
Chapter 1

Getting
Ready to
Program
Python is, itself, a program you run on your
computer, which interprets the programs you enter.
This chapter takes you through the process of
setting your computer up to use Python, and some
initial examples to show you what Python can do.

Conventions
I tried to write this book so it would be understandable to someone learning
programing for the very first time. If you already know a little bit of programming
from somewhere, you could also use this book to learn Python, though you may
find some of it a little simple. To add a little spice, you will find occasional boxes

that look like this: box , with notes for more advanced readers. If you're a
beginner, you can ignore these.

There are a few basic conventions we use in this book that it’s important to be
familiar with, so you find the process fun, not frustrating. Most people will find
these things pretty obvious, but let’s just make sure everyone’s on the same page.
First, if you see text that looks like this, you are supposed to (or can if
you want) type exactly what you see into the computer. Generally you should press
<enter> at the end of each line. When you see something between <> characters,
this represents a key you are supposed to press, such as <p>, <space> or
<enter>. Please note also that <enter> is the same as <return>. Different
keyboards give it different names. Sequences like <ctrl-c> mean you should hold
down the ‘ctrl’ key and press c. Text like this is text you should expect to see
displayed on the screen.

Section 1

SUMMARY

1. Text to type

2. Text you see on the screen

3. <key> to press

4. Example code at

5. Chapter ? contains a review of concepts

How This Book Works

5

The first chapter will explain how to install and run Python, and
then give you a series of little examples just to demonstrate some
of Python’s capabilities, and to give you a flavor of what’s to
come. Later in the book, we will take apart some of these
examples and see how they do what they do.

Too much Typing
This book has quite a lot of code (programs) that you need to
type in. You will get the most out of the book if you actually go
through the examples and type them in when you see them. In
fact, don't be shy, go ahead and play around. Change the
examples, and see what happens. It's pretty hard to do any
serious harm with anything we're doing in this book. If we're
playing with anything really risky, like deleting files from the hard
drive, I'll warn you in advance. For the most part, however, if you
find that you are playing around and things get completely
messed up, you can just exit Python (you'll know what this means
later), and start it up again from scratch.

If you're feeling lazy (or type really slowly), there is one alternative.
Most of the significant chunks of code in this book are all
assembled into one neat package at

Concepts
This book introduces new concepts gradually as we need them in
the various fun little projects. The fun projects are presented in
order such that we can introduce new concepts a steady, but
hopefully not overwhelming, pace throughout the book. However,

that means if you wanted to use this book as a reference, it could
be challenging to remember exactly where a new idea was
introduced. For this reason, we have Chapter ?, which contains a
review of the concepts in the book, complete with additional
examples. If you find a concept too difficult when it's first
introduced, check this chapter for more examples that may help
clear up your confusion. This chapter will also serve as a good
reference after you finish the book. Also note that there are plenty
of good resources on the web for learning about specific
concepts if you still find something hard to grasp.

6

The Good
Python is, quite simply, a fun language to use. Whereas many programming
languages force you to do any specific task one specific way, and make you
carefully define every aspect of your program before you can actually do anything,
Python is very relaxed, and free-form. For any given task, it is generally possible to
come up with a half-dozen different ways to accomplish it in Python. While it
permits you to be very rigid in your software design, it also gives you the freedom
to simply play around (which is what we will spend most of this book doing).

Python is widespread enough that it is included as a standard part of most (but not
all) modern operating systems. The specific version of Python you will have will
vary with how old your OS is. The exercises in this book will focus on Python 2.7.x.
The vast majority of what we cover will also be valid for earlier versions of Python.
Python 3.x has also been available now for some time, however adoption has
been slow because it isn’t 100% compatible with earlier versions. We will try to
mention any places where there is a critical difference between Python 3 and
Python 2.

The Bad
Python is what is known as an interpreted programming language. When you write
a program in a language like C++ or Fortran, your program is first passed through
a compiler, to produce an executable. This executable runs directly on the CPU

Section 2

SUMMARY

1. Python installation is platform-dependent
(Linux, Mac, Windows).

2. This book will use Python 2.7.x. Most of
what is covered will also apply to other
versions.

3. We also install some useful Python libraries
which aren’t part of the standard
distribution.

4. Wherever text appears in this font, this
is an indication of something you are
expected to type into your computer.

Installing Python

7

of the computer, and is very fast. In Python, your program just
runs immediately, without a compiler. However, since it hasn’t
been compiled, it may run noticeably slower than the same
program written in a language like C++. On the bright side, Many
of the libraries of functions provided as a standard part of Python
ARE compiled, and run at full speed. So, Python is often used as
a scripting language to make other, faster programs and libraries
do precisely what you want them to.

The Ugly
Many professional programmers, particularly those trained in
formal C++ and Java programming, dislike Python’s free-form
style. They claim it encourages bad programming habits. To some
extent, they are correct. If you were writing the software system
for a bank, where everything had to work exactly according to
specific rules, and 50 programmers all had to work together to
produce one gigantic piece of code, you, too, might be fond of
rigid rules and guidelines. In such situations, if one guy decides to
do things ‘their own way’, the next thing you know, someone’s
bank account has accumulated an extra million dollars due to a
programming error. Python can, and has, been used for very large
projects, but it really shines in situations where a lone
programmer is trying to get something done quickly.

Installing Python

Mac Users

Luckily for users of Macintosh computers, Python comes
preinstalled with the operating system. There are even a number
of Mac-specific libraries which allow you to write complicated
programs making use of standard Mac tools. The version of
Python you have will depend on what release of OS-X you have
installed. Lion (10.7) and Mountain Lion (10.8) include Python 2.7.
Earlier versions of OS-X include earlier versions of Python. If you
open a terminal window, and type python --version, you
will see what you have. The majority of the exercises in this book
do not specifically require Python 2.7.

Windows Users
Python will not be preinstalled on windows, however, a windows
installer for virtually any version of Windows is available from
www.python.org. Simply download the appropriate (Python 2.x)
installer and run it. On Windows, you can launch python in two
different ways, which we'll talk about later.

Linux Users
Like Mac users, you too are in luck, as virtually all Linux
distributions come with Python preinstalled. Open a terminal
window and try typing python --version. If you see a version
number displayed (and it’s 2.x), then you’re all set. If not, you will
need to run the software manager for whichever version of Linux
you’re using (generally on a system menu) and install Python.
Often you will have a choice between Python 2.x and Python 3.x.
Again, in this book we will focus on Python 2.x.

8

http://www.python.org
http://www.python.org

IPython
In addition to the standard interactive mode that comes with
Python, there is an open source project called IPython, which
gives you an interactive mode with some additional
capabilities. If you are feeling more adventurous, you may
consider downloading and installing IPython in addition to the
normal python interpreter, and using ipython rather than
python, when prompted. Some of the capabilites of IPython
will be discussed later in the book, but if you go this route, for
the most part you’ll need to read the manual to sort out how to
use some of its advanced features. If you get frustrated easily,
and are new to programming, you may want to hold off on
trying IPython for the moment.

iPad Users
Originally Apple didn’t permit programming languages on its
iDevices, however sometime in 2011 they reversed this policy,
and you can now purchase at least one version of Python for the
iPad/iPhone. However, it may be challenging to continuously
switch back and forth between this book and your iPad, and a
few things we’ll do will not be possible on the iPad due to its
security restrictions, so my advice would be to read the book on
the iPad and practice programming on the computer, but it’s
completely up to you. It is also worth noting that, at the time of
this writing, turtle graphics is one of the thing the Python

interpreter on the iPad doesn’t support, and we use this for a
number of the more entertaining early examples.

9

Starting Python
There are two fundamentally different ways you can use an interpreted language
like Python. First, you can use a text editor to create a file containing your
program, then you can run the program just like you do any other application on
your computer. Alternatively, you can run Python in interactive mode, and just
type commands into it one after another. It will immediately respond to each
command. We will make use of both methods in this book. However, we will begin
with the interactive mode, and use this for many of the simple exercises in the
book.

On any of the three computer platforms we cover, Python can be run by opening a
command prompt, and typing python. While you can start it using an Icon on
most platforms as well, there are some reasons not to do it that way just yet.

So, go ahead and give it a try. Once you enter python, you should receive a
prompt, looking something like:

Section 3

SUMMARY

1. You can start Python by typing python at
the command-prompt.

2. Python can be used to do basic math like a
calculator, for example 2*5+10. If you need
scientific functions, like sqrt() or cos(), first
you have to type: from math import *

3. A string can be created by surrounding text
with double quotes, such as : "a test".
You can also perform addition and
multiplication with strings.

4. Python has built-in Turtle graphics, which
can be used to do simple drawing
operations. This emulates a real Turtle
robot drawing with a pen.

Taking Python Out for a Spin

10

>>> is the Python prompt. If you opted to use IPython instead of
Python, you will see a prompt like In [1]: instead, but it has
exactly the same meaning. Either way, this is the place where you
type all of the nifty Python commands we’ll be learning in the
interactive exercises.

Your First Python Commands
Next chapter we will start learning Python properly, but let’s get
started with a few quick examples showing you some easy things
you can do.

Python as a Calculator
This is where almost any introduction to Python starts, mainly
because it’s easy, and can be useful. At the prompt, type: 1+1
and press <enter>.

If everything is working as it should, you should see ‘2’ followed
by another prompt. Cool, huh ? Ok, ok, perhaps that was a little
simple. How about something a little more complicated. Try this:

for i in range(10):
! print i,i*i,i*i*i

This one is a little trickier. Note that the second line is indented.
This indentation is critical to python, as code that is indented the
same amount will be executed together (we’ll discuss this more in
the next chapter). For now, just make sure you either use one or
more spaces or a <tab> character to indent the second line.

You’ll also note that after you enter the first line, the prompt will
change from >>> to This means Python is waiting for you
to complete a command you didn’t finish on the first line. After
you enter the command on the second line, you will see
another ... prompt. At this prompt you will need to press
<enter> again on an empty line to let Python know you don’t have
any more commands to give.

Whew, quite a long explanation for 2 lines of code, huh ? Don’t
worry, things will get easier once you learn a few of these simple
rules. If you typed everything correctly, you should have seen:

0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

That is, the numbers from 0 - 9 and each number squared and
cubed. Still not rocket science, but easier than doing the same
thing with your pocket calculator.

Just to get it out of the way, let’s list the basic mathematical
operators in python:

11

a+b add a-b subtract

a*b multiply a/b divide

-a negate a%b remainder

a**b a to the b
power pow(a,b) a to the b

power

Those take care of all of the basic math you’ll need to do. We’ll
get to more complicated math later on.

Floating Downstream
There are a few oddities when you first start programming, which
may seem a bit bizarre. Enter the following: 5/2

Most people would probably expect this to produce the number
2.5, or perhaps if you don’t know much about programming, 2
1/2. You normally wouldn’t expect what you actually get, 2. So,
what’s going on here ?

As it happens, for reasons we probably shouldn’t get into at this
point, computers divide numbers into two different types:
integers, and floating point numbers. We’ll save the details for a
later chapter, but for the moment, try typing 5.0/2.0, and you’ll
get the general idea.

Fractions
Many people grow up hating fractions, and for many parents,
their kids confronting them with homework involving fractions is

their worst nightmare. Now, while this isn’t true for your typical
programmer, it’s nice to know that Python has your back. Give
this a try:

from fractions import Fraction
Fraction(3,45)
Fraction(2,9)*Fraction(3,4)+Fraction(1,2)

You’ll note that it automatically simplifies the resulting fractions
for you.

Mathematical Functions
Now lets try something a little more complex. Let’s say we want
the square root of a number. Try typing sqrt(5.0).

Aack! You probably got an error saying it doesn’t know what sqrt
means. What’s up ? Did I misspell sqrt ? No, this is simply our
first introduction to modules in Python. All of the math functions
live in a module called ‘math’. So, let’s try one more time. Do this:

from math import *
sqrt(5.0)
cos(.25)

After typing that first line, you suddenly have access to
mathematical functions of all sorts. What functions ? Quite a few
to choose from. Try this:

import math
help(math)

12

This will give you help on the entire math module. Note that after
you see the first page of math functions, you get a : prompt
instead of the typical >>>. This prompt tells you that python has
more than one page of stuff to show you. Press <space> to see
the next page, and when you get tired, press <q>.

Strings
Strings ? Musical instruments ? Subatomic particles ? No, in
programming, a string is a sequence of characters (letters,
punctuation, numbers). While math is undeniably important, most
of what we do with computers involves words too, so let’s see a
few simple things we can do with strings.

First, consider a simple string, letters between double quotes:

s="This is a string"
print s

If you enter this, you will create a variable, s, and print it (the
string) on the screen. Great ! We have “This is a string” in a
variable. Other than print it out, what can we do with it ?

print len(s)

Ah ha ! The length of the string ! Useful for some things, but not
earth shattering.

print s.count("i")

We can find out how many “i”s there are in the string. Why ?
Well, why not.

print "".join(sorted(s))

That one is a just a bit less obvious. It sorts the letters in the
string in alphabetical order. Probably not the most useful
example, but it gives you a feel for some of the possibilities. Later,
we'll have a whole chapter on programming for word games. How
about math with strings ?

"2.0"+"3.0"

You should try this one yourself. If you haven’t done much
programming before, you might guess that this would produce
“5.0”, when in reality, it produces “2.03.0”. So, strings can be
added, but with strings this means they should be joined
together, not added mathematically. Strings can be multiplied as
well:

"2"*4

This produces the same thing "2"+"2"+"2"+"2" would, that is
"2222".

Of course, there are many more interesting things we can do with
strings, but that will have to wait until the next chapter.

13

Turtles
Before the days of high resolution color monitors, there were
simple black and white display, capable of showing only letters
and numbers. No graphics at all.

Before this, were the TTYs: Imagine a typewriter connected to a
computer. As you typed, each letter was printed on the paper, but
was also sent to the computer. The computer’s responses were
then ghost-typed on the same paper. In these days, the idea of
“graphics” on a computer was whatever you could do with letters
and numbers on a printed piece of paper. Not only was there no
color, but there weren’t even lines, aside from the -, |, / and \
characters.

Ok, why am I boring you with history ? Back in the 50’s, early
robots known as ‘turtles’ were developed. In the late 70’s/early
80’s, these turtles were adapted to be educational tools as
graphics devices for the computer. The turtle had a pen which
could be moved up and down, and the robot could be given
simple commands like move forward, turn 10 degrees left, etc.
This could be used to draw pictures on paper. While the robots
aren’t very common any more (though you can still get/make
them), the idea is still alive and well. Most of the time the turtles
are now little triangles that move around on your computer
screen, trailing a line behind them.

Now that our history lesson is over, let’s try it:

from turtle import *
s=Screen()
goto(0,0)

Look ! A window appeared, and when you typed goto(0,0), a little
arrowhead (the turtle) appeared in the middle of the window.
What fun ! What next ?

for i in range(36):
! forward(10)
! left(10)

Look, a circle ! (we have to start somewhere, don’t we ?) How
about something with a little more flair:

reset()
goto(-125,-125)
clear()
for i in range(61):
! forward(250)
! left(118)

Ever play with a Spirograph before ? You can do interesting
things with turtles without much effort. Note that the turtles are
intentionally slowed down so they act more like a turtle robot
might. Clearly the computer is capable of drawing a lot faster
than this.

14

Example 1.1 What you should see

15

While you haven’t really been ‘taught’ anything yet, if you’re
clever, you may be able to figure out the examples you’ve seen
enough to try your hand at a few simple problems. Of course, the
answers are provided as well.

Problem 1 - Print the integers from 0 to 10 and the square root
of each.

Problem 2 - Modify the turtle examples and see if you can draw:

a) A hexagon

b) The spirograph example is loosely based on triangles, modify
it so its based on squares instead.

Section 4

Problems

16
Scroll through the images to see the solution.

Solution 1.1

Again, start by running python.

Solution 1.2

