

Introduction to Single Particle Reconstruction

Steve Ludtke

Charles C. Bell Professor
Biochemistry and Molecular Biology
Director, CryoEM/CryoET Core
Co-director CIBR Center
Baylor College of Medicine

190/~30,000 Particle Images

Too, co,coo i article illiages																	
P		4		+		1 2 5						ů.		400			
											7				(A)		
				2					19.E	200	×						
*		1.															
					V.									300			c.
																	15
				3.					er.	7,4				*			
77.						4-1	***			i.e						9.	
					1												46
								法					7.35				107

Bai, X. C., Fernandez, I. S., McMullan, G. & Scheres, S. H. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. Elife 2, e00461 (2013). PMC3576727.

S. Cereviseae 80S Ribosome (EMD-2275)

Data taken from PDBe 3DEM test data
no movie alignment performed

Dataset 10002 (Bai XC, Fernandez IS,

McMullen G, Scheres SH)

TRPV1

Liao, M., Cao, E., Julius, D., and Cheng, Y. (2013). Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature. 504:107-112.

30 kDa HIV-1 RNA Dimerization Signal

~9 Å

30 kDa HIV-1 RNA Dimerization Signal

~9 Å EMAN2

				7				
								(V)
			120					
Fatty	Acid Sy	nthase						

*	*		33	3	8	CR
33	1052		977	0	•	2
	722	748	910	045	6	220
778	4	670		200		
S	633	1199	1390	9	1201	(3)

Unsupervised Classification

GroEL single ring mutant + GroES

Fatty Acid Synthase ~30 Å motion

IP3 Receptor ~18 Å motion

TriC (open) ~12 Å motion

β Galactosidase

β Galactosidase

(this is real ~2.2 Å B-gal data)

Unsupervised Classification

GroEL single ring mutant + GroES

Invariants?

- An image derived from another image which doesn't change under some operation
- A translational invariant is an image that doesn't change when its source is moved around in the box
- A rotational invariant is an image that doesn't change when its source is rotated

If we had a good one we could skip costly alignments!

Autocorrelation

Autocorrelation

β Galactosidase

Autocorrelation

Any One of These

And we still haven't done rotation....

Problems with Autocorrelation

- We lose phases, twice. Significant information loss
- Handedness lost
- Noise additivity
 - P(A+B+C+D) != P(A)+P(B)+P(C)+P(D)

(this is real ~2.2 Å B-gal data)

· Power spectrum:

$$P(\bar{s}) = |F(\bar{s})|^2$$

Bispectrum

$$B(\bar{s}_1, \bar{s}_2) = F(\bar{s}_1)F(\bar{s}_2)F^*(\bar{s}_1 + \bar{s}_2)$$

4-D!?!

3 point correlation in real space translationally invariant

Power spectrum:

$$P(\bar{s}) = |F(\bar{s})|^2$$

Bispectrum

$$B(\bar{s}_1, \bar{s}_2) = F(\bar{s}_1)F(\bar{s}_2)F^*(\bar{s}_1 + \bar{s}_2)$$
4-D !?!

3 point correlation in real space

... So we compute a carefully selected 3-D subspace from the bispectrum integrated rotationally.

Significant changes with 3-D orientation

β Galactosidase

Good translational invariance

β Galactosidase

Good rotational invariance

Good noise behavior

β Galactosidase

Bispectral Invariants

- Preserve more information
- Good noise resistance
- Noise is still noise and can cancel out with averaging
- Relatively inexpensive (generate ~50 each sec per CPU)

(old) 2D Refinement

(new) 2D Refinement

TcdA1

5513 particles 240x240 box size 64 Classes

2 h 27 m 1 Laptop (4 core)

5513 particles 240x240 box size 64 Classes

7 min 1 Laptop (4 core)

8,290 particles 384x384 box size 128 Classes 15 sec to classify 4 min total 1 workstation

10,533 particles 208x208 box size 128 Classes

2h 39m 1 laptop

10,533 particles 208x208 box size 128 Classes

12 min 1 laptop

Single Particle Analysis

Prepare Grids Record Images Movie Alignment **Extract Particles** Determine Orientations 3-D Reconstruction Interpret Map

Single Particle Analysis

Extract Particles

Determine Orientations

3-D

Reconstruction

Interpret Map

7.5° Angular Step

Determine Particle Orientations

Every particle vs every possible projection?

Determine Particle Orientations

(Ribosome at ~4 Å)

- * 30,000 particles
- * 3000 projections (~2.6 degree sampling)
- * 180 rotations
- * 10 x 10 translations (if centering is decent)
- * 65,536 pixels (256x256 image)
- * 20 FLOPS/pixel
- = 2.1 x 1018 FLOPS (2 exaFLOPS)
- @ 100 gigaFLOPS/s = 6,000 hours (~ 240 days on one typical workstation)
- Clearly we need to be smarter...
- (Actual EMAN2 time <3 hours on ... even more cleverness possible though)

Determine Particle Orientations

- * 30,000 particles
- * 3000 projections (~2.6 degree sampling)
- * 180 rotations
- * 10 x 10 translations (if centering is decent)
- * 65,536 pixels (256x256 image)
- * 20 FLOPS/pixel
- = 2.1 x 1018 FLOPS (2 exaFLOPS)
- @ 100 gigaFLOPS/s = 6,000 hours (~ 240 days on one typical workstation)
- Clearly we need to be smarter...
- (Actual EMAN2 time <3 hours ... even more cleverness possible though)

Single Particle Analysis

Extract Particles

Determine Orientations

3-D

Reconstruction

Interpret Map

Reconstruction Algorithms

- Back Projection
- Filtered Back Projection
- Direct Fourier Inversion
- SIRT
- SART

• ...

Crystals have spots
Particles are ~continuous and have phases!

One problem...

- To determine the particle orientations, we needed a 3-D reference
- catch 22
- All current CryoEM Single Particle solutions are iterative!