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This tutorial is intended to guide users to several different ways Rosetta may be used to solve various 

problems in structure fitting into low-resolution density data.  It is not intended to replace the user’s 

guide, available at http://www.rosettacommons.org/manuals/archive/rosetta3.1_user_guide/ or in the 

doc/ folder of the installed Rosetta application. 

 

The tutorial is split up into several scenarios in which Rosetta may be used.  In each scenario, one or 

more Rosetta application is used to improve a structure’s fit to density.  For each scenario, the inputs 

and outputs are briefly provided.  Each command-line is highlighted in a shaded box.  Following, a 

brief explanation of each of the flags, as well as other potentially relevant options is given.  Important 

options (or at least options of which to take note) are boldfaced. 

 

Also, this tutorial focuses on refinement of structures when density data is available, however, the vast 

majority of command lines given are perfectly valid when no density data is available.  Generally, 

running each of these commands while omitting the flags beginning with ‘-edensity::*’ will run the 

same protocol, using Rosetta’s energy function without the fit-to-density terms. 

 

Most of the applications described in this tutorial work as given in the current Rosetta release, version 

3.1.  However, there are several that make use of applications unavailable in the current version.  

These applications are pointed out in the document; they will be available in the next release of 

Rosetta, though option names are not guaranteed to stay the same. 



Scenario 1: An introduction to some basics in Rosetta-density 
 

In this scenario, we use the modeling of a small conformational change to introduce some basic 

Rosetta functionality.  We refine the structure of 2JEL (chain P) into a synthesized density map of 

1POH (chain A). 

 

Generally, the first step in refining a structure in Rosetta is to idealize the structure; that is, to give the 

structure ideal bond lengths and bond angles.  Idealization is done using the following command (see 

scenario1_rosetta_basics/run1_idealize.sh), which returns an ideal structure with minimal C-alpha 

deviation from the starting model. 

 
bin/idealize.linuxgccrelease \ 

-database ~/rosetta_database/ \ 
-in::file::s 2JEL_P.pdb \ 
-overwrite 

 

At the end of the run, idealize will print out the overall RMS from the initial model.  This command 

will output a structure 2JEL_P_0001.pdb.  Verify that this model looks reasonable, and then rename it 

to 2JEL_P_idl.pdb.  The remainder of this scenario will work on this idealized structure. 

 

The next step is to minimize the structure with respect to Rosetta’s energy constrained to the 

experimental density data provided in the density map 1POH.5A.mrc.  This simplest way to do this is 

through the application relax.  Relax makes relatively small backbone and sidechain torsional 

movements to find a nearby local minimum of Rosetta’s energy function.  A simple command line for 

doing this is shown below (see scenario1_rosetta_basics/run2A_relax.sh) 

 
bin/relax.linuxgccrelease \ 

-database ~/rosetta_database/ \ 
-in::file::s 2JEL_P_idl.pdb \ 
-score:weights score13_env_hb \ 
-relax::fast \ 
-relax::fastrelax_repeats 1 \ 
-relax::jump_move true \ 
-edensity::mapfile 1POH.5A.mrc \ 
-edensity::mapreso 5.0 \ 
-edensity::grid_spacing 2.0 \ 
-edensity::whole_structure_allatom_wt 0.1 

 

Some flags of note are boldfaced above.  First the flag -relax::fast runs a special fast mode of relax, 

where the backbone torsions are only minimized and not perturbed during the run.  For fitting 

structures into density, this mode is highly recommended.  Also, the flag -relax:: 

fastrelax_repeats tells Rosetta for how long it should refine the structure.  The default value is 8; 

for fitting structures into density, a smaller value (say 4) may be more reasonable (it is 1 above to show 

a relatively fast-running relax).  Finally, the flag -relax::jump_move true tells relax it must take 

into account the rigid-body orientation of the whole molecule; it must always be given when relaxing 

structures into density. 

 

Additionally, note the flags beginning with –edensity::*.  These flags tell the relax application about 

the density map into which it is being fit.  The name of the mapfile (in CCP4 or MRC format), the 

resolution of the map, the grid sampling of the map (which should never be more than half the 



resolution), and the weights on the various fit-to-density scoring functions.  These same flags are 

reused for many different protocols in addition to relax. 

 

Rosetta features three different fit-to-density scoring functions: 

 

elec_dens_whole_structure_ca  

Recommended for very low resolution maps (6A+);  Uses the correlation of the whole structure 

density versus the experimental data; structure density only uses C-alphas. 

elec_dens_whole_structure_allatom 

Recommended for low-medium resolution (3-8A); Uses the correlation of the whole structure 

density versus the experimental data; structure density only uses all heavy atoms. 

elec_dens_window  

Recommended for medium-high resolution (<4A); Uses the sum of correlations of a sliding 

window of residues versus the experimental data; structure density only uses all heavy atoms. 

Unlike the other two scoring functions, this uses the fit-to-density score when choosing 

sidechain rotamers. 

 

These energy terms may be placed in a weights file like any other scoring term in Rosetta.  For 

convenience, the following flags may also control the three scoring functions, respectively: 

 
-edensity:whole_structure_ca_wt <wt> 
-edensity:whole_structure_allatom_wt <wt> 
-edensity:sliding_window_wt <wt> 

 

If the sliding window scoring function is used, the additional flag -edensity:sliding_window n  

should also be provided, which gives the width (in residues) of the widow to use.  This should always 

be an odd number.  The command line in scenario1_rosetta_basics/run2B_relax_slwin.sh shows 

relaxing a structure using the sliding window weight. 

 

Another useful flag when running relax is -relax::constrain_relax_to_start_coords.  If relax is 

given a structure with very poor energy (for example, a homology model with serious steric clashes), 

the output model may move significantly, often in an undesirable way.  This flag will place constraints 

on the starting C-alpha positions.  See the command scenario1_rosetta_basics/run2C_relax_cst.sh for 

an example. 

 

Finally, one may wish to simply score (or rescore) some set of models using Rosetta.   This is simply 

accomplished by using the score application.  A sample command line to rescore the relaxed structures 

is given in scenario1_rosetta_basics/run3_rescore.sh.  Like the relax command line, it uses the various 

–edensity flags to provide Rosetta with experimental density information. 

 
bin/score.linuxgccrelease \ 
 -database ~/rosetta_database/ \ 
 -in::file::s 2JEL*.pdb 1POH_A.pdb \ 
 -in::file::native 1POH_A.pdb \ 
 -score:weights score13_env_hb \ 
 -ignore_unrecognized_res \ 
 -edensity::mapfile 1POH.5A.mrc \ 
 -edensity::mapreso 5.0 \ 
 -edensity::grid_spacing 2.0 \ 
 -edensity::whole_structure_allatom_wt 0.1 



 

This command line outputs a score file default.sc that gives – for each structure specified with -

in::file::s – the score with respect to each term in Rosetta’s energy function.  The meaning of some 

of the more important terms is shown below. 

 

fa_atr, fa_rep 

Lennard-Jones attractive, repulsive energies 

fa_sol 

Lazaridis-Karplus solvation energy 

pro_close 

proline ring closure energy 

fa_pair 

statistics based pair term; models things like salt bridges 

hbond_* 

hydrogen bond energy terms 

dslf_* 

disulfide bond energy terms 

rama, omega 

Ramachandran preferences, omega angle preferences 

fa_dun 

internal energy of sidechain rotamers as derived from Dunbrack's statistics. 

p_aa_pp 

probability of observing a particular amino acid given phi/psi angles 

ref 

reference energy for each amino acid 
 



 

Scenario 2: Building a model from a close homologue 
 

In this scenario, we refine a near homology model into density.  We refine a model of 1ONC that has 

been threaded onto template 1OJ8 into synthetic density data corresponding to 1ONC.  The file 

1ONC_threaded.pdb contains the backbone of coordinates of 1OJ8 with the corresponding amino-acid 

identities from 1ONC.  It is not necessary for this model to contain any sidechain atoms. 

 

Since the threaded model covers the entire sequence of 1ONC (that is, we do not have to rebuild any of 

the backbone atoms) we can simply use the relax application.  The command line is very similar to that 

of Scenario 1, and is given in scenario2_close_homology/run1_relax.sh: 

 
bin/relax.linuxgccrelease \ 

-database /opt/rosetta-3.1/rosetta_database/ \ 
-in::file::s 1ONC_threaded.pdb \ 
-score:weights score13_env_hb \ 
-relax::fast \ 
-relax::fastrelax_repeats 1 \ 
-relax::jump_move true \ 
-edensity::mapfile 1ONC.5A.mrc \ 
-edensity::mapreso 5.0 \ 
-edensity::grid_spacing 2.0 \ 
-edensity::whole_structure_allatom_wt 0.1 

 

Additionally, using an input mode not available in Rosetta 3.1, we do not even have to provide the 

threaded model.  Instead, we simply need to give Rosetta an alignment (as in 1onc_1oj8.fasta): 

 
1onc_.pdb 1 

DWLTFQKKHITNTRDVDCDNIMSTNLFHCKDKNTFIYSRPEPVKAICKGIIASKNVLTTSEFYLSDCNVTSRPCKYKLK
KSTNKFCVTCENQAPVHFVGVGSC 

1OJ8.pdb  2 
DWDTFQKKHLTDTKKVKCDVEMKKALFDCKKTNTFIFARPPRVQALCKNIKNNTNVLSRDVFYLPQCNRKKLPCHYRLD
GSTNTICLTCMKELPIHFAGVGKC 

 

Then (see scenario2_close_homology/run2_relax_cm_inputs.sh) we use the follow flags in lieu of  

-in::file::s: 

 
-in::file::extended_pose 1 \ 
-in::file::fasta 1onc.fasta \ 
-in::file::alignment 1onc_1oj8.fasta \ 
-in::file::template_pdb 1OJ8.pdb \ 

 



Scenario 3: Using “relax” to model large conformational variation 
 

In this scenario, we use relax to model a large conformational change guided by density.  This shows 

the power of relax when combined with low-resolution experimental density.  Additionally, we 

introduce some non-standard flags that may be useful for difficult density-fitting cases. 

 

Chain L of 1QFK and 2PUQ represent different states of the same molecule, and show large 

conformational variation (8A C-alpha RMS).  In this scenario, we refine each model into synthesized 

density from the other. 

 

First, we fit 1QFK into the density of 2PUQ (using the command line from 

scenario3_conformational_change/run1_flexfit_1qfk_to_2puq.sh). 

 
bin/relax.linuxgccrelease \ 

-database /opt/rosetta-3.1/rosetta_database/ \ 
-in::file::s 1QFK_L.pdb \ 
-score:weights score13_env_hb \ 
-relax::fast \ 
-relax::fastrelax_repeats 1 \ 
-relax::fastrelax_rampcycles 10 \ 
-relax::jump_move true \ 
-edensity::mapfile 2PUQ.5A.mrc \ 
-edensity::mapreso 12.0 \ 
-edensity::grid_spacing 6.0 \ 
-edensity::ca_mask 20.0 \ 
-edensity::whole_structure_ca_wt 0.1 

 

Flags to note are indicated in boldface.  The first of these flags -relax::fastrelax_rampcycles, 

controls the behavior of the relax application itself.  By default, each cycle of fast-relax consists of 5 

repack-minimization steps.  In each step, a higher weight is given to the repulsive energy (fa_rep).  By 

increasing this to 10, it gives the structure more time to make a larger conformational change to better 

fit the density before the increased repulsive weight restricts motion too much.  Aside from density 

fitting, this increased number of ramp-cycles is also useful (especially combined with -

relax::constrain_relax_to_start_coords from Scenario 1) when refining structures with serious 

clashes. 

 

Several density flags are changed from the default.  First to give a much smoother energy landscape, 

the density map is resampled on a 6A grid, and the resolution is computed to only 12A.  To further 

smooth things out (as well as reduce the running time) the calculated density used for scoring the 

model only uses C-alpha positions (that is, we use whole_structure_ca_wt instead of 

whole_structure_allatom_wt).  Finally, because of the large conformational change, the C-alpha’s 

in the starting structure need to “see” the density of the alternate conformation.  Thus, we increase the 

mask around each C-alpha to 20A with the flag -edensity::ca_mask.  The default value is 

resolution-dependent but is generally much smaller. Were we to use whole_structure_allatom_wt, 

then we would need to specify an atom mask distance instead, with -edensity::atom_mask. 

 

The result is a very accurate model of the conformation in 2PUQ, about 1A C-alpha RMSd.  Fitting 

2PUQ to the density of 1QFK (as in scenario3_conformational_change/run1_flexfit_2puq_to_1qfk.sh) 

yields similar accuracy.  Further refinement using the full-resolution density data might yield 

additional improvement.



Scenario 4: Using “loopmodel” for selective rebuilding 
 

In this scenario, we introduce the loopmodel application as a tool for modeling large – but localized – 

backbone conformational changes.  We also introduce the loops_from_density application as a way of 

identifying candidate regions to rebuild, given experimental density information.  Here, we try to infer 

the structure of 1CID from a threaded homology model, given synthesized electron density data. 

 

Given this threaded model – and the density data – we first pick out the residues we are going to 

aggressively rebuild.  Loops_from_density is a straightforward application that uses a model’s 

secondary structure and it’s fit to density to select candidate residues for rebuilding.  The application is 

run using the command line in scenario4_loop_remodel/run1_make_loopfile.sh. 

 
bin/loops_from_density.linuxgccrelease \ 

-database ~/rosetta_database/ \ 
 -in::file::s 1cid_threaded.pdb \ 
 -edensity::mapfile 1cid_5A.mrc \ 
 -edensity::whole_structure_allatom_wt 1.0 \ 
 -edensity::realign min \ 
 -edensity::sliding_window 9 \ 
 -edensity::mapreso 4 \ 
 -edensity::grid_spacing 2 \ 
 -max_helix_melt -1 \ 
 -max_strand_melt 3 \ 
 -frac_loop 0.2 

 

Again, important flags are boldfaced.  The flag -edensity::realign min tells Rosetta that the model 

should be rigid-body-minimized into the density map (using the density weight provided on the 

command line) before running the protocol.  Also, for loops_from_density, the sliding-window weight 

is always used to identify regions with a poor local fit to the density, so a sliding-window width must 

always be provided.  The value given here (9) seems to work reasonably well for maps in the 4-8A 

range; lower-resolution maps may want to use a wider window. 

 

The flags -max_helix_melt and -max_strand_melt tell the application not to rebuild more than the 

specified number of residues into the corresponding secondary structure element.  The default, -1, 

ignores the corresponding secondary structure when selecting residues to rebuild.  Finally, -frac_loop 

identifies the fraction of the structure to rebuild (in this case 20%). 

 

There are a couple things to note about this application.  First, the names “loop-building” and “loop-

model” are a bit of a misnomer; Rosetta’s loopmodel application will happily rebuild secondary 

structure elements.  In many cases, it may be beneficial to rebuild a helix.  Secondly, the 

loops_from_density application is not actually rebuilding segments of the structure.  It merely 

generates an input file for the loopmodel application, which does the actual rebuilding. 

 

After running this script, the application produces the file scenario4_loop_remodel/ 

1cid_threaded.loopfile.  The header of this file contains the per-residue density correlation.  The 

bottom of this file contains the loopfile, used by the loopmodel app: 

 
LOOP  23 26  0 0 
LOOP  30 42  0 0 

 



Each line in this file contains five columns.  The first is the keyword “LOOP”.  The next two are a 

residue range. Notice this residue range ignores PDB numbering.  Instead, Rosetta numbering is 

used, where the first residue is “1” and remaining residues are numbered consecutively.  The fourth 

and fifth columns may be left as 0.  After running this application, you will want to investigate this 

loopfile by hand, to see if it makes sense. 

 

Once the loopfile has been verified, we are ready to remodel the loops.  The command-line for this is 

in scenario4_loop_remodel/run2_loopmodel.sh. 

 
bin/loopmodel.linuxgccrelease \ 
 -database ~/rosetta_database/ \ 
 -loops::input_pdb 1cid_threaded.pdb \ 
 -loops::loop_file 1cid_threaded.loopfile \ 
 -nstruct 1 \ 
 -in::file::fullatom \ 
 -loops::remodel quick_ccd_moves \ 
 -loops::intermedrelax no \ 
 -loops::refine no \ 
 -loops::relax fastrelax \ 
 -loops::frag_sizes 9 3 1 \ 
 -loops::frag_files aa1cid_09_05.200_v1_3.gz  aa1cid_03_05.200_v1_3.gz none \ 
 -loops::extended \ 
 -loops::random_grow_loops_by 4 \ 
 -relax::fastrelax_repeats 1 \ 
 -relax::jump_move true \ 
 -edensity::mapfile 1cid_5A.mrc \ 
 -edensity::realign min \ 
 -edensity::mapreso 5.0 \ 
 -edensity::grid_spacing 2.0 \ 
 -edensity::whole_structure_allatom_wt 0.05 \ 
 -score:weights score13_env_hb 

 

The input file and loop file are given with the flags -loops::input_pdb and -loops::loop_file, 

respectively.   

 

The loopmodel application runs a highly configurable four-stage protocol.  The first stage performs 

localized fragment insertion using Rosetta’s low-resolution potential (where sidechains are modeled 

using a single interaction center).  Four flags control the four stages (omitted flags default to ‘no’): 

 

-loops::remodel { no | perturb_kic | quick_ccd | quick_ccd_moves } 
The initial centroid-mode loopbuilding protocol.  For performance reasons,  quick_ccd_moves 

is recommended when refining into density. 

 

-loops::intermedrelax { no | fastrelax | fullrelax } 

An intermediate fullatom relax. 

 

-loops::refine { no | refine_ccd | refine_kic } 

Fullatom refinement, with backbone motion restricted to the loop only. 

 

-loops::relax { no | fastrelax | fullrelax } 

A final fullatom relax. 

 



Generally, only one of -loops::refine  or -loops::relax will be specified, depending on whether 

backbone motions outside the “loop” regions are desired.  If, for example, in homology modeling we 

wanted to close a gap without moving the backbone of the remainder of the model, we would specify: 

 
 -loops::remodel quick_ccd_moves 
 -loops::intermedrelax no 
 -loops::refine refine_ccd 
 -loops::relax no 

 

The flag –nstruct specifies the number of models to build using the protocol.  Unlike the relax 

application – where 10 models is usually more than sufficient – generally hundreds (for building a 

single relatively short loop) to tens of thousands of models (for rebuilding multiple loops or long 

loops) is necessary to reasonable sample the search space. 

 

One other thing to notice with the loopmodel application is that backbone fragment files have to be 

provided with -loops::frag_files.  These fragment files are specific to a particular sequence, and 

are required for loop modeling.  The easiest way to make fragment files is to submit your sequence at 

http://robetta.bakerlab.org/.  Alternatively, the Rosetta manual (see http://www.rosettacommons.org/ 

manuals/archive/rosetta3.1_user_guide/file_fragments.html) describes how you can make your own 

fragment files. 

 

Finally, if relax is enabled as part of the protocol, the standard relax flags described in the previous 

scenarios are all applicable.  The standard density flags are also applicable.



Scenario 5: Distant homology modeling using “cm” 

This scenario contains code not available in the 3.1 release 

 

In this scenario, we use the cm application to automation the construction of homology models from a 

template and an alignment.  The application automatically performs the threading and calls loopmodel 

and relax as needed, without needing to set up loop files. 

 

This scenari, which builds a model from 1XVQ from an alignment to 2BMX, is run using the 

command line in scenario5_comparative_modeling/run_cm_into_density.sh. 

 
bin/cm.linuxgccrelease \ 
 -database /opt/rosetta-3.1/rosetta_database/ \ 
 -in::file::extended_pose 1 \ 
 -in::file::fasta 1XVQ.fasta \ 
 -in::file::alignment 1xvq_2bmx.fasta \ 
 -in::file::template_pdb 2bmxA.pdb \ 
 -cm::min_loop_size 4 \ 
 -cm::loop_close_level 0 \ 
 -cm::loop_rebuild_filter 50 \ 
 -loops::frag_sizes 9 3 1 \ 
 -loops::frag_files aaxvqn_09_05.200_v1_3.gz aaxvqn_03_05.200_v1_3.gz none \ 
 -loops::remodel quick_ccd_moves \ 
 -loops::idealize_after_loop_close \ 
 -loops::relax fastrelax \ 
 -relax::fastrelax_repeats 1 \ 
 -relax::jump_move true \ 
 -edensity::mapfile 1XVQ.5A.mrc \ 
 -edensity::realign min \ 
 -edensity::mapreso 5.0 \ 
 -edensity::grid_spacing 2.5 \ 
 -edensity::whole_structure_allatom_wt 0.05 \ 
 -score:weights score13_env_hb \ 
 -out::pdb 

 

Most of the flags here have the same meaning as in the loopmodel application of the previous section.   

New flags are highlighted in boldface.  The alignment and template are provided with the arguments  

 -in::file::alignment and -in::file::template_pdb.  The flag -cm::min_loop_size pads 

insertions smaller than the specified size so that rebuilding is at least this many residues (the value 

given here, 4, seems reasonable for most applications). 

 

Finally, the flag -cm::loop_rebuild_filter continues rebuilding loops (in centroid mode) until 

Rosetta’s low-resolution energy function is below the specified value.  This value is very structure-

specific, so it is typically necessary to do a couple test runs before deciding on a reasonable cutoff 

value.  A value of 50 here is probably a reasonable starting point.



Scenario 6: Building an all-atom model guided by an approximate C-alpha trace 
 

This scenario introduces another application.  This application, ca_to_allatom, is intended to aid in 

building a full-atom model from a low-resolution C-alpha-only trace (such as hand-traced models from 

cryo-electron microscopy).  

 

The input to the protocol includes the initial C-alpha trace and a rigid-body segmentation file, which 

identifies secondary-structure elements in the initial trace. The protocol is divded into 4 phases: 

 

Fragment insertion -- variable-length fragments are inserted at each secondary structure element. 

The fragments are dynamically selected based on RMS to the trace, and the insertion ensures 

that the fragment is in the same relative orientation as the original trace. 

Rigid-body perturbation -- Individual secondary structure elements are perturbed in a Monte-

Carlo trajectory. Optionally, sequence-shifting moves explore alternate threadings of the 

model. 

(optional) Loop remodeling 

(optional) Relax 

 

We build up a model of 1bbh from a threaded model , using synthesized density data.  The command 

line is at scenario6_model_from_ca_trace/run1_bootstrap_ca_cen.sh. 

 
bin/ca_to_allatom.linuxgccrelease \ 
 -database ~/rosetta_database/ \ 
 -in:file:s 1bbh_threaded.pdb \ 
 -in:file:centroid_input \ 
 -in:file:native 1bbh.pdb \ 
 @density_flags \ 

@loopmodel_flags \ 
 -RBSegmentRelax::cst_wt 0.1 \ 
 -RBSegmentRelax::cst_width 2.0 \ 
 -RBSegmentRelax::rb_scorefxn rb_cen.wts \ 
 -RBSegmentRelax::rb_file 1bbh.rbsegs \ 
 -RBSegmentRelax::nrbmoves 200 \ 
 -RBSegmentRelax::helical_movement_params 30.0 0.5 2.0 0.5 \ 
 -loops::vall_file ~/rosetta_fragments/nnmake_database/vall.dat.2006-05-05 

 

As applications sample more and more aggressively, the command lines become more complicated.  

To simplify things somewhat, Rosetta uses the @ symbol to reference files which contain lists of flags.  

here, the file ‘density_flags’ contains all the -edensity::* flags  and ‘loopmodel_flags’ contains all 

the -loops::* and -relax::* flags (the complete command line is given in the script file). 

 

The –RBSegmentRelax::* flags control the fragment insertions and rigid-body perturbation.  The first 

two flags, cst_wt and cst_width control the constraints placed on C-alpha atoms in the starting 

model.  Models with C-alpha deviations more that cst_width will be penalized during rigid-body 

perturbation. 

 

The score function used (during the initial rigid-body prerturbation) is given by the flag  

-RBSegmentRelax::rb_scorefxn.  Here’s we’re using a custom scoring function (rb_cen.wts) that 

combines Rosetta’s low-resolution (centroid) energy terms with the full-atom backbone hydrogen 

bonding terms.  This score function seems to work well at rebuilding beta sheets. 



 
env         1.0 
pair        1.0 
cbeta       1.0 
vdw         1.0 
hbond_lr_bb 4.0 
hbond_sr_bb 1.0 
rama        0.2 
rg          2.0 

 

 

The flag -RBSegmentRelax::nrbmoves tells Rosetta how many steps to make during the first stage of 

the protocol (for large structures in centroid mode, several thousand may not be unreasonable).   

 

The flag -RBSegmentRelax::helical_movement_params (and the related 

strand_movement_params) tell Rosetta the magnitude of the perturbations.  The first two numbers are 

the angle and translation along the helical axis (or along the strand) while the second two are the 

rotation/translation normal to this axis.  

 

The flag -loops::vall_file gives the path to the vall_file, needed by the protocol, and included with 

the Rosetta distribution. 

 

Finally, for some all-helical proteins, it may make more sense to run the rigid-body perturbation mode 

using an all-atom model and Rosetta’s high-resolution energy function.  This can be done by replacing 

the flag -in:file:centroid_input with -in:file:fullatom, and giving  

-RBSegmentRelax::rb_scorefxn a full-atom score function (like score13_env_hb).  See the 

command line at scenario6_model_from_ca_trace/run2_bootstrap_ca_allatom.sh.



Scenario 7: Modeling systems with internal symmetry 
This scenario contains code not available in the 3.1 release 

 

This scenario describes the use of Rosetta’s symmetry mode for modeling symmetric protein 

complexes using both the relax and looprelax applications.  The sample case involves refinement of an 

ab initio model of the (C4) tetramer 1K4C into synthesized density data. 

 

The information that Rosetta needs to know about a symmetric system is encoded in the symmetry 

definition file. Its tells Rosetta: (a) how to score a structure, (b) how to maintain symmetry in rigid 

body perturbations, (c) what degrees of freedom are allowed to move, (d) how to initially setup the 

system and (e) how to perturb the system to preserve the symmetry and absolute coordinate frame of 

the input protein assembly. 

 

To aid in creating a symmetry definition file from a symmetric (or near-symmetric) PDB, an 

application, make_symmdef_file.pl, has been included in src/apps/public/symmetry.  To generate the 

symmetry definition file for 1K4C, we run the command in scenario7_symmetric_modeling/ 

run1_make_symmdef.sh. 

 
~/rosetta_source/src/apps/public/symmetry/make_symmdef_file.pl \ 

-m NCS -a A -i B \ 
-p 1K4C_mem_abrelax.pdb > 1K4C.symm 

 

This script needs minimal information: the type of symmetry to generate (here NCS), the primary 

chain (here A), and an adjacent chain in each symmetry group, separated by spaces (here just B).  For 

Cn symmetries, only one adjacent chain is given; for Dn, two are given.  If the input system is 

asymmetric, the script will make a symmetrical version of it (sometimes significantly perturbing it in 

the process). 

 

In addition to the definition file written to STDOUT, the script writes a few other files: 

 

1K4C_mem_abrelax_symm.pdb 

the symmetrized version of the input file, showing the complete point symmetry group. 

1K4C_mem_abrelax_model_AB.pdb 

the same as above, but only showing chains that form an interface (where interface is defined 

by having a Ca-Ca distance less than 8A; or another value specified with -r) with chain A 

1K4C_mem_abrelax_INPUT.pdb 

the input PDB to Rosetta's symmetry modelling. A single chain in the symmetric complex. 

1K4C_mem_abrelax.kin 

a KineMage image showing the connectivity of subunits in Rosetta 

 

The symmetry definition file looks something like this: 

 
symmetry_name 1K4C_mem_abrelax__4 
E = 4*VRT0_base + 4*(VRT0_base:VRT3_base) + 2*(VRT0_base:VRT2_base) 
anchor_residue 54 
… 
set_dof JUMP0_to_com x(11.7023996817515) 
set_dof JUMP0_to_subunit angle_x angle_y angle_z 
… 

 



The omitted sections describe a system of virtual residues that maintain the symmetry of the system, 

and they generally should remain unedited.  The set_dof lines are what the user might want to edit.  For 

fitting structures into density, in addition to the symmetric degrees of freedom, we want to allow the 

rigid body orientation of the entire system to move as well.  Thus, we need to add the following line 

(see scenario7_symmetric_modeling/1K4C_edited.symm): 

 
set_dof JUMP0 x y z angle_x angle_y angle_z 

 

This input file can now be used to refine 1K4C symmetrically.  For example, we can relax our model 

using the command line in scenario7_symmetric_modeling/run2_symm_relax.sh: 

 
bin/relax.linuxgccrelease \ 
 -database ~/rosetta_database \ 
 -in:file:s 1K4C_mem_abrelax_INPUT.pdb \ 
 -symmetry:symmetry_definition 1K4C.symm \ 
 -symmetry::initialize_rigid_body_dofs \ 
 -score::weights score12_nosol.wts \ 
 @relax_options \ 

@density_options \ 
 -edensity::score_symm_complex true 

 

Only a couple flags are different from the nonsymmetric version of relax.  The two –symmetry::* 

flags tell the relax application to run in symmetric mode.  The flag initialize_rigid_body_dofs 

tells Rosetta to use the parenthesized values in the set_dof lines to initialize the symmetric model. 

 

Because this is a membrane protein we are using a modified score function, where the solvation term 

fa_sol is turned off.   

 

Finally, the flag -edensity::score_symm_complex true tells Rosetta to score the entire structure’s 

fit-to-density as opposed to a single subunit.  It is using this flag that Rosetta may fit a symmetric 

model into asymmetric density data, simultaneously inferring the conformation and symmetric 

operations. 

 

The loopmodel application also understands symmetry.  The command line given in 

scenario7_symmetric_modeling/run3_symm_looprelax.sh illustrates: 

 
bin/loopmodel.linuxgccrelease \ 
 -database ~/rosetta_database \ 
 -loopmodel_app::viewer true \ 
 -symmetry:symmetry_definition 1K4C_edited.symm \ 
 -symmetry::initialize_rigid_body_dofs \ 
 -loops::input_pdb 1K4C_mem_abrelax_INPUT.pdb \ 
 -loops:loop_file 1K4C.loopfile \ 
 @loopmodel_options \ 

@density_options \ 
 -loops::build_attempts 10 \ 
 -edensity::score_symm_complex true 

 

The flags are the same as in Scenario 4.  The only recommended exceptions are if one is rebuilding 

self-interacting loops, as in this scenario.  In these cases Rosetta may have difficulty closing loops, and 

so allowing Rosetta more chances to build the loop, with -loops::build_attempts 10 (the default is 



3) is recommended.  There is also some evidence that using -loops::remodel quick_ccd  instead of 

-loops::remodel quick_ccd_moves may also help. 

 

Finally, fragment files should be generated and loop files should be defined over the monomer.



Scenario 8: Iterative loop-modeling for extremely distant homology modeling  
 

In this scenario, we briefly describe iterative loop-modeling, a very powerful tool when performing 

homology models with low sequence identity.  We show an example building homology models for 

1Q0P from 1IDO.  Most of the techniques have been described in previous sections; this scenario 

shows how these methods can be combined to tackle some very difficult modeling problems. 

 

The basic idea of iterative loop modeling is to use a large number of loopmodel trajectories to explore 

conformational space.  Then, from among these trajectories, select some small subset.  Generally, to 

maintain diversity, the lowest energy models are clustered; no more than one model from each cluster 

is selected.  These selected models are then carried to the next generation, and are used as the starting 

points for another round of loopmodel trajectories. 

 

As an example, 80 low-energy models for 1Q0P are in the folder scenario8_iterative_loopmodel/ 

generation1.  We can cluster these models using the command line in scenario8_iterative_loopmodel/ 

run1_cluster_gen1.sh: 

 
cd generation1 
 
bin/cluster.linuxgccrelease \ 
 -database ~/rosetta_database/ \ 
 -in::file::s *.pdb \ 
 -radius 2.5 

 

The main parameter for clustering is –radius, which describes how different models have to be before 

they are placed in a new cluster.  The clustering produces files named c.m.n.pdb, where m refers to the 

cluster number, and n=0 is the centroid model with the remainder sorted by energy.  For example, the 

following command copies the lowest-energy models from each cluster to the next generation. 

 
cp c.*.1.pdb ../generation2 

 

We then run another generation of loopmodel starting with each cluster center.  First we identify 

regions to aggressively rebuild (see scenario8_iterative_loopmodel/run2_make_gen2_loopfiles.sh): 

 
cd generation2 
 
bin/loops_from_density.linuxgccrelease \ 
 -database ~/rosetta_database/ \ 
 -in::file::s *.pdb \ 
 @density_flags \ 
 -edensity::sliding_window 9 \ 
 -max_helix_melt -1 \ 
 -max_strand_melt 2 \ 
 -frac_loop 0.4 

 

Then the actual loopmodel application (see scenario8_iterative_loopmodel/run3_looprelax_gen2.sh): 

 
cd generation2 
 
for file in *.pdb 
do 
 



stem=`echo $file | sed 's/\.pdb//'` 
 
bin/loopmodel_viewer.linuxgccrelease \ 
 -database /opt/rosetta-3.1/rosetta_database/ \ 
 -loops::input_pdb $stem.pdb \ 
 -loops::loop_file $stem.loopfile \ 
 -nstruct 1 \ 
 -in::file::fullatom \ 
 -loops::frag_sizes 9 3 1 \ 
 -loops::frag_files ../aa1q0p_09_05.200_v1_3.gz  \ 
                         ../aa1q0p_03_05.200_v1_3.gz none \ 
 -loops::extended \ 
 -loops::random_grow_loops_by 4 \ 
 -relax::fastrelax_repeats 1 \ 
 -relax::jump_move true \ 
 -edensity::mapfile ../1q0p.5A.mrc \ 
 -edensity::realign min \ 
 -edensity::mapreso 5.0 \ 
 -edensity::grid_spacing 2.0 \ 
 -edensity::whole_structure_allatom_wt 0.05 \ 
 -score:weights score13_env_hb \ 
 -overwrite &> /dev/null & 
 
done 



Scenario 9: Ab-initio modeling for completing a partial structure 
This scenario contains code not available in the 3.1 release 

 

This scenario briefly introduces the topology broker, the most recent version of Rosetta’s ab-initio 

protocol.  In this case, we use the topology broker to repair a model of 1NSF that was over-refined 

against low-resolution crystallographic data. 

 

For this case, the helices in the structure were well resolved.  However, the beta sheet geometry was 

destroyed.  Loopmodeling is insufficient in this case since fixing the beta sheet requires the concerted 

movement of many contiguous segments.  Here we show how the topology broker may be used to 

rebuild 1NSF while keeping the helices fixed. 

 

The command line we pass the broker is given by the command line in scenario9_density_ab_initio/ 

run1_jumping_abinitio.sh: 
 
bin/r_broker.linuxgccrelease \ 
 -database /opt/rosetta-3.1/rosetta_database/ \ 
 -broker:setup setup_dens.tpb \ 
 -database /work/dimaio/minirosetta_database \ 
 -skip_stages 1 2 \ 
 -seq_sep_stages 1 1 1 \ 
 -short_frag_cycles 1 \ 
 -scored_frag_cycles 1 \ 
 -increase_cycles 0.1 \ 
 -ramp_chainbreaks \ 
 -sep_switch_accelerate 0.8 \ 
 -skip_convergence_check \ 
 -overlap_chainbreak \ 
 -fail_on_bad_hbond false \ 
 -edensity::mapfile 1nsf.5A.mrc \ 
 -edensity::mapreso 8.0 \ 
 -edensity::grid_spacing 4.0 \ 
 -abinitio::stage3a_patch ./phase3.patch \ 
 -abinitio::stage3b_patch ./phase3.patch \ 
 -abinitio::stage4_patch  ./phase4.patch 

 

While a discussion of all the flags used by the broker is beyond the scope of this tutorial, the key ones 

are boldfaced.  First, the flag -broker:setup specifies the file used to describe the topology of the 

system, what parts may move, how those parts may move, and the direction of the chain towards which 

those moves are propagated.  This is done through a series of claimers, while the broker is used to 

determine which claimer may access which part of the structure. 

 

For this application the broker setup file is in scenario9_density_ab_initio/setup_dens.tpb: 

 
CLAIMER SequenceClaimer 
LABEL DEFAULT 
FILE 1nsf.fasta 
END_CLAIMER 
 
ABINITIO_FRAGS 
LARGE aansfd_09_05.200_v1_3.gz 
SMALL aansfd_03_05.200_v1_3.gz 
END_ABINITO 



 

The first block of code in this file sets up a very simple ab initio model.  The sequence claimer sets up 

an extended chain using the sequence in 1nsf.fasta.  The second claimer is where the fragment files are 

given, and it tells the broker to allow fragment insertion anywhere in the model where no claimers 

otherwise prevent it. 

 
CLAIMER DensityScoringClaimer 
anchor 98 
END_CLAIMER 

 

The next claimer sets the model up for density scoring.  It tells Rosetta: (a) that the overall rigid-body 

orientation of the system is important, and (b) that the rigid body orientation of the system is 

maintained by propagating all fragment insertions outward from residue 98. 

 
CLAIMER CoordConstraintClaimer 
PDB_FILE 1nsf_bad_refine.pdb 
ASK_FOR_ROOT ALL 
POTENTIAL BOUNDED 0.0 4 1 xyz 
END_CLAIMER 

 

This claimer sets coordinate constraints on the C-alpha atoms from 1nsf_bad_refine.pdb.  The 

constraints are bounded constraints, of width 4 and weight 1. 

 
CLAIMER RigidChunkClaimer 
pdb 1nsf_bad_refine.pdb 
REGION 
RIGID 1 5 0 0 
RIGID 24 42 0 0 
RIGID 61 68 0 0 
RIGID 90 105 0 0 
RIGID 135 143 0 0 
RIGID 161 171 0 0 
RIGID 185 195 0 0 
RIGID 200 207 0 0 
RIGID 219 229 0 0 
RIGID 234 247 0 0 
END_REGION 
END_CLAIMER 

 

This last block is where most of the work is done.  The rigid-chunk claimer sets up regions where no 

fragment insertions may take place.  In between these regions, cuts are introduced in the chain; all 

fragment insertions in these regions propagate toward the cut.  For this scenario these regions 

correspond to the helices and the N-terminus, which we want to remain fixed. 

 

While this protocol is extremely powerful for very difficult modeling problems, the sampling required 

is very significant; in general tens to hundreds of thousands of models are required to accurately 

sample conformational space.



Scenario 10: Modeling a ligand-containing structure into density 
 

The final scenario shows how ligands may be added to proteins modeled in Rosetta.  Here, we again 

visit the case of 1BBH, this time also modeling a heme present.  There are many options for modeling 

and docking small ligands in Rosetta; this demo is only showing a small part of what is possible. 

 

New ligands are described to Rosetta using a params file, which defines ligand topology, rotatable 

bonds, atom types, partial charges, etc.  A script called molfile_to_params.py has been supplied in 

src/python/apps/ to help in producing these files from a typical small molecule format (.mol, .sdf, or 

.mol2). 

 

For the heme case, we begin with the heme molecule in HEM.mol2, the run the command line in 

scenario10_ligand_modeling/run1_mol2params.sh: 

 
python ~/rosetta_source/src/python/apps/public/molfile_to_params.py \ 

--keep-names --clobber HEM.mol2 -p HEM -n HEM 

 

This outputs the param file HEM.params.  This will only create a single conformation of the ligand.  If 

multiple conformations of the ligand are desired, a multi-model PDB of conformers must be created 

(using a program like OpenEye's Omega) and added to the *.param file under the keyword 

PDB_ROTAMERS. 

 

The params file is given to Rosetta with the flag -extra_res_fa, as in the command line at 

scenario10_ligand_modeling/run2_relax_with_heme.sh: 

 
bin/relax.linuxgccrelease \ 

 -database /opt/rosetta-3.1/rosetta_database/ \ 
 -in::file::s 1bbh_threaded_with_heme.pdb \ 
 -score:weights score13_env_hb \ 
 -relax_app::viewer \ 
 -relax::fast \ 
 -relax::fastrelax_repeats 1 \ 
 -relax::jump_move true \ 
 -extra_res_fa HEM.params \ 
 -edensity::mapfile 1bbh.5A.mrc \ 
 -edensity::mapreso 5.0 \ 
 -edensity::grid_spacing 2.0 \ 
 -edensity::whole_structure_allatom_wt 0.1 

 

The output is a relaxed model with the ligand present.  Since no PDB_ROTAMERS line is provided, 

the ligand moves very little; the rotatable bonds may minimize but will not be repacked.  The ligand’s 

fit to density is used, however.  In addition, while some terms of Rosetta’s energy are applicable to 

ligand conformations, many of the statistical terms are not.  So it may be necessary to constrain the 

ligand to maintain proper binding geometry. 


