.

Untitled

77

Chapter 6

Making!

Lorem ipsum dolor sit amet, ligula suspendisse
nulla pretium, rhoncus tempor placerat fermentum,
enim integer ad vestibulum volutpat. Nisl rhoncus
turpis est, vel elit, congue wisi enim nunc ultricies
sit, magna tincidunt. Maecenas aliquam maecenas
ligula nostra.

79

Back in the 80's, the term "hacker" was all over the place, and at
the time it wasn't associated with the "black hats" who break into
your computer to steal your identity, or the other ne're-do-wells
who try to break into your computer. It was associated with
creative kids who were trying to learn about technology and build
new things. In the 2000's the term "hacker" developed SUCH
negative press that the community of people who wanted to build
things and revel in technology started calling themselves
"makers". This was associated with the rise of the home 3-D
printer market as well, so the transition was natural.

Ok, sorry for the historical interlude. What does this have to do
with programming? One large branch of the Maker community
likes to computerize things. This may be anything from little
robots, to programmable light displays to building a remote
control system for your home theater. How do you do this ? With
"embedded computers". These are tiny little computers which
use only a small amount of power, and are designed to attach to
things in the real world. The two most popular types

Chapter 7

A
Compilation
of Concepts
This chapter reviews all of the concepts introduced
in the earlier chapters. It's a useful reference, and
can be referred to when you're learning the
concepts to see additional examples.

Section 1

MAIN DATA TYPES IN PYTHON

1. Integer

2. Floating Point Number

3. String

4. List / Tuple (immutable)

5. Dictionary

6. Set

A Summary of Common Data Types

81

Conversion
Function Mutable Main Operators, Functions & Methods

Integer int() - +, -, *, /, **, %

Floating
Point

Number
float() - +, -, *, /, **, %

import math

String str() No
+, *, [a:b]

len()
strip(), split(), find(), rfind(), replace()

List list() Yes
+, *, [a:b]

len(), sorted()
append(), remove(), count(), sort(), reverse()

Tuple tuple() No
+, *, [a:b]

len(), sorted()
count(), index()

Dictionary dict() Yes
[key]
len()

keys(), values(), items()

Set set() Yes

|, &, -, ^
len()

add(), remove(), clear(), union(),
intersection(), difference()

Integers
The normal mathematical operators: +, -, * can be used and
behave as you would expect.

Division with fractional results is always rounded down to the
nearest integer, so 199/100 = 1 and -199/100 = -2.

The modulus operator, %, will produce the remainder from an
integer division, such as 199%100 = 99. This is often used with
cyclic behaviours, such as converting minutes to hours and
minutes: hours=bigminutes/60, minutes=bigminutes%60

When mixing integers and floating point numbers, the result is
floating point, but watch order of operations, such as: 3/2+1.0 =
2.0, NOT 2.5.

** is the exponent operator. ie 5**2 is 5*5 and 5**3 is 5*5*5.

Floating Point Numbers
Again, the usual mathematical operators behave as expected: +,
-, *, /, **.

Floating point numbers must have a decimal point. 2.0 and 2.
(no trailing 0) are both floating point numbers, but 2 is an integer.
Numbers can also be specified in scientific notation using e:
12.34e2 = 12.34x102 = 1234.0

Floating point numbers in Python are 'double precision', meaning
they have roughly 15 digits of precision. This is enough for most
purposes, but you could run into a case where this produces
unexpected behavior. For example, 1.0+1.0e-16 is exactly 1.0.

The transcendental functions such as sqrt(), pow(), sin(),
cos(), etc. exist in the math library. To use them either import
math, and use the functions as math.sqrt(), etc. or from
math import * and make them all available without the math
prefix. help(math) will give a complete list of available
functions.

82

Strings
Strings are surrounded either by double-quotes: " or single
quotes: '. For strings that span multiple lines, """ or ''' can be
used.

Examples of common methods:

"alphabet"[0] ! "a"
"alphabet"[:5] ! "alpha"
len("abracadabra") ! 11
" test ".strip() ! "test"
"abc,def,ghi".split(",") ! ["abc","def","ghi"]
"abcdef".find("de") ! 3
"abcdefabc".rfind("ab") ! 6
"this is".replace("i","0") ! 'th0s 0s'
"alphabet".count("a") ! 2

Prefixing a string with u makes the string Unicode (a way of
encoding foreign characters and special symbols). In Python 3, all
strings are Unicode by default.

Prefixing a string with r makes a raw string: "abc\n" has a
newline at the end, r"abc\n" has a literal \n (2 characters) at the
end.

Lists & Tuples
Lists are defined with comma separated values inside square
brackets: [1, 2, 3]. Tuples are identical, except use
parentheses: (1, 2, 3) and are immutable (cannot be
changed once created). List methods which modify the list will
not work on tuples. Addition and multiplication can be used on
lists and tuples.

Examples of common methods:

[4,5,6][1] ! 5
[1,2,"abc",2.0][2:3] ! ["abc",2.0]
sorted([2,1,4,3]) ! [1,2,3,4]
len((1,2,3)) ! 3
x=[1,2,3]

x.append(4) ! x=[1,2,3,4]
x.extend([1,2]) ! x=[1,2,3,4,1,2]
x.sort() ! [1,1,2,2,3,4]
x.index(2) ! 2
del x[2] ! x=[1,1,2,3,4]
list("abcd") ! ["a","b","c","d"]

83

Dictionaries
A dictionary defines relationships between pairs of objects,
referred to as keys and values. Values may be of any type. Keys
must be immutable. This is one reason why strings are immutable
in Python. While seldom useful it also means that tuples may be
used as keys. The keys and values in a dictionary are unordered.

Examples of common methods:

x={1:2,"a":"b",4:"q"}

x[1] ! 2
x["a"] ! "b"
x["cc"]=5.5 ! x={'a':'b',1:2,4:'q','cc':5.5}
x.keys() ! ["a",1,4,"cc"]
x.values() ! ["b",2,"q",5.5]
x.items() ! [('a','b'),(1,2),(4,'q'),('cc',5.5)]
x.setdefault(3,5) ! 5 and sets x[3]=5
x.setdefault(1,5) ! 2

Sets
A set is an unordered group of unique items. Adding an item to a
set that's already in the set is legal but has no effect. Operations
exist for computing unions, intersections, etc. very efficiently.
Sets are usually initialized from a list or tuple.

Examples of common methods:

x=set((1,2,4,7,9,4)) ! x=set([1,2,4,7,9])
y=set((2,3,5,7,10)) ! y=set([2,4,5,7,10])
x.union(y) ! set([1, 2, 3, 4, 5, 7, 9, 10])
x.intersection(y) ! set([2, 7])
x.difference(y) ! set([1, 4, 9])
x.add(3) ! x=set([1,2,3,4,7,9])
x-set((2,3,4)) ! x=set([1,7,9])

84

“HI” program

from turtle import *

Turtle()

a=[90,180,90,90,180,90,0,180,-90,90,180]

fdr=[100,50,50,50,100,40,50,25,100,25,50]

ht()

clear()

for i in range(11):

 left(a[i])

 forward(fdr[i])

Section 2

Miscellany

85

Acting by side-effect

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 3 - Making A New Sudoku

Drag related terms here

Find Term

Boolean Operators

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 2 - Random Walk

Drag related terms here

Find Term

Comment

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 2 - Spirograph Example

Drag related terms here

Find Term

Compiler

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 1 - Installing Python

Drag related terms here

Find Term

Complex math

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 2 - Spirograph Example

Drag related terms here

Find Term

CPU

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 1 - Installing Python

Drag related terms here

Find Term

Executable

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 1 - Installing Python

Drag related terms here

Find Term

Floating point

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Drag related terms here

Find Term

Flowcharting

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Drag related terms here

Find Term

Function

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 3 - Making A New Sudoku

Drag related terms here

Find Term

Inner loop

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 3 - Nesting and Recursion

Drag related terms here

Find Term

Interactive mode

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Drag related terms here

Find Term

Interpreted language

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Drag related terms here

Find Term

Iterate

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 2 - Spirograph Example

Drag related terms here

Find Term

List

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 2 - Spirograph Example

Drag related terms here

Find Term

Loop

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 2 - Spirograph Example

Drag related terms here

Find Term

Modules

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 1 - Taking Python Out for a Spin

Drag related terms here

Find Term

Nested loops

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 3 - Nesting and Recursion

Drag related terms here

Find Term

Operators

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 1 - Taking Python Out for a Spin

Drag related terms here

Find Term

Outer loop

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 3 - Nesting and Recursion

Drag related terms here

Find Term

Path

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 4 - What Words Can You Make ?

Drag related terms here

Find Term

Recursion

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 3 - Nesting and Recursion

Drag related terms here

Find Term

Scripting language

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 1 - Installing Python

Drag related terms here

Find Term

Self-modifying code

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Drag related terms here

Find Term

String

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Drag related terms here

Find Term

Terminal window

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Related Glossary Terms

Index

Chapter 1 - Installing Python

Drag related terms here

Find Term

