EMAN2Z WORKSHOP
Wednesday 16/03/11, P.M. practical SPT session

Below the Workshop Tasks section you can find the EMANZ2 SPT User’s Guide
(page 8), which takes you through all you need to know with step-by-step
descriptions of the user interface and the commands you’ll execute, as well as
explanations on how Single Particle Tomography works.

Open the bookmarks tab (left) for easier navigation through the document.
Read as much as you can of the User’s Guide BEFORE the Workshop if you
want to understand better what you’ll be running.

WORKSHOP TASKS by Jesus Galaz

This might consume quite a bit of your computer’s memory. Close ALL running
applications (text editors, internet browsers, etc) before you start.

TASK1

Step 1: Box one particle (for snapshots and details go to page 9).

1.0) Open the phase-plate data tomogram from the command line:
eZtomoboxer.py el5pp_tomo_binZ2.mrc --yshort --inmemory

1.1) Set the box size parameter to 140 in the Main tomoboxer window.

1.2) Select ONE particle by centering the mouse’s cursor over it and pressing
left-click. (You can tweak the center by holding left-click and dragging)

1.3) Click on File, select Save Box Coord, and save the coordinates of this
particle to a.txt file (proposed filename: e15pp_set1_coords.txt).

1.4) Click on File, select Save Boxes as Stack, and save the actual particle to an
hdf file (proposed filename: e15pp_setl_stack.hdyf).

You MUST type in the appropriate format, both when you save a
coordinates file or a stack.

1.5) Close eZtomoboxer, then check out your boxed particle

e2display.py el5pp_set1_stack.hdf

A GUI will come up showing the volume; middle click on it to bring up a panel
with viewing options (you can display the particle at different thresholds, but
this might be very slow on certain computers).

Step 2: Check out the icosahedral reference (for details on reference and particle
“preparation for alignment” go to page 18)

2.0) Find the prepared symmetric reference with this file name:
el5ref prep_icos_bin2.hdf

2.1) Make sure it has exactly the same box-size (nx, ny and nz values on the
header) and a similar apix (apix_x, apix_y and apix_z values on the header) as
the boxed particle. To look at the header of each file, execute these
commands:

eZiminfo.py el5ref prep_icos_binZ2.hdf --header

eZiminfo.py el5pp_set1_stack.hdf --header

Step 3: Align one particle to a reference

3.0) This command looks discontinuous here, but it should be ONE single line
with all the parameters in a row; there should be a single space separating
each option that starts with “--”, for example, --A --B --C ... --N... etc.

There should be NO spaces after double dashes “--” or colons “:”

You can change the value after --parallel=thread to match the number of

processors on your computer.

eZclassaverage3d.py --input=el5pp_set1_stack.hdf --
output=el5pp_setl_aligned.hdf --ref=e15ref prep_icos_bin2.hdf --ncoarse=1 -v
3 --mask=mask.sharp:outer_radius=48 --
preprocess=filter.lowpass.gauss:cutoff freq=.025 --
align=rotate_translate_3d:search=12:delta=8:dphi=8:verbose=1:sym=icos --
parallel=thread:2 --ralign=refine_3d_grid:delta=3:range=9 --
averager=mean.tomo --aligncmp=ccc.tomo --raligncmp=ccc.tomo

Estimated runtime: Between 3 and 8 minutes (--raling=refine_3d_grid)

You can alternatively use a faster aligner for the fine alignment step, but the
answer might not be as good:

Estimated runtime: Between 2 and 6 minutes (--raling=refine_3d)

Step 4: Apply symmetry to the aligned particle

4.0) Apply symmetry to the aligned particle by executing this command:
eZproc3d.py el5pp_setl_aligned.hdf el5pp_setl_aligned_icos.hdf --sym=icos

4.1) Look at the aligned particle after having applied icosahedral symmetry:
eZdisplay.py el5pp_setl_aligned_icos.hdf

It should look similar to this:

The average looks different at different thresholds (click the middle button
on the mouse to get access to the threshold bar), and depending on what
particle you picked (some are nicer than others). You can color the volume
with Chimera to ease visualization. If you can see the threefold density
highlighted by the red circle and triangle, you’re doing things right.

Step 5: CONTROL 1

5.0) Apply icosahedral symmetry to the raw boxed particle (before it was
aligned).

eZproc3d.py el5pp_setl_stack.hdf el5pp_setl_stack_icos.hdf --sym=icos

You should get out trash:

Step 6: CONTROL 2

6.0) Go back to the tomogram and box out an “empty particle” with a 140
box-size and save it to an .hdf file (proposed name: empty.hdf, basically,
choose a region of the tomogram where you see no particles; you thus will
box only ice).

6.1) Align the garbage “particle” just like the first one (copy the command
from the previous alignment and just supply the garbage particle through the
--input option and select a different output name):

eZclassaverage3d.py --input=empty.hdf --output=empty_aligned.hdf --
ref=el5ref prep_icos_bin2.hdf --ncoarse=1-v 3 --
mask=mask.sharp:outer_radius=48 --
preprocess=filter.lowpass.gauss:cutoff freq=.025 --
align=rotate_translate_3d:search=12:delta=8:dphi=8:verbose=1:sym=icos --

parallel=thread:2 --ralign=refine_3d_grid:delta=3:range=9 --
averager=mean.tomo --aligncmp=ccc.tomo --raligncmp=ccc.tomo

6.2) Apply symmetry to the aligned garbage particle:
eZproc3d.py empty_aligned.hdf empty_aligned_icos.hdf --sym=icos

You should also get trash this time too:

CONCLUSION:
You can’t get a decent icosahedral average just out of anything. Our aligners
work.

TASK2
Step 7: Box a larger set/stack

7.0) Go back to the tomogram and box out 5 particles. Save the coordinates
(just as a backup so you don’t have to rebox if the computer crashes) and the
data as a stack, with .hdf format (proposed file name: e15pp_set5_stack.hdf)

Step 8: Align and average a stack
8.0) Set the shrink options to 2 so the alignments go faster. Supply the

correct number after “--parallel=thread:” to match the number of processors
on your computer.
Shrink by 3 if your computer is REALLY slow or you only have 1 processor.

eZclassaverage3d.py --input= el5pp_set5_stack.hdf --
output=el5pp_set5_shrink2_average.hdf --ref=el5ref prep_icos_bin2.hdf --
savesteps -- --ncoarse=1 -v 3 --mask=mask.sharp:outer_radius=48 --
preprocess=filter.lowpass.gauss:cutoff freq=.025 --
align=rotate_translate_3d:search=6:delta=8:dphi=8:verbose=1:sym=icos --
parallel=thread:2 --ralign=refine_3d_grid:delta=3:range=9 --saveali --
averager=mean.tomo --shrink=2 --shrinkrefine=2 --aligncmp=ccc.tomo --
raligncmp=ccc.tomo

Estimated runtime: 5 to 9 minutes (using 5 particles, shrinking by 2)

View the average. (It will still be very noisy)
eZdisplay.py el5pp_set5_shrink2_average.hdf

Step 9:
9.0) Filter the average at 100A and view it.
eZproc3d.py el5pp_set5_shrink2_average.hdf
el5pp_set5_shrink2_average_lp100.hdf --
process=filter.lowpass.gauss:cutoff freq=0.01

e2display.py el5pp_set5_shrink2_average_Ip100.hdf

It might look something like this (the missing wedge is still heavily affecting
it).

(You could have filtered the average automatically by setting the --
postprocess= option in eZclassaverage.py)

9.1) Apply symmetry to the average and look at it again.

eZproc3d.py el5pp_set5_shrink2_average.hdf
el5pp_set5_shrink2_average_icos.hdf --sym=icos

eZdisplay.py el5pp_set5_shrink2_average_icos.hdf

Implement an easy trick to minimize the missing wedge effects in the
asymmetric 5-particle average (basically, randomize the position of the
missing wedge before aligning the particles against the symmetric reference).

10.0) Open EMAN2’s iPython programming interface:
e2.py

10.1) Find the number of particles in your stack and save it to a variable (‘n’):
n = EMUtil.get_image_count(“el5pp_set5_stack.hdf”)

10.2) Import python’s random module
from random import *

10.3) Rotate the particles by a random amount in all three angular directions
and write them out to a new stack file (the tab in the lines following the “for
loop” are a MUST):
foriinrange(n):
a=EMData(“el5pp_set5_stack.hdf”,i)
a.rotate(randint(0,360),randint(0,180),randint(0,360))
a.write_image(“el5pp_set5_stack_rand.hdf”,i)

To run the for loop and end it, just press “enter” twice.
Then, to exit the iPython interface type:

Exit

Then press ‘enter’.

Step 11: Repeat steps 8 and 9 for the new “randomized” set.

11.0) Align and average the randomized set

eZclassaverage3d.py --input= el5pp_set5_stack_rand.hdf --
output=el5pp_set5_rand_average.hdf --ref=e15ref prep_icos_bin2.hdf --
savesteps -- --ncoarse=1 -v 3 --mask=mask.sharp:outer_radius=48 --
preprocess=filter.lowpass.gauss:cutoff freq=.025 --
align=rotate_translate_3d:search=6:delta=8:dphi=8:verbose=1:sym=icos --
parallel=thread:2 --ralign=refine_3d --saveali --averager=mean.tomo --
shrink=2 --shrinkrefine=2 --aligncmp=ccc.tomo --raligncmp=ccc.tomo

11.1) Filter the average to 100A and view it
eZproc3d.py el5pp_set5_rand_average.hdf el5pp_set5_rand_average_lp100.hdf
--process=filter.lowpass.gauss:cutoff freq=0.01

e2display.py el5pp_set5_rand_average_Ip100.hdf

B 1
The missing wedge seems to be completely filled in now, and the icosahedron

shape is evident. (You can apply symmetry, but there’s not much of a point).

TASK4
Step 12: Asymmetric averaging

12.0) Box some more particles if you wish, with the same box size (proposed
filename: e15pp_set10_stack.hdf)

12.1) Find the asymmetric reference
el5ref prep_icos_bin2.hdf

12.2) Align your largest data set against the asymmetric reference.

eZclassaverage3d.py --input=el5pp_set10_stack.hdf --
output=set10_average.hdf --ref= el5ref prep_asym_bin2.hdf --savesteps --
ncoarse=1 -v 3 --mask=mask.sharp:outer_radius=43 --
preprocess=filter.lowpass.gauss:cutoff freq=.0125 --
align=rotate_translate_3d:search=6:delta=6:dphi=6:verbose=1:sym=c1 --
parallel=thread:2 --ralign=refine_3d_grid:delta=1.5:range=9 --saveali --
averager=mean.tomo --shrink=1 --shrinkrefine=1 --aligncmp=ccc.tomo --
raligncmp=ccc.tomo

What you’ll get is uncertain. It actually depends on what particles you picked.
This data isn’t “ideal” in that some el5 particles are too close to other el5
particles; so fancier things might be needed to be able to align the particles
asymmetrically and actually have the viral tails match.

EMANZ2 Single Particle Tomography
USER,S GUIDE Vel”SiOI’l [))10 by Jesus Galaz

NOTE: SPT (single particle tomography) capabilities are relatively new in EMAN2.
They were inspired by Michael Schmid's studies on sub-volume averaging.

This guide covers (for now) a small fraction of the SPT processing possibilities
EMAN2 will eventually offer.

() - "Particle" and "sub-volume" are used interchangeably.

Y 5 There are detailed explanation sections accordingly labeled throughout
this document, as well as tips like this one (light bulb icon), warnings (red
crosses), and strong suggestions (yellow triangles).

1. PREFACE

In a nutshell, Single Particle Tomography is about extracting sub-volumes from a
tomogram to obtain one or more averaged structures from them. The technique is
particularly good for imaging heterogeneous specimens (complexes that are
shuffling between different conformations or exist at different sizes), and molecules
in challenging contexts, such as cellular environments (for example, ribosomes
inside a cell).

The User’s Guide will take you through using EMAN2 for SPT by running examples
on test data available through the eZspt_data.zip file on this page of EMAN2’s Wiki:
http://blake.bcm.edu/emanwiki/Ws2011 /Spt?highlight=%28spt%29

If you processed thoroughly all the data from the full version of one of the
tomograms provided, you should arrive at averages that look like this:

Asymmetric Icosahedral symmetry applied

Murata et al, 2010; average of Zernike phase-plate data (~130 particles).

You won’t be able to because we are providing cropped tomograms (just a tiny
portion of the original tomograms, opposed to the full version) that have been
scaled down by a factor of 2 so that the test files aren’t aberrantly large and require
ridiculous amounts of memory.

The guide addresses the following areas:

Sub-volume extraction from tomograms using EMAN2's 3D particle-
picking tool, e2tomoboxer.py

Detailed description of the particle-picking interface

Automated "preparation” of extracted particles for alignment, reference-
based alignment and averaging with eZclassaverage3d.py

Explanation of what “particle preparation” means, and individual
command-line alternatives to carry out such preparation “manually”.

SPT processing through EMAN2’s workflow, eZworkflow.py

The .zip file on the Wiki (the link in the previous page) contains the following files:

1) el5pp_tomo_bin2.mrc
This first tomogram was reconstructed from a tilt series of epsilon15 virus
particles in vitro, recorded using Zernike phase-plate technology. [Liu and
Murata et al, 2010]. It has been binned (shrunk) by a factor of 2.

2) el5n_tomo_bin2.mrc
This tomogram also comes from a tilt series of epsilon15 viruses in vitro, but
was recorded
under “conventional” cryoET imaging conditions. [Liu and Murata et al,
2010].

3) el5ref raw.hdf

A structure of the epsilon15 virus downloaded from the EMDB

4) el5ref_prep_asym_bin2.hdf

The structure above “prepared” to “match” the data (you’ll understand later)

5) el5ref prep_icos_bin2.hdf

The “prepared” structure after applying icosahedral symmetry to it.

Each tomogram will occupy ~500Mb on your hard drive; the other files are small. In
this guide, everything is done with the phase-plate tomogram (number 1 on the
previous list). You can choose the other one if you want to, but you’ll probably get to
different results. Hopefully, once you understand the principles of SPT and how it’s
done in EMAN2 you’ll be able to use it to process your own data.

2. BOXING

There are two options for opening a tomogram for the purpose of selecting sub-
volumes from it.

1) Directly, by typing e2tomoboxer.py at the command line, followed by the path
to the tomogram (this is what we're going to do, for now).

2) A notch less directly, by launching e2Zworkflow.py from the command line and
accessing a tomogram through the browser in the tomographic
reconstruction menu. (This will be described in section 5 of the tutorial,
which briefly deals with the workflow).

Opening a tomogram directly with e2Ztomoboxer.py

Open a Terminal.

To launch the graphical interface that displays tomograms, type the following
command (what’s in the shaded box) at the command line, using the
adequate filename for the tomogram you want to open:

STEP 1A

e2tomoboxer.py el5pp_tomo_binZ.mrc --yshort --inmemory

EXPLANATION

To specify --yshort, or not to

This option will FLIP the orientation of the tomogram, such that the Y-axis
becomes the Z-axis, and Z becomes Y (that is, a rotation about the X axis). You
should ONLY specify it [F the tomogram has its smallest/slimmest dimension
running along the Y-axis, so that it becomes parallel to the Z-axis instead.

WHY? What does this mean?

Some tomograms are built with the slimmest part of the 3D volume (that
corresponding to the "ice thickness" in cryoEM) running along the Y-axis.
BUT in EMANZ volumes are displayed such that the Z-axis is perpendicular to
the screen. If you open one of the supplied tomograms as is, you'll be looking
at it "from the side". Most of the time (and certainly for this workshop), you'll
want the slimmest part of the volume to be aligned along Z (NOT Y), so you
can see the tomogram "from the top", and look at the entire CCD-captured
area in the XY plane, slice by slice, as you go through the volume.

--inmemory

This option pre-loads the tomogram to memory, allowing smoother (faster)
viewing and particle extraction, because the computer can read data from
memory faster than from disk (your hard drive).

() To see the entire list of options for e2tomoboxer.py (not many at

¥ this point), and an explanation of what they're for, type
e2tomoboxer.py -h at the command line. (You can get usage instructions and
the list of options for ANY program in EMAN2 in the same way: typing the
program’s name followed by “ -h”).

When you open e2tomoboxer.py, the GUI (Graphical User Interface, with nice
clickable buttons) below pops up:

10

Box Size: 100

.

[Limit Side Boxes

Sca: 1.0 —O)—
Filt: 0.0 O

From now on, this window will be referred to as Main Boxer window.

The Main Boxer window is divided into 3 image panels corresponding to
top and side view slices of the entire tomogram. If the ice-embedded
specimen is nice and yields high contrast, the side-views can be very useful in
“tweaking” the center of the boxes selected: Basically, any box created in any
one view can be moved in the other two, so you're literally defining the
center of the box in 3D. There’s no point in describing this further; you’ll get a
feeling for it as soon as you create a box, see that actually 3 come up (one in
each view), and start moving them.

There’s also a small options panel at the bottom-left corner of the Main
Boxer window (described further below).

First, let’s see what you can do with yvour mouse and keyboard, with default

options.

Boxing:
You can select a region for extraction by doing left-click anywhere in
the three views, which triggers the opening of two more windows
(described below).

Deleting boxes:
Hold shift and left-click with the mouse on the box you want to delete,
in any of the 3 views on the Main Boxer window. You can also delete
particles with these same buttons (shift + left click) from the Particle
List window.

Zooming:
Zoom in and out from all three views simultaneously by scrolling with
the middle button of the mouse.

11

Slicing:
Go through slices along the Z direction by holding shift while scrolling
with the middle button (this might not work if you're on a Mac

computer), or by moving the bar at the bottom-right corner of the
Main Boxer window.

mnn Ar——

Dragging:
Drag the tomogram slice displayed (translations in 2D) by pressing
and holding the right-button on the mouse, and sliding the mouse as
desired. (You might also be able to drag the views with the up, down,
left and right keys on your keyboard).

A Boxing as accurately as possible *is* actually IMPORTANT (you don’t

have to be OCD about it though). If the boxes are severely off-center,
“preparation” of the particles for alignment can cut off chunks of density
from them and/or it might not be possible to center them correctly during
alignment. This can be disastrous for your reconstruction. (Take it as a
dogma, or read the explanation in section 3)

Default display and boxing options can be changed from the panel at the
bottom-left corner of the Main Boxer window, which looks like this:

Box Size: 100
8
"] Limit Side Boxes \
Sca: 10— O
R _ Spin box
Filt: 15.2380 ©

Box size:

Defines the side-length (in pixels) for the cubical box that will be
extracted from the tomogram. Usually, you want to center the box on
putative particles of interest.

12

() Select a reasonable box-size. Alignments usually run faster if it’s
¥ even, and a multiple of 8. Not a golden rule. To actually find out
what the best sizes to use are, go to this page on EMAN2’s Wiki:
http://blake.bcm.edu/emanwiki/EMANZ2 /BoxSize
Make the box-size ~2x the diameter of the particles. This “padding” is a
MUST for alignment to work. If you box unwisely, you’ll end up running
failed alignments and becoming utterly unhappy.

Spin box:
When set to more than 1, it displays the average of neighboring slices

in each of the 3 tomogram’s views. For example, if it's set to 5, that
means that 5 adjacent slices will be averaged as you scroll through the
tomogra. This can enhance contrast and facilitate boxing.

MaxProj:
It only works when the spin box value is set to more than 1. When
MaxProj is pressed, instead of seeing the average of a number of
neighboring projections, you see the “maximum value”. The image of
the averaged slices will contain nx * ny pixels in the top view, and nx *
nz and ny * nz for the side views, right? Well, the value of each pixel
comes from the maximum value for that pixel among all the slices-to-
average. In some cases, this can also make the particles easier to find.

Limit Side Boxes:
Shows on the side views only the boxes that are in the vicinity of the
XZ and YZ slices being shown. Keep in mind that the “top view” or
largest view in the Main Boxer window is a slice parallel to the XY
plane, whereas the side views are slices parallel the XZ and YZ planes.
So when you’'ve boxed many particles, their boxes start to overlap.
This quickly crowds the side views (because they’re so narrow) if the
boxes selected were shown through the entire tomogram, as you scroll
through the slices. This option avoids such crowding. There’s a visual
demonstration coming up ~2 pages ahead (snapshots).

“Scale”. The same as described in “Zoom”.
Applies a Gaussian low-pass filter to the slices displayed in the

tomogram’s views. It is extremely powerful in facilitating boxing. Lo
and behold!:

13

o—

Unfiltered tomgoram slice Filtered tromogram slice

Turning filtration on WILL slow down your computer because

it is applied on the fly. (Not recommended for already

frustrated grad students and impatient boxers with high
blood pressure, such as senior Pls). The slowing down effect might
not be noticeable on small tomograms, or futuristically fast
computers.

) Alternatively, you can “manually” filter an entire tomogram
! before loading it to the tomoboxer by typing the following as
one continuous line at the command line (no spaces after “--"):
e2proc3d.py <intput> <output> --
process=filter.lowpass.gauss:cutoff freq=0.01

You have to provide the reciprocal of the resolution you want to
filter at (1/resolution) after “cutoff freq”. For example, 0.01 filters to
1004, and 0.02A filters to 50A...

[If the tomogram is too large for the computer’s memory, a
“segmentation error” will come up].

Once you box particles from the filtered tomogram, you can save the
box-coordinates and load them into the raw tomogram for sub-
tomogram extraction through the File menu, as described below.

As mentioned before, selecting a box opens two windows: Particle
List and Single Particle View:

14

e2tomoboxer.py

Particle List

Filter: 0.0

Box Size: 100

— T
(MaxProj) 1 B!

| Limit Side Boxes

Sca: 0.42409 O

Filt: 3.66300 O

The Particle List window shows the XY projection of all the sub-
volumes boxed.

N.YoXe) Particle List

The Single Particle View window is awesome (provided your
specimen isn’t tiny): It shows the 3D isosurface and 3 orthogonal
projections for the sub-volume that is currently selected (that is, the
last you boxed).

It has a very cool filtering bar, which applies a Gaussian low pass filter
to all 4 displays at the resolution specified:

15

® O O Single Particle View "® O O Single Particle View

Filter: 21.9658 =O:

/ 4
Unfiltered views Doesn’t that just look *neat*?

Filter: 0.0

And below is the promised visual demonstration that the “Limit Side
Boxes” option in the Main Boxer window can relieve crowding of
boxes in the side views:

You might have noticed the File and Window menus at the left of the
apple bar if you're on a Mac (way upper-left corner of the screen), or
attached to the Main Boxer window otherwise.

Read Box Coord
Save Box Coord
Save Boxed Data

Save Boxes as Stack

8006 | Particles
Single Particle J

Averaging

16

The File menu lets you save a text file with the coordinates of the sub-
volumes selected (Save Box Coord), the sub-volumes themselves as
individual files (Save Boxed Data) or as a stack (Saved Boxed as
Stack), which means you would only see one file listed in the directory
where you save the stack, but it actually contains ALL the sub-
volumes you've extracted (and EMAN2 can tell); finally, you can load a
coordinates file (Read Box Coord) from a previous boxing session or
generated by other means.

Note: You have to EXPLICITLY supply the format for the files you
save. Use .hdf for boxed particles saved as separate files, or as a stack.

The Window menu lets you re-open any of the windows previously
described if you happen to close them. Remember that they’ll also
open automatically whenever you select a sub-volume.

When you're done exploring e2tomoboxer in its GUI form, follow step
002:

STEP 1B
1.A) You've presumably opened the phase-plate data tomogram:
e2tomoboxer.py el5pp_tomo_binZ.mrc --yshort --inmemory
1.1) Set the box size parameter to 140 in the Main tomoboxer window.
1.2) Select ONE particle with your mouse’s left click, not too close to others
or the edge of the tomogram. (You can tweak the center by holding left click
and dragging)
1.3) Click on File, select Save Box Coord, and save the coordinates of this
particle to a.txt file (proposed filename: e15pp_setl1_coords.txt).
1.4) Click on File, select Save Boxes as Stack, and save the actual particle to
an .hdf file (proposed filename: e15pp_set1_stack.hdf).

You MUST type in the appropriate format, both when you save a
coordinates file or a stack.

1.5) Check out your boxed particle

e2display.py el5pp_set1_stack.hdf

A GUI will come up showing the volume. It WILL look awfully noisy. This is
normal. Do middle click on it to bring up a panel with viewing options (you
can display the particle at different thresholds).

17

“raw” e15 sub-volume
As a quick test, we will align one particle against a symmetrical reference.

Then we will apply symmetry to the particle and see if it looks like a healthy
icosahedron.

3. READY! GET SET! ... Don’t go (yet) - Preparation

For a myriad of reasons, it is not recommendable to align and average sub-
volumes directly after extracting them, without “preparing” them first.

VALY

Particle preparation for alignment involves several steps, most of which will be
taken care of for you ‘automatically’. One of these steps is finding and preparing a
suitable reference for ‘reference based alignment’, which can often be critical.

This is a branch point at which EMAN2 users have two options (not true for our first
test though):

1) Do not provide a reference
In this case, a reference will be auto-generated from the boxed data itself, at the
alignment step (the mechanism of such reference generation is explained later).

Reference auto-generation is NOT expected to easily yield the best

results, specially if your data set is small. It is PROBABLY safer and faster
to use a known ‘good reference’ (a model that can nudge your data in the right
direction).

2) I'm scared by the intimidating warning and feel psychologically coerced to use
a reference:
2a)

STEP 2
2.0) Find the prepared symmetric reference with this file name:
el5ref prep_icos_bin2.hdf
2.1) Make sure it has exactly the same box-size (nx, ny and nz values on the
header) and a similar apix (apix_x, apix_y and apix_z values on the header)
as the boxed particle. To look at the header of each file, execute these

18

commands:
eZiminfo.py el5ref prep_icos_bin2.hdf --header
eZiminfo.py el5pp_set1_stack.hdf --header

2b) If you're feeling adventurous, you can prepare the raw reference for
alignment yourself (the file called el5ref_raw.hdf). The way to do so is
described below.

3.1. “Manual” preparation of a reference for alignment
(Skip explanation if using a prepared reference and don’t’ want these
details now)

EXPLANATION

The apix and box-size of the reference should match those of the data
you want to align to it. Find out what these values are from the
“header” of the reference and the header of your boxed particle(s)
(the ‘header’ constitutes a bunch of metadata associated with a file; in
this case it’s information about the EM maps; for example, their box-
size and apix).

Displaying values on the header of an EM file
You can look at the header of the reference by typing this on the
command line:

eZiminfo.py el5ref prep_icos_bin4.hdf --header

Substitute the reference for the filename of your particles to look at
their header.

Find apix_x, apix_y and/or apix_z (they should all be the same). The
value of those parameters is the apix you need to remember (write it
down if juvenile Alzheimer’s is affecting you).

Also find nx, ny and/or nz. These are the %, y an z dimensions of the
box (they should all be the same too, at least for the boxed particles
because e2tomoboxer can only extract cubical boxes; the numbers
might not be all the same for the raw reference).

Scaling a reference to match your data’s apix

Calculate the scaling factor to apply to the reference by computing (on
a piece a paper, a calculator, or your head; this is NOT a command for
the command line):

scale_factor = apix_of data / apix_of reference

The cautious (and the paranoid) SPTers (people who do SPT) shall NEVER
blindly trust the apix stored on the header of EM files for scaling purposes.

You should always confirm, visually, that the reference and the data seem to be

19

scaled reasonably well. This might imply scaling by a factor slightly different than
the one derived from the apix values.

Then run this at the command line, filling in adequate filenames and values:
eZproc3d.py <input> <output> --scale=scale_factor

Clipping the box of the reference to match your data’s box
The --clip option in eZproc3d.py shrinks the data in a volume but it
does not shrink the box itself (the “space” where the data is
contained).
To make the box-size decent, run this command:

eZ2proc3d.py <input> <output> --clip=box_size_of data

Applying a threshold to EM data
You can apply a threshold to the reference if you want to delete
aberrant densities that come up at low or high-density thresholds
(this step is rarely necessary):

eZ2proc3d.py <input> <output> --process=threshold.belowtozero:minval=value

Remember that EMANZ2’s modular approach lets you use any
threshold processor available. Just change the part that says
“threshold.bewlotozero” for the name of another threshold processor.
Take a look at all the existent processors by typing the following at the
command line (you’ll have to determine which ones are threshold
processors either from their name, their description, or by asking
someone who knows):
eZhelp.py processors --verbose=10

But.., how to determine what threshold value to use? Open the
reference with eZdisplay.py <reference_file> from the command line. A
nice GUI (window with helpful clickable buttons) will come up,
displaying the volume. Click the middle click of the mouse to bring up
a visualization controller. Find the threshold bar and see how the
densities in the model change as you move it. Determine, visually, by
looking at what number the threshold-bar is at, at what value you see
reasonable densities only. If you have no experience with visualizing
3D volumes of decent reconstructions and know nothing about your
specimen, or have very bad data, the term “reasonable” might seem
unreasonable. In that case, I can’t help you.

You can (if you want to) also apply to the reference any ‘preparation’
operations that you apply on the data itself, which you’ll learn about
in the next sub-section. Actually, this is the default behavior in EMANZ
for now (and you can’t change it).

20

3.2. “Manual” preparation of raw particles for alignment

(Note EMAN2 can automatically prepare the particles for you)
EXPLANATION

A Keep a copy of the raw particles untouched if you want to attempt to
do this manually. The prepared particles are used during alignment,
but averaging should always be done on the raw particles.

The order in which you apply the preparation steps matters. You
might have to apply some of them several times to get things “right” if
you do things in a sub-optimal order. If you get them wrong
altogether, your alignments WILL be wrong. The order here presented
is the one we've found to make the most sense; follow it if you're
doing things “manually”:

1) Contrast reversal, 2) pad (if needed), 3) mask, 4), normalize 5), the
same mask again, 6) filter, 7) shrink

Contrast reversal
Some tomographic reconstruction programs yield tomograms with
“black densities” corresponding to the specimen and “white densities”
to the background. This is expected given the nature of electron
microscopy data (the specimen scatters electrons from the beam
more strongly than the background and thus fewer electrons hit the
CCD camera wherever the specimen gets in the way, compared to
where it doesn’t). EMAN2 likes, and MUST have, white densities for
protein (not that it’s a racist program; it’s really just what makes
sense: “white” pixel values correspond to high-intensity values (large
numbers), which imply the presence of high-density material).

The difference is evi 5.as shown in the following images:

N\

Grid-hole edge

“Black” protein White rotem
Notice that the edge of the grid hole can also tell you whether you're
working with “white” or “black” densities.

If you bring a random tomogram from elsewhere with the “wrong”
contrast, you can reverse it very easily from the command line by
doing:

21

eZproc3d.py <input> <output> --mult=-1

Padding
The box-size of the extracted sub-volumes should be ~2x the
diameter of the particles to avoid “aliasing effects” in Fourier space,
and to provide a clear background during inter-particle comparisons.
If you haven’t defined the box-size properly during the boxing step, or
if an unwise collaborator gives you boxed-out data for you to process,
you can always fix the box by padding it with the following command:
eZproc3d.py <input> <output> --clip=50
Substitute the number after “clip” as needed; it is the length of the
new box-size, in all three directions, X, y and z. Any new voxels added
to the box (when you make it bigger) will be filled in with zeros.

Masking
When particles are crowded, you might end up having more than one
in a given box after sub-volume extraction. The box should be
centered on one of the particles so that the central particle is left
intact after “zeroing out” (masking) whatever is beyond the radius of
that particle. This would get rid of the other unwanted, invasive,
intruding densities in the box. Choose your mask carefully, as you can
end up zeroing out wanted densities from the desirable particle. To
apply a spherical mask, do:

eZ2proc3d.py <input> <output> --process=mask.sharp:outer_radius=123:value=456
Because of EMAN2’s modular approach, you can use many different
masks. You're not constrained to using “mask.sharp”. This can be
substituted for any other processor that you see in the list that comes
up when you enter this on the command line:

eZhelp.py processors —verbose=10

The “verbose option” will give you detailed information regarding the
parameters/options that each listed processor requires or can accept.
(You'd probably want to focus on masking processors only, for this

step).

Normalization

Makes the standard deviation of the pixel values in a given volume

equal to one and the mean equal to zero. This makes particles

“comparable” by compensating for changes in illumination (particles

from one tomogram might look brighter than those from another,

because of differences in dose, ice thickness, etc.).

You can apply this operation from the command line as follows:
eZproc3d.py <input> <output> --process=normalize

Repeat the same masking you did the first time

Filtering

22

eZproc3d.py <input> <output> --process=filter.lowpass.gauss:cutoff freq=0.01

Applying a low pass filter to an extracted sub-volume “smoothes out”
the noise in it. It positively affects alignment based on coarse features.
Recall you had already learned to filter tomograms using this option
in section 2 -if you read the corresponding tip-box. This is exactly the
same thing, except that a sub-tomogram, as deduced from the name
itself, is smaller.

Again, keep in mind you can apply any filter listed in the processors
list, which you can get by typing eZhelp.py processors -verbose=10 at
the command line.

Shrinking

eZproc3d.py <input> <output> --scale=0.5
Provide a shrink factor smaller than 1 to shrink. For example, if you
want to shrink a volume to half of its original size, specify scale=0.5;
you can guess that --scale=0.3 would shrink the side length of the
volume to 1/3 of their original size, etc...
Shrinking can provide a great boost in speed. Just think about it: If you
shrink each side of a volume by a factor 2, you actually end up with
1/8 of the original volume, as clearly depicted in the diagram below:

+5 -

[hope it isn’t necessary to explain why having 1/8 of the original
number of voxels to compare during alignment and to process during
averaging would speed things up dramatically.

Another advantage from shrinking is that averaging neighboring
pixels enhances the signal (noise is “random” and thus averages out to
zero, whereas signal is consistent, and should average coherently to
non-zero values).

The caveat with shrinking is that you end up loosing high-resolution
information: sampling (apix value) is proportionally reduced. For
example, if a particle originally has apix=4.5 (how sloppy to leave out
the units!), and you shrink the sub-volume by a factor of 2, it will end
up with an apix of 9. Apix literally means A/pixel (units to the rescue):
The number of angstroms of the specimen one pixel ‘represents’ or
‘contains’. In short, an image/volume with apix=4.5 has information
down to that resolution, but no higher.

2u

.

4. ALIGNMENT AND AVERAGING

23

Presently, EMAN2 only officially supports reference-based alignments.

This step is so automated now that it is trivial to run, but subtle considerations
might be the rice to tip the scale between getting Natureable results vs. publishing in
JMB. An intelligent choice of parameters is highly dependent on what data you're
working with, and what questions you are seeking to answer.

You might want to care about understanding the details if you're working
@ on an SPT project and want to graduate. (If you're a postdoc or a research-

assistant, continuing to receive a paycheck is probably sufficient motivation,
but a reminder can’t hurt).

The program that does the automated particle-preparation, alignment and
averaging is eZclassaverage3d.py. You can see all the options/parameters it accepts

and what they’re for by typing, at the command line:
eZclassaverage3d.py -h

If the particle stack only has one particle, the program will return the aligned
particle (because there’s nothing to averge).

For now, run the monstrously long command below, being careful to provide the
correct file name for the stack of raw particles through “--input=" and for the
reference through “--ref=" (you can also choose through the “--output=" option what
file name you want the final average to have. It MUST be an HDF file; for example, “--
output=beautiful_avg_please.hdf”) :

STEP 3
3.0) This command looks discontinuous but should be ONE single line with all the
parameters in a row, with a single space separating each option that starts with “--
”, for example: --A --B --C ... --N... etc.

eZclassaverage3d.py --input=el5pp_set1_stack.hdf --output=el5pp_setl_aligned.hdf -
-ref=el5ref prep_icos_bin2.hdf --savesteps --ncoarse=1 -v 3 --
mask=mask.sharp:outer_radius=48 --

preprocess=filter.lowpass.gauss:cutoff freq=.025 --
align=rotate_translate_3d:search=12:delta=8:dphi=8:verbose=1:sym=icos --
parallel=thread:2 --ralign=refine_3d_grid:delta=3:range=9 --saveali --
averager=mean.tomo --aligncmp=ccc.tomo --raligncmp=ccc.tomo

To commands above have profound Meaning. Details below:

EXPLANATION
Why use a reference
This was supplied through --ref= in the commands above.
Sub-volumes are very noisy and have a huge missing wedge, so it’s very hard
to align them accurately against each other. On the other hand, a perfect
reference has no-missing wedge and virtually no noise. Aligning your data to
It would give it a “nudge” in the right direction. If you don’t provide a

24

reference, it will be self-generated with a “binary tree” approach. This means
that particle 1 will be aligned to particle 2 and averaged with it, particle 3
will be aligned to and averaged with 4, etc.

If you had 10 particles, one cycle of this would lead to 5 “new” particles. The
program continues to do cycles like these until all the particles in the stack
have been merged into one average, which will be used as the “initial
reference”.

What does “refinements” mean, and why they’re useful

This referes to --iter= in the commands above.

Regardless of what reference is used, you generally want to run several
rounds of “refinement” on the data. What this means is that after you
generate a final average from your data, you use that as the reference for a
second round of alignment: you align the raw data all over again to this new
reference. When you're using a nice model (from the PDB or EMDB or
wherever) as a reference, refinements help to take care of model bias, and
often improves the average too, specially when the initial model/reference
used did not exactly correspond to the biochemical specimen that constitutes
your data. For example, if you use a chaperonin in the “closed state” to align
particles that are in the “open state”, the average you'll get after the first
round of alignment might look pretty “closed”. Subsequent rounds of
refinements should lead to an average resembling more the “open” state, if
your data is any good.

When you do not provide a reference and a self-generated one is used,
refinements help you improve the average you're getting out from the data.
This lacks the initial “nudge” in the right direction that some specimens
appear to require sometimes, so with this approach there’s the risk of doing
endless refinements and never improving at all.

--align specifies what aligner you want to use for the “coarse alignment” step
The different available aligners differ in terms of speed and accuracy. To get a
list of all the aligners and a description of what they do, type this at the
command line:

eZhelp.py aligners

Once you have “more or less” found the correct orientation of one sub-
volume respect to another (for example a reference), then you can afford to
do a “fine alignment” around the orientation you found in the coarse step.
Actually, the coarse step can find as many “approximate” answers as you
want, and the fine alignment step will search for a precise answer around all
of them.

--ncoarse is the number of best answers you want to keep from the coarse
alignment step, and send for fine alignment to the fine alignment step.
--ralign lets you choose an aligner for the fine alignment step.

--preprocess lets you supply any filter and it will be applied to the “prepared”
version of the particles during alignment. For example, to low pass filter the
particles to 504, you would supply:

--preprocess=filter.lowpass.gauss:cutoff. freq=0.02

25

--postprocess: This applies a filter to the final average, and is supplied in the
same format as --preprocess.

STEP 4
You are practically done!
If the stack you aligned had contained more than one particle, you would have
gotten back an average (with one particle you just get back the particle in the right
orientation respect to the reference).

Now wait (patiently, if possible) for your job to run. Afterward, follow these last
instructions:

4.0) Apply symmetry to the aligned particle by executing this command:
eZproc3d.py el5pp_setl_aligned.hdf el5pp_setl_aligned_icos.hdf --sym=icos
4.1) Look at the aligned particle after having applied icosahedral symmetry:
eZdisplay.py el5pp_setl_aligned_icos.hdf

If you actually want to get an average, repeat steps 1 through 4. Just box more
particles, choose a sensible filename for the stack, such as el5pp_set10.hdf, and
proceed to align and average the stack using eZclassaverage3d.py.

Try following the activities proposed in Appendix A (the last section in this User’s
Guide).

5. USING THE WORKFLOW FOR SPT

The workflow provides a holistic GUI approach to everything here described (except
reference preparation). Use it if you don’t know that when you see <input> in the
instructions of a tutorial you actually need to substitute it for the name (or path) to
a file, and that whenever you see <output> it’s an opportunity for you to define the
name of the file where you want to save your results (for example, the final average
after several rounds of refinement during reference-based alignment of sub-
tomographic volumes).

Don’t despair. The workflow shall save you. You will have to make the effort to enter
one command at the command line though:

e2workflow.py

You can breath. There are buttons ©.

26

'O O O X EMAN2 Tasks

Choose a task

> _Single P.

» Tomographic Particle Reconstruction

—titititres

» Generic Interfaces
"a Browse

For now, ignore everything, except the Tomographic Particle Reconstruction menu,
which you should click.

O O O X EMAN2 Tasks

Choose a task
» Single Particle Reconstruction n
elaalele " =

v Tomographic Particle Reconstruc...

' O oJird 2 (8 c d -
> Utilities
» Generic Interfaces

Go directly to Box Tomogram Particles (ignore the Raw Tomogram Files option; it is

redundant and will be eliminated in further versions).
000 & Launch e2tomoboxer

Select the file you want to process and hit okay, this will launch
e2tomoboxer. The yshort option sets the Z axis normal to the
screen, and inmemory load the tomo into memory for fast access

Tomograms

Tomograms Stored Boxes

Browse To Add

M yshort ™ inmemory A per pixel: 1.0

S
Form commands: (Ok) Cancel

Once you've browsed for a tomogram, enter the apix value to insure it will be
displayed properly and click Ok (apix=10.9 if you’re using the epsilon1l5 data
downloaded from the EMAN2 Wiki; go back to section 2 for descriptions of the
yshort and inmemory options).

This triggers the opening of eZtomoboxer.py, a program whose Graphical User
Interface is fully described in section 2.

When you're done boxing, click on Tomogram Alignment and Averaging in the
workflow.

27

™ OO X EMAN2 Tasks

Choose a task

» Single Particle Reconstruction

v Tomographic Particle Reconstruc...
& Raw Tomogram Files

®2 Tomogram Alignment and...

T ounes v
» Generic Interfaces

A panel with many options will open:
(S NeNG) & Launch e2classaverage3d

[Main | References |

Use this task for running e2classaverage3d

Sub Tomograms

Sub Tomograms

Browse To Add

[Z] Savesteps [Z' Saveali

Number of iterations: 5 Coarse Number: 6

Shrink: 2.0 Shrink refine: 2.0

Mask | None ‘3] Params:

Filter | None ‘3] Params:
Aligner3D | rotate_translate_3d ﬂ Params: bose=1
RAligner3D @ Params:m
Filter | None I+ Params:
Parallel:

4 p 'd Y
Form commands: (Ok) | Cancel)

Supply a reference via the References button. If Saveali is checked the aligned
particles right before averaging will be saved as a stack inside the EMAN2DB
directory, as class_ptcl.bdb. The Number of Iterations means the number of
refinements that will be run on the data (the explanation of what this and
everything that follows means is in section 4). If Savesteps is checked, the average
obtained after each iteration will be appended to a stack file called class_00.bdb
inside the EMAN2DB directory. Coarse Number specifies the number of solutions
you want to keep from the coarse alignment to further “tweak” in hopes of finding
the right solution during fine alignment. Shrink, Mask and Filter are self-descriptive
processors (if not, read about them in section 4). Aligner3D lets you pick an aligner
for the coarse alignment step, while RAligner3D specifies the aligner to use for the
fine alignment step. Params lets you enter the parameters that the processor or

28

aligner to its left accepts (notice that each aligner and processor has its own Params
box). Parallel takes the number of processors on your computer you want to use to
run the job.

When you're done entering al the parameters, click “Ok” and patiently wait for the
results.

APPENDIX A

(TASKS - At the beginning, for the workshop)

29

