
Chapter 2

Turtlerific

Turtles have the most potential for doing something
interesting quickly, so we'll take a couple of turtle
examples apart to see what we can learn from
them.

Let's start with our spirograph example from the last chapter:

from turtle import *
s=Screen()
reset()
goto(-125,-125)
clear()
for i in range(61):
! forward(250)
! left(118)

This example shouldn't be too difficult to figure out. Let's start with the turtle
graphics functions: Screen(), reset(), goto(), clear(), forward() and left(). These
functions wouldn't be available except for the first line:

from turtle import *

Import
Python comes with a wide range of standard libraries to do all sorts of useful and
interesting things. We've seen two of these libraries in the examples in the first
chapter: math and turtle. While these libraries are distributed with the Python

Section 1

SUMMARY

1. Python has many built in modules,
including math and the turtle graphics
module we already used. To use a module
you must either import module or
from module import *.

2. Python has a built-in help function, which
can be used to get documentation for
modules or functions, such as
help(math).

3. There are over 20 different commands you
can give the turtle. The most useful of
these are summarized.

4. Lists can be created using square brackets
and commas, such as: [1,2,3,4].

5. The for loop allows us to repeat an
operation for each element in a list.

Spirograph Example

18

language, to use them, you still have to let Python know that you
want to use each one in any given session.

The import command is how this is done. There are three different
ways this command can be used. It's good to understand all
three, since you will run across all three at one point or another.
The three methods are (don't actually type these):

import module
from module import *
from module import name1, name2

The first form makes module available, the second form makes
all of the functions from module available, and the third form
makes only the specific functions name1 and name2 available.

Let's use the math module as an example. Say we need to use
the cos() function. We could do this three different ways:

import math
math.cos(0.5)

from math import cos
cos(0.5)

from math import *
cos(0.5)
tan(0.5)

In the first example, we get access to the entire math module, but
we have to put math. in front of any function we use. The second
form gives us access to just the cos function, but we can omit the
math. The third form gives us access to the entire math module,
and we don't have to use math. for any of the functions.

At first glance it would seem like the 3rd form is always going to
be the best choice. After all, it saves you from having to type an
awful lot of math.'s everywhere, and it gives you access to all
functions without having to name them all individually. Why then
would we not want to do this ?

The problem arises when the same function exists in more than
one module. math is a particularly good example for this, because
there is another module called cmath, which has a virtually
identical set of functions. Why would this be so ? The cmath
module contains routines for complex math. The difference isn't
terribly important here, and could be rather confusing for people
who haven't taken a lot of math. Suffice it to say that in the math
module sqrt(-1) returns an error, and in the cmath module it
doesn't.

So, if we do this:

from math import *
from cmath import *
print sqrt(-1.0)

19

What happens ? Do we get an error, or do we get an answer ?
You can try it, but you'll find that indeed, no error is raised. When
we import cmath, it overwrites all of the functions from math.

One solution to this problem is to use the other form of import:

import math
import cmath
print cmath.sqrt(-1)
print math.sqrt(-1)

You'll find that the second print statement now raises an error.

So, when we do a from turtle import *, we are making the
entire set of turtle graphics functions available for use. Note that it
is perfectly acceptable to do both import turtle and from
turtle import * within the same session. While this may
seem a bit odd, there are several reasons why it might make
sense to do this, particularly in an interactive Python session.

Help
One of python's most useful features, particularly when you're
starting out, is its built-in help system. Of course we didn't
actually use this when we did the examples last chapter, but now
is a good time to introduce it. Try this:

import turtle
help(turtle.goto)

This will give you fairly detailed help on whatever function you call
it on. Even more useful, though perhaps a bit overwhelming, is:

help(turtle)

which will give you help on the entire module, including all of the
functions it contains. While I personally much prefer the well
formatted documentation available from www.python.org,
help() can still be very useful when you forget how to use a
function. Note, however, there is no absolute requirement for
module developers to write the sort of detailed help you find in
the turtle module, but you'll find that the help for most Python
libraries is quite good.

Back to Turtles
While the names are pretty self-explanatory, let's consider each of
the turtle functions we used in our example:

• Screen() - creates a turtle graphics window and opens it

• reset() - resets the turtle to the origin (0,0), default orientation, ...

• goto(x,y) - moves the turtle to an absolute location (x,y)

• clear() - erases the current display, but doesn't move the turtle

• forward(d) - moves forward in the direction the turtle is pointing
by d units (generally pixels)

• left(a) - turns the turtle to the left by a degrees

20

http://www.python.org
http://www.python.org

As you can see, these are pretty simple commands. Picture the
turtle as sitting on a piece of graph paper. Let’s say the center of
the paper is at (X,Y) coordinates (0,0). Just like graphing functions
in grade-school, moving to the right corresponds to an increase in
X, and moving up corresponds to an increase in Y. We can move
the turtle in two fundamentally different ways: we can use goto()
to move to a specific location on the paper, or we can use
commands like left(), right(), forward() to move relative to the
turtle’s current location.

Robot Turtles
If the turtle were a physical robot with a pen, then obviously,
saying something like goto(10,10) would require Python to
know where the turtle currently was, then convert the
goto(10,10) into relative move commands, because all the turtle
can do in reality is move one of its 3 motors: one to move
forward/backwards, one to change direction, and one to raise/
lower the pen. All of these subtleties would be handled by
Python for you, and give you the flexibility to control the turtle in
many different ways. If you’re feeling really ambitious and
happen to have (or want to buy) a LEGO Mindstorms set, there
is even a project to let the Python turtle module control a LEGO
turtle (http://code.google.com/p/nxturtle).

So, while we’re discussing turtle graphics, let’s look at a list of the
most important turtle commands. Note that many commands
have one or more equivalent abbreviations:

Function &
aliases Parameters Description

left
lt angle - default degrees Turn the turtle left by

a specified amount

right
rt angle - default degrees

Turn the turtle right
by a specified

amount

forward
fd distance - how far to move Move forward by the

specified amount

back
backward

bk
distance - how far to move Move backwards by

the specified amount

goto x,y move in a straight
line to position (x,y)

seth angle - default degrees Set the direction the
turtle is pointing

penup
up
pu

Start drawing when
moving

pendown
down

pd

Stop drawing when
moving

pencolor name - “red”, “green”, ...
(r,g,b) - 0-255 for each Color of the ‘pen’

fillcolor name - “red”, “green”, ...
(r,g,b) - 0-255 for each

When filling, use this
color instead

21

Function &
aliases Parameters Description

width pensize - a positive number Width of the pen

reset

Clears the screen,
and resets the turtle

to starting
parameters.

clear
Clear the current

page, but leave the
turtle alone

dot [size] - dot diameter
[color] - see pencolor above Draw a dot

circle
radius - size of circle

extent - how much of the circle
(default degrees)

Draw a circle. Center
is radius to the left of

the turtle.

speed speed - 1 (slow) - 10 (fast)
0 (fastest)

How fast the turtle
should move.

This list is not exhaustive, and there are a couple of categories of
functions we haven’t covered, but we’ll get to those later. As you
can see, even with this list, there are quite a few things we can
have our turtle do.

However, before we get to that, we need to have a look at the one
line of our example program we haven’t explained yet. Amazingly
enough, that one line involves no fewer than four critical concepts
in the Python language.

What Lives in One line
The line we need to discuss is:

for i in range(61):

The first concept we will discuss is embodied in i, the second in
range(61), the third in for ... in, and finally, the last
concept is embodied in the humble : .

Variables
If you’ve programmed before, please skip this particular
subsection. For everyone else reading this book, think back to
grade school, or maybe Jr. High, and remember from math class
the simple concept of a variable, like x in 5=3+2x. You may think
I’m being condescending here, but I’m not. While variables in
programming are similar to variables in math, they aren’t exactly
the same thing either, and this often leads beginners to some
confusion. This statement is perfectly valid in Python:

x=10*20+30

However, this is not:

5=3+2*x

And this one is valid, but it doesn’t mean what you may think:

x=5*y

22

What the heck ?

In math, when you say something like x=5*y, you are establishing
a relationship between the variables x and y. You are saying that x
is 5 times the value of y, and correspondingly, y has a value 1/5 of
x. In programming when you make this statement, you are saying
“give x the current value of y times 5”. If y changes, x does not
change. For example, after this:

y=3
x=y*5
y=4

the value of x is 15, NOT 20, and the value of y is 4. That is, in
programming when you say x=, you are not saying “x is equal to”
you are saying “make x equal to the current value of ..., right
now”. This is a somewhat subtle point, but a very important one.

Another less subtle point is that variables in programming aren’t
limited to holding numbers. For example:

x=”abc”+”def”

Is perfectly acceptable, and print x will produce abcdef.
Variables can contain many other things as well, but so far we’ve
only talked about numbers and strings. However, that leads us
directly to the second important concept in that line of code :

Lists
Try this:

print range(5)

You should see [0,1,2,3,4]. This is a list of integers. A list is a
single object, which contains an ordered group of other objects.
Let’s try this example:

a=[0,1,2,3,5,7,9]
print a[0]
print a[2]
print a[5]

You should have gotten 0, 2 and 7 back out. It should be obvious
by this point in time that the print statement is used to display the
results of an expression. In an interactive python session, you
could have omitted the print statement, and it would have shown
you the corresponding values anyway, though in a slightly
different form (try it). Regardless, the key here is that a is a list of
numbers, and we are able to extract specific elements from the
list using [].

This may be a little confusing at first, after all, you created the list
by putting a bunch of comma-separated items inside square
brackets. Surely that would mean that we could have said a=[2]
and made a list with a single element, and indeed, this is true. The
trick is in the =. The statement a=[2] is assigning the one

23

element list containing the number 2 to the variable a. The
expression a[2], however, is retrieving the third element from the
existing list a (if the list has at least 3 elements).

Now, at this moment, if you’ve absorbed the whole '=' thing,
you’re probably saying, “Hang on a second. You said a[2], but
then you said the third element of the list !?!? Must be a typo in
the book !” Alas, no. It is not a typographical error. Python, like
most programming languages, uses zero-indexed lists. The first
element in the list is a[0], the second element is a[1], ... Don’t
worry too much about why this is true for the time being, but
there are some good reasons to do things this way. This also
explains why, when we said range(5), we got a list from 0
through 4, not 1 through 5. Almost everything in Python is zero
indexed.

Since we’re talking about lists anyway, now is probably a good
time to introduce a couple of other interesting features about lists:
negative indices and slicing. What do you think this would
produce (feel free to try it) ?

a=[0,1,2,3,5,7,9]
print a[-1]
print a[-2]

The answer ? 9 and 7, of course ! Yes, that’s right, if you use
negative indices to access elements in your list, you start at the
end and count backwards, so, a[-1] refers to the last element in

the list, however long it happens to be, and a[-2] is the second
from last element. Neat trick, right ?

Now I have a really tricky one for you: what are a[7] and
a[-7] ? If you try this, you will find yourself with a nasty looking
error message “list index out of range”. No funny tricks
here. If you ask for an element of a list that doesn’t exist, you will
get yelled at.

We’re ready to move on to slicing now. Let’s say you want a new
list which contains elements 2-4 of the old list. We could do it like
this: b=[a[1],a[2],a[3]], but that might get a little
unpleasant if we wanted elements 197 to 536 from a larger list.
Happily python offers us a bunch of interesting shortcuts using
the slicing operator. We could equivalently say b=a[1:4]. Why
4 ? Is Guido van Rossum (the author of Python) just being
perverse ? No, again, there are some really good reasons for it.
For now, just realize that the first index when slicing is inclusive,
and the last index is exclusive. That is, a[1:4] says start with
element 1 (the second element) and give me all of the elements
up to, but not including element 4 (the fifth element). Trust me, it
will take a little getting used to, but in the end everything will fall
into place.

There are a number of other clever things we can do with slicing.
For example, we can omit either the first or last index in a slice,
implying the beginning or end of the list, respectively. Here are
some examples:

24

a[:4]! ! # returns list elements 0 through 3
a[2:]! ! # returns elements 2 through the end
a[-3:]! ! # returns the last 3 elements
a[:-3]! ! # returns all but the last 3 elements

Clear ? Hang on, I slipped something in there. The lines up above
are valid Python code, even the bit after the #. The # character in
Python begins a comment. That is, anything after this character
on any line of Python code will be completely ignored. If you
typed a line of code that said:

a=[1,2,3]

it would do absolutely nothing. This is used to document your
code. That is, to explain to others, or yourself 3 years later, what
exactly you intended that bit of code to accomplish. It isn’t very
useful when we’re using Python in interactive mode, but if we
were writing a program in a text file, it is considered very good
form to add comments liberally throughout the code.

The last thing to introduce in dealing with lists is assignment. You
can change the contents of a list:

a=[1,2,3,4,5]
a[2]=10
print a

As you see, the third element of the list has been changed to 10.
There are many other ways of manipulating lists, which we will
cover later, but this should be sufficient for now.

for ... in
On to the third important component of our one line of code. The
for statement is used to iterate over the elements of a list. This
is called a loop. We use it by saying:

 for variable in list: something

variable is the name of any python variable, and list is any python
list (or a variable containing a list, which is the same thing). This
statement will assign each element in the list to the variable, and
then do something before moving on to the next item.

Let’s try a simple example to demonstrate this:

for i in [1,2,4,6,9]: print i

You’ll need to press enter a couple of times here. You should see:

1
2
4
6
9

25

Additionally, after the loop finishes, i will still have the value 9.
So, you can see, it sequentially assigns each value from the list to
the variable i, then executes the statement print i.

While this is a fairly simple concept, this is one of the most useful
and heavily used statements in Python. The next thing we need to
consider is the 4th important point from our one line of code, if
you still remember that far back:

The all important “:”
In the example above, there is a : character separating the list
from the print statement. The : separates the for statement
from the code that gets executed inside the loop. In our simple
example we just put a single print statement after the :, and
indeed we could have put any one single command there, and
been fine. However, what if you want to execute more than one
command inside the loop ?

The answer is actually very simple. You do it like this:

for i in range(5):
! j=i*2
! print i,j
print “loop is done”

Now, this isn’t a very interesting example, but it demonstrates the
idea. Instead of putting the command on the same line
immediately after the :, we hit <enter> and start a new line, then

put our code there. How then does Python know which code to
execute inside the loop, and what code to execute after the loop
is complete ?

The trick is the indentation before the second and third lines.
Anything indented to the same level will be executed inside the
loop. The amount of indentation is arbitrary. You could indent one
space, or with a single <tab>, or with 3 spaces. As long as you
indent exactly the same way on each line, it’s up to you. When
you stop indenting, the code is outside the loop, meaning it won’t
be executed until the loop completes.

Where are the { } ?
If you’ve programmed in any other programming languages,
particularly C, C++ or Java, you’re probably expecting the code
after the for statement to be inside curly braces. Sorry, Python
doesn’t do things that way. { } are used for a completely different
purpose, and indentation is the sole way of denoting blocks of
code in Python. This, at least, has the advantage of making Python
code more readable than a lot of C++ or Java code.

That’s it, we’re done. We’ve considered all aspects of our simple
little turtle example. Let’s finish off this section with one more
simple example program using the techniques we’ve learned.
You’ll have to type this one in if you want to see what it does.

from turtle import *

26

Turtle()
a=[90,180,90,90,180,90,0,180,-90,90,180]
fdr=[100,50,50,50,100,0,50,25,100,25,50]
fnd=[0,0,0,0,0,25,0,0,0,0,0]
ht()
for i in range(11):
 left(a[i])
 forward(fdr[i])
 up()
 forward(fnd[i])
 down()

27

Totally Random Walks
So far, we’ve introduced two modules: math and turtle. Let’s go ahead and add
one more to our repertoire. Try this:

import random
for i in range(10): print random.randint(1,100)

As you’ll see, this program will print 10 random numbers between 1 and 100
(possibly including 100). If you run the program again, you’ll get a different list of
numbers each time. There are a number of other functions available within the
random module as well, for example, random.uniform(1,100) will return a
random floating point number between 1 and 100. random.gauss(80,10) will
return a ‘Gaussian’ (a bell-shaped curve) centered at 80, with a width of 10. That is
it will be more likely to return values close to 80. The farther you get from 80, the
less likely it is to produce that number, but technically it could return 1000. It’s
simply very unlikely.

Let’s try applying this to turtle graphics:

from random import *
from turtle import *
a=Turtle()
speed(0)

Section 2

LOREM IPSUM

1. The random module provides functions for
making random numbers of different sorts.

2. Less Random Walks

3. Traveling Circle

4. Making Decisions

Random Walk

28

for i in range(250):
! forward(10)
! left(gauss(0,40))

Doing this, you will see something like (but not exactly) one of
these. It can be fun to watch (a couple of times, anyway), so don’t
just rely on my screenshots. Give it a try :

Less Random Walks
So, we now have a turtle which knows how to wander around
randomly on the screen. Not all that useful, though you could
learn something about the behavior of random walks by playing
around with that program. Let’s see if we can make a walk that’s
random, but not completely random. Start by remembering if we
do something like this:

reset()
for i in range(36):
 forward(10)
 right(10)

we get a circle. Now, let’s do the same, but with a little
randomness thrown in:

reset()
for i in range(500):
 forward(10)
 right(gauss(7,3))

Kind of like scribbling circles with a pencil. A little different each
time, but vaguely circular. You can play with the parameters inside
gauss() and see what effects you can achieve.

29

Example 2.1 Random walks

Traveling Circle
Lets take the next step and see if we can get our circle drawing to
follow a path. Go ahead and exit your python session (by typing
exit() or <ctrl-d>), then start it up from scratch, and give the
following program a try:

from turtle import *
from math import cos
radians()

goto(-200,0)
clear()
for i in range(500):
! forward(10)
! left(0.2-cos(heading())/50.0)

You should see this:

Example 2.2 Random circles

30

Let’s take a closer look at this program. Note that we aren’t doing
anything with random walks this time. This is basically the same
as our circle drawing program with the exception of : left(0.2-
cos(heading())/50.0). So, how does this result in drifting in
a particular direction ?

The cos() function you may remember from high school. Cos()
takes an angle as a parameter and oscillates between -1 and 1. In
your math textbook : cos(0)=1.0, cos(90)=0, cos(180)=-1.0 and
cos(270)=0. However, things are a little trickier than this. You can
measure angles in 3 different ways. Generally in school, you learn
to measure angles in degrees, with a right angle being 90 degrees
and 360 in a full circle. However, you can also measure angles in
radians. In radians, a right angle is π/2, and a full circle is 2*π. In
basically all programming languages, sin(), cos() and tan(), take
radians as arguments rather than degrees. By default, turtle
graphics works with the more familiar degrees. However, since we
want to work with cos() from the math library, radians are better.
The radians() function tells the turtle to use radians for
everything instead of degrees.

You’ll also note that we didn’t say from math import *, but
rather just from math import cos. As it happens, the math
module has a function called radians() too. As you may recall, if
there is a conflict between two libraries, whichever one you
imported LAST will be the function you see. So, rather than

running into potential problems, we can import only the functions
we plan to use.

So, we’ve explained a bit about cos() now, but how do we relate
cos() to the direction the turtle is going ? There is another set of
turtle functions we haven’t talked about yet. The ones we studied
in the last section allowed you to control the turtle’s actions. The
second set of functions allows you to ask the turtle for
information about where it is and were it’s pointing:

Function &
aliases Returns Description

position
pos (x,y) - in pixels Current turtle position

xcor pixels X location

ycor pixels Y location

heading angle - radians or degrees
depending on settings

Direction the turtle is
pointing

In this example program, we use heading() to change how much
we turn, depending on which direction we’re going. If we’re
pointing up or down (π/2 or 3 π/2) then cos() is 0, and we draw a
normal circle, but if we’re pointing right, cos() is 1.0 and we turn a
little bit slower than normal, so we go a little farther than we
should. If we’re facing left, then cos() is -1.0 and we turn a little
faster than usual, so we end up going a bit less in that direction

31

than we would for a circle. The result is what you see. We’ll get
back to this in the problems at the end of the chapter.

Making Decisions

Everything we’ve done so far has been based on simple
sequences of operations. One key concept we’re still missing is
how to make decisions. Say we want to do a random walk, but
we want to try and keep the walk inside some particular region of
the screen. We need to be able to tell the program to act
differently when certain conditions are met. This is accomplished
in Python (and many other programming languages) through the
if statement. Try this:

from random import *
from turtle import *
a=Turtle()
speed(0)
for i in range(750):
! forward(10)
! left(gauss(0,40))
! if xcor()>100 : seth(gauss(180,30))
! if xcor()<-100 : seth(gauss(0,30))
! if ycor()>100 : seth(gauss(270,30))
! if ycor()<-100 : seth(gauss(90,30))

What's happening here ? If the turtle moves out of a box going
from (-100,-100) to (100,100), then it points the mouse generally
back towards the center of the box. Technically it could still

migrate out of this region, but it's very unlikely. To do this,
however, we have to test whether the turtle is outside the box or
not.

To make a decision in Python, we simply say:

if expression : do something

Expression is the (mathematical) question we're asking. If this
question is true, then whatever is after the ":" gets executed,
otherwise it doesn't. In this case True can also mean "not zero".
To make these sorts of decisions, Python provides a number of
Boolean Operators. These are very much like simple math
operations (+ ,- ,/ ,* ,...) but each one returns either True or
False, not a number. Without adieu, here are Python’s boolean
operators:

> greater than < less than

>= greater or
equal <= less or equal

= equal != not equal

is identical is not not identical

and both are True or either are True

not T->F, F->T in item in list

With these operations you can have Python ask virtually any
question you need answered. For example, consider:

32

 (x<23 or x>35) and y<17

As you can see, parentheses can also be used for grouping
terms, just as they can with normal mathematical expressions.

33

1)

Section 3

Problems

34

