EMANZ2 Single Particle Tomography
USER’s GUIDE

LINUX and MacOSX

by Jesus Galaz-Montoya

Last update: June, 2016

Questions, comments and suggestions, please e-mail:
Jesus Galaz-Montoya: jgalaz@gmail.com; cc Steve Ludtke: sludtke@bcm.edu

N C M/ National Center for BCM

M acromo l ecu | ar | ma g | n g Baylor College of Medicine

CONVENTIONS, DEFINITIONS and WARNINGS

e Strong suggestions you should not miss, and warnings, are bolded and
highlighted in red.

* Technical terms you are not assumed to know are bolded and highlighted in
blue the first time they appear in the text and might be explained in the
Glossary at the end of this guide (otherwise I suggest you look them up on
Google or any other reasonable place).

* Information that is important (or emphasized just because) is CAPITALIZED
and/or underlined and/or bolded and/or encased between *asterisks*.

e EMAN?2 consists of many programs (many individual scripts starting with
“e2” and ending in “.py” most of the time). Most EMAN2 programs are NOT
clickable and executable icons. You have to call/run/execute EMAN2
programs from the command line or *terminal* (see the Glossary; or
google up “Linux terminal” or “MacOSX command line” if you don’t know
what it is or how to use it).

¢ Unfortunately, many EMAN2 programs DO NOT have a GUI (Graphical
User Interface); that is, they do not pop up a pretty window with nice
clickable buttons “for-dummies” ®. But that’s not always bad. Running
programs from the command line can provide greater flexibility (and speed),
as I'll explain later ©.

* Most EMAN2 programs concerning Single Particle Tomography (SPT)
are named eZspt whatever.py, where “whatever” can be replaced literally
with whatever, depending on what name a programmer felt a certain
program should have (hopefully the name gives an idea of the program’s
purpose).

* Many terms are used interchangeably. For example “running a program” is
the same as “executing a program” and “calling a program”. “Bin”, “shrink”
and “downsample” all refer to making an image smaller by averaging
neighboring pixels or voxels. “Particle”, “subvolume” and “subtomogram”, all
refer to a feature of interest, extracted from a tomogram in a cubical box. ETC.
Please be willing to expand your vocabulary and don’t let this confuse you.
For dummies tutorials are meant to be clear and easy to study (yes, for
maximum benefit, you need to study and understand this guide, not just
superficially skim it); but dummies books can still convey knowledge that is
“advanced”, or “complex”, or “specialized”, etc. The info is just supposed to be
presented in a digestible way, but you eventually DO have to LEARN
SOMETHING (if you're a student and want to graduate).

* Commands and names of files will often appear in italics and/or in boxes like:

script.py file.hdf --optionl --option2 value --option3
value:parameterA=valueA:parameter=valueB

PREPARATION

You *MUST* UDPATE EMAN2 properly (see below) before working on this
tutorial. It is recommended that you download the latest daily release binaries to
make sure that you have the latest (and presumably working) version. Doing so can
prevent many errors and problems. You should update EMANZ2 as often as you
reasonably can. Alternatively, build from source.

Follow the link below and skip to the Introduction section (or to wherever you
please), if you already have EMANZ2 installed or know how to install it or trust the
EMAN2 wiki to tell you how to do it:

http://blake.bcm.edu/emanwiki/EMANZ

Otherwise, if you humbly recognize you're a dummy (not a bad thing; it just means
you like clear explanations that don’t assume you already know a bunch of stuff),
read below.

INSTALLING/UPDATING EMAN2 BINARIES

Step 1 - Installing EMAN2 binaries: MOVE/REMOVE OLDER EMAN2
If you have EMAN2 installed already, you don’t strictly have to, but *it is
recommendable* to MOVE or DELETE your old EMAN2 installation before
updating, by renaming or removing the “EMAN2” directory, usually found in the
Applications directory on MacOSX, or in your home directory on Linux.

Option 1 - Moving EMAN2 to somewhere else:
Move your current installation to a temporary folder. To do this, rename the
EMANZ2 directory; for example, name it “EMANZ2o0ld” by typing the following
in the command line (MacOSX):

cd /Applications/

mv EMAN2 EMANZ2old

If for some reason the update does not work, you’ll be able to go back to the
past (when everything was better), by changing the name of the “EMANZ2old”
directory back to “EMAN2".

cd /Applications/
mv EMANZold EMANZ2

If the update does work, please remember to delete the “EMANZ2old”
directory to avoid cluttering your computer with a million archaic versions of
EMANZ2 on it (trust me, it will appreciate it).

cd /Applications/
rm -r EMANZ2old

(By the way, “directory” and “folder” are synonymous in this guide).

Option 2 - Removing EMAN?2

Alternatively, delete your current installation of EMAN2 altogether, from the
start, if you're prone to rashness and trust a priori that the new installation
will work. To do this, simply delete the EMAN2 directory.

cd /Applications/
rm -r EMANZ2

Step 2 - Installing EMAN2 binaries: CLEAR THE CACHE

You *SHOULD* CLEAR THE CACHE before downloading the new updated EMAN2
version you wish to install. When clearing the cache, you must make sure no eman2
program is running! (The cache is an area of your computer’s memory that helps
programs run faster).

To clear the cache, open a terminal (the little window also known as command
line) and enter the following command:

eZbdb.py —c

Step 3 - Installing EMAN2 binaries: GET (the correct) EMAN2

Open your web browser and search on Google for “download EMAN2”, or go to the
NCMI'’s website directly:
http://ncmi.bcm.tmc.edu/ncmi/software/software_details?selected_software=coun
ter 222

Follow the instructions there as best as possible and/or continue reading:

Downloading EMAN2 binaries should really be trivial, especially for MacOSX
(binaries are a pre-packaged, pre-compiled program that is ready to run under a
certain operating system).

Step 3.a - INSTALLING EMAN2 BINARIES ON MacOSX
1-Mac) Find out what the version of your operating system is. EMAN2 can run
on Lion (MacOSX 10.7) and up (Mountain Lion, MacOSX 10.8; Mavericks, MACOSX
10.9; Yosemite, MacOSX 10.10; El Capitan, MacOSX 10.11). Go to the apple icon at
the top left corner of your Desktop, click on it, and select “About This Mac”.

(4 Finder File Edit View

About This Mac

Software Update...
App Store...

A window will pop up clearly showing what version of MacOSX you're using:

000 About This Mac

(
OS X

Version 10.9.4

| Software Update... |

Processor 3.4 GHz Intel Core i7
Memory 32 GB 1600 MHz DDR3
Startup Disk main_drive_imac

More Info... |

TM and © 1983-2014 Apple Inc.
All Rights Reserved. License Agreement

2-Mac) As long as you're running MacOSC 10.7 or newer, you can download the
emanZ2.daily.mac.dmg installation file for MacOXS from the NCMI’s website:
http://ncmi.bcm.tmc.edu/ncmi/software/software_details?selected_software=coun
ter 222

3-Mac) Double click on the .dmyg file you just downloaded. A window will pop up.

4-Mac) Drag the EMAN2 directory into the Applications dlrectory

000 | EMAN2 daily for Mac OS X 10.6 build 20120605
.4 3 items, 45.4 MB available ‘_0—
- - —
»> g ¢
P _— XT
Applications EMAN2 INSTALL.txt

5-Mac) Read and follow the instructions in the INSTALL.txt file.

Step 3.b - INSTALLING EMAN2 BINARIES ON LINUX

WARNING: There are MANY different versions of LINUX! Ubuntu, Fedora,
Mandriva, etc. (each of them obnoxious in its own way). Ubuntu seems to be
the most reasonable one.

1-Linux) Decide which binaries to download.
1a) There are different versions of EMAN2 for Linux, 32bit and 64bit.
You can find out which type of you should use by typing uname -i or uname -

m, or even uname -r at the command line.

You might have heard that computers use something
called “memory” (of different types) to store data. The
32bit vs 64bit issue concerns RAM memory mostly, and
32 and 64 represent the size of the little “packets” where
data are stored. So Linux-64bit means that the operating
system (Linux in this case) understands and uses larger
packets of memory than Linux-32bit.

If the response you get has x86_64 in it, then you're using Linux-64bit.
Otherwise, it is Linux-32bit or something worse (Prozac might help).

2-Linux) Untar the downloaded binaries
Once you've downloaded the correct file, *it is good practice to save it and
decompress it in your home directory*. If you didn’t download it there because
you weren’t given the option to choose where to store the file (but rather saved it
elsewhere by default, either in the Desktop or your Downloads folder), find the file
and move it to your home directory (drag and drop it, copy and paste it, or use the
‘mv’ command from the command line).

cd ~/Downloads

mv emanZ.daily.linux.tar.gz ~

“ ”n
~

means “home directory” at the command line.
To “untar” (decompress) the downloaded file, which is typically in tar.gz format
these days, type the following command:

tar xvzf emanZ2.daily.linux.tar.gz

Decompressing the file will create a folder called EMANZ with a bunch of files in it.

3) Go into the EMAN2 folder that sprouts after decompression of the .tar file
cd EMAN2

4) Run the emanZ2-installer file, inside the EMAN2 directory
./emanZ-installer

At the command line, “./” tells the computer to execute the installer.

Step 4 - Installing EMAN2 binaries: TEST EMAN2 INSTALLATION
Always verify that EMAN2 has been properly installed, through these commands:

eZspeedtest.py

The larger the speed factor is, the
faster your machine will run EMAN2
tasks. The point is, pay attention to
the EMANZ2 speed factor if you have
access to different computers.

You might want to selectively run the
more computationally intensive jobs
on the machine with the best speed.
You have to take other issues into
consideration though. For example,
does one computer have more
processors than the other, and will
you be using parallelization? (That
is, are you going to instruct the
computer to use all of its processors,
or at least more than one, to run your
tasks?).

If eZspeedtest.py runs to completion, the likelihood that everything is right is ~99%.
To continue testing whether EMAN2 works properly on your machine, try to launch
the iPython interface, which you will learn to use further into this tutorial:

e2.py

It should look like this:

Finally, try to launch EMAN2’s browser through eZdisplay.py

eZdisplay.py

® 0o

e2display.py Browser

‘I‘ ‘I‘ Filter: |

EMEN2

SSH

Root
Current

v

Path: |.

P
SRR
z

OCENONHWN=O

\ Info

Name

simgro_test
simgrosh3_perfect_n8_correct
simveev_apix4_NOnoise_n16_00
groel_mmcpn_tric_mix_s48
simgrosh6_perfect_n8_correct
sptssaref

sptssarefsubset.hdf

spttests

testsptrefssagoldoff
simgrosh3_perfect_n01_corr_02

Type Size Dim
Folder

Folder

Folder

Folder

Folder

Folder

Image Stack 280k 32x32x32
Folder

Folder

Folder

v | Sel All

N Date « B

2016/05/04 13:50:18
2016/03/18 15:33:50
2016/02/22 19:57:44
2016/02/22 16:48:44
2016/02/10 22:30:55
2015/11/25 23:59:50

2 2015/11/25 23:59:39

2015/11/25 23:59:39
2015/11/25 23:59:39
2015/11/25 23:52:34

Kl

After all these tests, the probability that everything (in life) is right is only 99.75%,
and thus you cannot rest in peace (that comes until you've successfully produced
SPT derived structures, published papers, and graduated -maybe).

Step 4 - Installing EMAN2 binaries: ADD THE “examples”
DIRECTORY TO YOUR “PATH”

[highly recommend also adding the EMANZ/examples directory to your PATH
variable. This directory contains many ill maintained (yet useful) programs. If you
add this directory to your PATH, you’ll be able to launch these programs directly
from the command line.

Open your invisible .bashrc file if you're on Linux or .profile file if you're on MacOSX
with any text editor:

vi .profile

add the following line to the file and save it
export PATH=3{EMANZ2DIR}/examples:${PATH}

EMAN2DIR is the directory where the EMANZ2 folder is. You can find out by typing:
which e2.py

[get:
/Users/jgalaz/EMANZ/bin/e2.py

Which means “/Users/jgalaz/EMAN2” is my EMANZ2 directory and therefore the line
to add to my .profile file is:

export PATH=/Users/jgalaz/EMANZ2/bin/e2.py:$PATH
(The curly brackets don'’t really matter). When running EMAN2 binaries on Mac, the
EMANZ2 folder will typically be /Applications/EMANZ. When building from source, it
would be /Users/username/EMANZ. On Linux, it really depends on where your home

directory is. You can find out what your home directory is by typing

cd ~
pwd

Typical output from typing such commands looks like:

/home/jgalaz

BUILDING EMANZ2 FROM SOURCE

Building from source can be time consuming and frustrating, but very rewarding. (It
is NOT that difficult if you have updated, clear instructions to follow, and access to
help when you get stuck).

First, it will allow you to use CUDA if you have a computer with a GPU (Graphics
Processing Unit), and have managed to configure it to work properly.
* Using CUDA can speed a typical SPT job between 2x and 10x * (that means that a

task that on a normal processor takes 2 to 10 days to run would finish in only 1 day
if you used CUDA).
Unfortunately, there are no binaries for EMAN2 that work with CUDA.

The key points to know about building from source are:

1)

2)

3)

You will have to install a bunch of other programs (also referred to as
“dependencies” or packages) for EMAN2 to work (yes, EMAN2 uses other
programs for a lot of what it does).

You might need specific versions for some of these dependencies
(otherwise, things aren’t guaranteed to work).

In the ideal case, you’ll be able to install ALL the required dependencies
with a package manager. Package managers find the source code of a
dependency for you, decompress it, compile it, and install it. They can
also update programs/dependencies for you, or remove them properly.
There are some package managers with a GUI (a little window with clickable
buttons), but you either have to find these package managers if they are
already installed on your computer, or you have to download them.

For MacOSX, easy_install and pip are common package managers. Easy_install
usually comes installed by default already.

As an example, the following command at the terminal would install the pip
package manager on your Mac:

sudo easy_install pip

When using “sudo” you will need to have administrative powers and to
provide your password. If you're so low down the bureaucratic ranks of your
lab that you don’t have administrative powers on your own machine (®),
you’ll have to get your systems administrator to do this for you.

For Linux, the apt-get package manager works pretty well for Ubuntu, while
yum works nicely for Fedora.

As an example, the following command would install gedit (a basic but
functional text editor) on your Linux Fedora:

sudo yum install gedit
Or on Ubuntu:
sudo apt-get install gedit

4) Some of the dependencies you can install from “binaries”; that is, by
downloading a file and double-clicking on it.
5) Some dependencies you might have to “build” (or “compile”) from
source yourself, which usually involves these simple steps:
a. Download the “source code” for the correct version of the dependency
in question, typically a compressed file, be it tar.gz, tar.bz2, or .zip, etc.
b. Untar (decompress) the source code (tar xvzf whatever.tar.gz)

c. Go into the uncompressed directory (cd whatever)

d. Compile. This involves entering 3 commands at the command line:
Jconfigure
make

sudo make install

e. You might need to provide specific options after ./configure (see the
EMAN2 Wiki).

f. IF this doesn’t work, you might need to install other sub-dependencies
(a dependency of the dependency! [The horror!]), which the
dependency you're trying to build needs. You'll see a message at the
command line telling you to install something else, or saying that
you're lacking a certain dependency. So just take whatever name the
command line lists and try to install that sub-dependency with sudo
apt-get install whatever_subdependency).

Here are the (presumably) very clear instructions on how to compile all the
dependencies and EMAN2 from source on MacOSX:

http://blake.bcm.edu/emanwiki/EMAN2/COMPILE EMAN2 MAC 0OS X

And here are the instructions on how to compile from source on Linux (this is
usually significantly easier).

http://blake.bcm.edu/emanwiki/EMAN2/COMPILE EMAN2 LINUX

Potential hurdle

Pay close attention to the part towards the end, where you modify some invisible
files such as.bashrc or .profile (under “configure shell”). The lines you will introduce
there basically enable you to launch EMAN2 programs directly from the terminal,
regardless of what directory you are in.

10

INTRODUCTION

In a nutshell (and outside too, I suppose), Single Particle Tomography (SPT) is about
extracting subvolumes from a tomogram (a large volume) to obtain one or more
averaged structures from them.

SPT is particularly good at deriving structures from conformationally or
compositionally heterogeneous specimens, like complexes that have a variable
amount of subunits, or macromolecules that are shuffling between different
conformational states. It can also provide structures of molecules in challenging
contexts (for example, ribosomes or viruses inside cells). These are specimens that
you cannot study with conventional single particle analysis (SPA) cryoEM [which is
the same as single particle reconstruction (SPR) cryoEM].

This User’s Guide will take you through using EMAN2 for SPT by running examples
on test data available on the EMAN2 Wiki, http://blake.bcm.edu/emanwiki/EMAN?2

If you were to thoroughly (and properly) process all the data from the full version of
one of the tomograms provided, you could arrive at averages that look like this:

Asymmetric Icosahedral symmetry applied
Liu and Murata et al, 2010; average of epsilon-15 virus, collected using a Zernike
phase plate. N=~130 particles, averaged without (left) and with (right) icosahedral
symmetry imposed.

You won’t be able to get these results though, because we are providing cropped
tomograms (just a small portion of the original tomograms, opposed to the full
version) that have been scaled down or “binned” (shrunk) by a factor of 2, so that
the test files aren’t so aberrantly large that the jobs require ridiculous amounts of
memory and time to run. (For details on how the structures shown were obtained,
refer to the cited paper).

TEST DATA

You can find the test data in two zip files, one for epsilon-15 virus
(eZspt_data_el5.zip) and another for TRiC chaperonin (eZspt_data_apoTRiC.zip) on
this page of EMAN2’s Wiki:

11

http://blake.bcm.edu/emanwiki/SPT/Spt

The eZspt_data_el5.zip file in the Wiki contains the following files in it:

1) el5pp_tomo_bin2.mrc
This first tomogram was reconstructed from a tiltseries of epsilon15 virus
particles in vitro (happily floating in buffer), recorded using Zernike phase
contrast technology (Liu and Murata et al, 2010). It has been binned (shrunk)
by a factor of 2 with respect to the data used in the paper.

2) el5n_tomo_bin2.mrc
This tomogram also comes from a tiltseries of epsilon15 viruses in vitro, but
was recorded under conventional cryoET (no phase plate) imaging
conditions (Liu and Murata et al, 2010).

3) el5ref raw.hdf

A structure of the epsilon15 virus downloaded from the EMDB.

4) el5ref prep_asym_bin2.hdf

The structure above prepared to “match” the data (explanation later).

5) el5ref prep_icos_bin2.hdf

The same “prepared” structure as in 4) but with icosahedral symmetry applied.

The eZspt_data_apoTRiC.zip file on the Wiki contains the following files in it:
1) jg_apoTRiC_01-21-11_85e30k5deg3u_norm_full_bin2.rec
This is a tomogram reconstructed from a tiltseries of the TRiC chaperonin in
buffer. It was also shrunk by 2x, because we don’t want to trouble you with
aberrantly large files.

Each tomogram will occupy ~500Mb on your hard drive; the other files are
relatively small. In this guide, everything on epsilon 15 is done with the phase-plate
tomogram (e15pp_tomo_bin2.mrc).

You can choose the other one if you want to, but you might get to results different
from those shown here. Hopefully, once you understand the principles of SPT and
how it's done in EMAN2 you’ll be able to use it to process your own data in more
flexible and adequate ways.

EXTRACTING SUBTOMOGRAMS (or “boxing”)

There are two options for opening a tomogram to select subvolumes from it.
1) Directly, by typing eZspt_boxer.py at the command line, followed by the path
to the tomogram (as described in this section).
2) A notch less directly, by launching eZprojectmanager.py from the command
line and accessing a tomogram through the browser in the tomographic
reconstruction menu (as described later in this guide).

12

First, it is highly recommended that you reconstruct your tomograms using IMOD
(Kremer et al 1996), and that you flip them to make sure that Z is the shortest
side of your 3D volume.

You can make your tomograms Z-short with IMOD by selecting the “rotate around x
axis” option in the Post-processing step of the etomo workflow.

) Scale to match contrast
Tomogram Generation

Complete i® Find scaling from sections Z min: 205 |Z max: 410
<’Post—processing n > Scaling from sub-area:
~ Complete - X min: X max:
Clean Up Y min: Y max:

Not Started

Get XYZ Sub-Area
From 3dmod

Reorientation:

Warning:

For serial joins, use
the same reorientation
method for each
section.

) None

{® Rotate around X axis

3dmod Trimmed

Trim Volume g |y

’ Cancel ‘ |Postpone| ‘ Done ‘

If you have an old tomogram that unfortunately wasn’t reoriented in this way, you
can still accomplish this fairly easily from the command line if IMOD is installed and
properly functioning on your computer:

clip rotx inputfile outputfile

To find out what the dimensions of your tomogram are, type
eZiminfo.py mytomogram.mrc

You should see output similar to this:

Jesuss-MacBook-Pro:models jgalaz$
Jesuss-MacBook-Pro:models jgalaz$ e2iminfo.py testomol.mrc
testomol.mrc 1 images in MRC format 576 xx 576
representing @ particles

Jesuss-MacBook-Pro:models jgalaz$ e2iminfo.py testomg2.mrc
testomo2.mrc 1 images in MRC format 576 x 576 x‘
representing @ particles

Jesuss-MacBook-Pro:models jgalaz$ |

13

e2iminfo.py is a nice EMAN2 program in that displays the number of images in a
stack and the dimensions of the file in the order X,Y,Z. So, as pointed out by the red
circles in the image above, the file “tomol.mrc” on which [ran eZiminfo.py had Y as
its shortest side. After rotating the image around the X axis by 90° (not shown), as
explained above, Z became the shortest side, and | named that image testomoZ.mrc.
If you follow eZiminfo.py with “-H”, the program displays the entire header of the
image (the header is “metadata”; i.e., text data beyond the image data itself, storing a
bunch of facts and characteristics pertaining to an image, such as dimensions, file
type, etc., etc.).

eZiminfo.py mytomogram.mrc -H
If your image file is an image stack (a file with multiple images in it), you can even
tell e2iminfo.py which specific image within the stack you want to display the header
for.
For example, this command

eZiminfo.py mytomogram.hdf -H -N5

displays the header for image 5, within the hypothetical HDF stack.

() Note that .rec files produced by IMOD are in .mrc format. It
¥ doesn’t matter what “extension” or “label” your filename has.
EMANZ2 is smart enough to know it’s still an .mrc file.

OPENING A TOMOGRAM DIRECTLY - e2spt_boxer.py

Open a Terminal. It's recommended that you prefilter your tomogram so that you
don’t have to use the interactive lowpass filter since this can slow down particle
picking quite a bit.

STEP 0A - Prefilter the tomogram

eZproc3d.py el5pp_tomo_binZ2.mrc el5pp_tomo_bin2_Ip00.mrc --outmode=int8 --
process=filter.lowpass.tanh:cutoff freq=0.01
eZproc3d.py is a program that applies filters and other processes to 3D images. The
way to use it is typically:
e2proc3d.py input output --process=processor_name:processor_parameter=parameter_value

Some processors take multiple parameter=value pairs:

14

e2proc3d.py input output --process=processor:parameter1=valuel:parameter2=value2

You can provide as many --process instructions to eZproc3d.py as you like in a single
command and they will be applied sequentially. Notice that the equal sign “=" after
“--process” is unnecessary and a space will work just as well. In the example above
to filter the tomogram, the processor name is “filter.lowpass.tanh”. The processor
parameter is “cutoff freq”. The parameter value is “0.01”. This all just means that a
lowpass filter with a tangent falloff at 100 A will be applied to the image. Note that
0.01 is 1/100. This is in frequency space, in 1/A units, where the number of A in the
denominator indicates the resolution to filter to.

To get a list of all the processors you can apply to a 3D image using e2proc3d.py,
type the following at the command line:

eZhelp.py processors

To launch the graphical interface that displays tomograms, type the following
command at the command line, using the appropriate filename for the tomogram
you want to open.

STEP 1A

eZspt_boxer.py el5pp_tomo_binZ2.mrc --inmemory

EXPLANATION
--inmemory
This option preloads the tomogram into memory, allowing smoother (faster)
viewing and particle extraction, because the computer can read data from
memory faster than from disk (your hard drive).
If you have very little memory (< 4 or 8GB) or want to open large tomograms
(larger than 2000 x 2000 x 200 voxels) you might want to try to open the
tomogram “from disk” and NOT specify the --inmemory option. Steps like
lowpass filtering during boxing (there’s a dynamic slider to do so) and
subvolume extraction itself might be slower, but at least your computer
won’t freeze/crash.

() To see the list of options for eZspt boxer.py and an explanation of
Y what they're for, type e2spt_boxer.py -h at the command line. (You
can get usage instructions and the list of options for ANY program in
EMAN2 in the same way: type the program’s name followed by -h).

Other useful options in the SPT boxer that can be used to “enhance” a
tomogram for visualization purposes include:

15

--invert

This multiplies the tomogram by -1(minus one) before opening it.

--shrink=n

Shrinks the tomogram by a factor of n (you have to replace “n” with an
integer number chosen by you).

--lowpass=n

Applies a Gaussian low pass filter at the resolution specified in Angstroms.

When you launch a tomogram through eZspt_boxer.py, the GUI below
(Graphical User Interface, with nice clickable buttons) pops up:

E2omehoxaLpy,

Box Size: 100

[Limit Side Boxes
Sca: 1.0 ———
Filt: 0.0 O

From now on, this window will be referred to as Main Boxer window.

The Main Boxer window is divided into 3 image panels corresponding to
top (XY) and side view (XZ and YZ) slices of the entire tomogram. If the ice-
embedded specimen is nice and yields high contrast, the side-views can be
very useful in tweaking the center of the boxes selected: basically, any box
created in any one view can be moved in the other two views, so you're
literally defining the center of the box in 3D. There’s no point in describing
this further; you’ll get a feeling for it as soon as you create a box, see that
actually 3 come up (one in each view), and start moving them.

There’s also a small options panel at the bottom-left corner of the Main
Boxer window (described further below).

First, let’s see what you can do with your mouse and keyboard, with default

options.
Boxing:

16

You can select a region for extraction by left-clicking with the mouse
anywhere in the three views, which triggers the opening of two more
windows (described below).

Deleting boxes:
Hold shift and left-click with the mouse on the box you want to delete,
in any of the 3 views on the Main Boxer window. You can also delete
particles with these same buttons (shift + left click) from the Particle
List window.

Zooming:
Zoom in and out from all three views simultaneously by scrolling with
the middle button of the mouse.

Slicing:
Go through slices along the Z direction by holding shift while scrolling
with the middle button (this might not work if you’re on a Mac
computer), or by moving the bar at the bottom-right corner of the
Main Boxer window.

R

Dragging:
Drag the tomogram slice displayed (translations in 2D) by pressing
and holding the right-button on the mouse, and sliding the mouse as
desired. (You might also be able to drag the views with the up, down,
left and right arrow keys on your keyboard).

A Boxing as accurately as possible *is* actually IMPORTANT (you don’t

have to be OCD about it though). If the boxes are severely off-center,
“preparation” of the particles for alignment (a series of steps collectively
known as subtomogram preprocessing) can cut off chunks of density
from them and/or it might not be possible to center them correctly during
alignment. This can be disastrous for your reconstruction (take it as a
dogma, or read the explanation further below in section 3).

Default display and boxing options can be changed from the panel at the
bottom-left corner of the Main Boxer window, which looks like this:

17

Box Size: 100

€ MaxProj) r?
["] Limit Side Boxes \
Sca: 1.0

O
A

Spin box

Filt: |15.2380 O

Box size:
Defines the side-length (in pixels) for the cubical boxes that will be
extracted from the tomogram. Usually, you want to center the box on
putative particles of interest.

, Select a reasonable box size. Subtomogram alignment requires for

Y the box size to be even. Also, alignment of subtomograms with a box
size that is a multiple of 8 will usually run faster. To actually find out what
the best sizes to use are, go to this page on the EMAN2 Wiki:
http://blake.bcm.edu/emanwiki/EMANZ /BoxSize
Multiples of such box sizes are typically also good. Make the box size ~1.5 to
2x the diameter of the particle of interest. This “padding” is usually a MUST
for SPT alignment to work (it depends on how much error you tolerate,
your data collection parameters, how good the contrast of your specimen is,
etc., but for now, let’s just keep it simple). If you box unwisely, you’ll end up
running failed alignments and becoming utterly unhappy.

Spin box:
When set to more than 1, this causes for the spt_boxer to display the
average of neighboring slices in each of the 3 tomogram views. For
example, if it's set to 5, that means that 5 adjacent slices will be
averaged as you scroll through the tomogram. This can (presumably)
enhance contrast a bit and facilitate boxing, particularly if you kept
the cumulative dose very low during data collection.

MaxProj:
It only works when the spin box value is set to more than 1. When
MaxProj is pressed, instead of seeing the average of a number of
neighboring projections, you see the “maximum value”. The image of
the averaged slices will contain nx*ny pixels for the top view, and
nx*nz and ny*nz for the side views, right? Well, the value of each pixel
on each of the orthogonal views will come from the maximum value
for that pixel, drawn from among all the slices-to-average. For
example, consider a pixel P at position (x,y) in the XY plane. It has a
particular value depending on what slice you're displaying. If the spin
box has a value of 5 and MaxProj is pressed, the program will consider
5 consecutive slices and will find the maximum value of P amongst

18

those slices, and that’s the value that will be displayed. In some cases,
this can presumably also make your particles a bit easier to find.

Limit Side Boxes:

Sca:

Shows (for side views only) the boxes that are centered in the vicinity
of the XZ and YZ slices being shown. If this is NOT pressed, all selected
boxes will be shown in the side views (and they will be very crammed!
This crowding of boxes can sometimes be useful though; e.g., to detect
whether your specimen is distributed along a slope or any other funny
pattern not compensated for by IMOD). There’'s a visual
demonstration coming up ~2 pages ahead (snapshots).

“Scale”. The same as described for “Zooming” (above).

Applies a Gaussian low-pass filter to the 3 tomogram slices displayed.
It is extremely powerful in facilitating boxing. Lo and behold!

[—

Unfiltered tomgoram slice Filtered tromogram slice

Turning filtration on with the slider WILL slow down your

computer if your tomogram is huge and/or your computer

has little memory because the filter is applied “on the fly”.
(Not recommended for already frustrated grad students and
impatient boxers with high blood pressure, such as senior PIs, unless
your tomogram is small, ~512x512x100, or you have a futuristically
fast computer).

() Alternatively, you can open a tomogram pre-filtered, by

- specifying the --lowpass=n option, where ‘n’ is an integer that
represents the resolution in Angstroms at which you want to apply a
Gaussian low pass filter.

For example: --lowpass=100 filters to 100A.
Note that the particles will always be extracted from the raw

tomogram.
--invert is the only option that will have an effect on the extracted

19

particles that are saved. If specified, the boxed particles will be
multiplied by -1, effectively inverting the contrast respect to that of
the tomogram you supplied.

As mentioned before, selecting a box opens two windows: Particle
List and Single Particle View:

e2tomoboxer.py

® O O Single Particle View

Filter: 0.0

Box Size: 100

MaxProi)
(MaxProj)
[_! Limit Side Boxes

Sca: 0.42409 O

Filt: 3.66300 <)

The Particle List window shows the XY projection of all the
subvolumes boxed.

eSO Particle List

20

The Single Particle View window is awesome (provided your
specimen isn’t tiny): It shows the 3D isosurface and 3 orthogonal
projections for the subvolume that is currently selected (that is, the
last you boxed).

It has a very cool filtering bar, which applies a Gaussian low pass filter

to all 4 displays at the resolution specified:
™ O O Single Particle View ® O O Single Particle View

Filter: 21.9658 :O:s

4 4
Unfiltered views Doesn’t that just look *neat*?

Filter: 0.0

And below is the promised visual demonstration that the “Limit Side
Boxes” option in the Main Boxer window can relieve crowding of
boxes in the side views:

You might have noticed the File and Window menus at the left of the
apple bar if you'’re on a Mac (way upper-left corner of the screen), or
attached to the Main Boxer window otherwise.

21

Open

Read Box Coord & Python File BULELTY

]
Save Box Coord ! Particles |
Save Boxed Data l Single Particle
Save Boxes as Stack I Averaging

The File menu lets you save a text file with the coordinates of the
subvolumes selected (Save Box Coord), the subvolumes themselves
as individual files (Save Boxed Data) or as a stack (Save Boxes as
Stack), which means you would only see one file listed in the
directory where you save the stack, but it actually contains ALL the
subvolumes you've extracted (and EMAN2 can tell). Finally, you can
also load a coordinates file (Read Box Coord) from a previous boxing
session or generated by other means.

Note: You have to EXPLICITLY supply the format for the files you save.
Use .hdf for boxed particles saved as separate files or as a stack.

The Window menu lets you reopen any of the windows previously
described if you happen to close them. Remember that, initially, they’ll
also open automatically whenever you select a subvolume.

When you’re done exploring e2spt_boxer in its GUI form, follow this
next step:

STEP 1B
You've presumably opened the phase-plate data tomogram:
eZspt_boxer.py el5pp_tomo_binZ.mrc --yshort --inmemory
1.1) Set the box size parameter to 140 in the Main spt_boxer window.
1.2) Select ONE particle with your mouse’s left click, not too close to others
or the edge of the tomogram (you can tweak the center by holding left click
and dragging)
1.3) Click on File, select Save Box Coord, and save the coordinates of this
particle to a.txt file (proposed filename: e15pp_setl_coords.txt).
1.4) Click on File, select Save Boxes as Stack, and save the actual particle to
an .hdf file (proposed filename: e15pp_set1_stack.hdf).

You MUST type in the appropriate format, both when you save a
coordinates file or a stack.

1.5) Check out your boxed particle with the e2display program by typing:
eZdisplay.py el5pp_set1_stack.hdf

A GUI will come up showing the volume. It WILL look awfully noisy. This is
normal. Press middle click on the particle to bring up a panel with viewing
options (you can display the particle at different thresholds).

22

“raw” el5 sub\)olume, at low density threshold.

As a quick test, we will align one particle against a symmetrical reference.
Then we will apply symmetry to the particle and see if it looks like a healthy
icosahedron.

Extracting subvolumes from the commandline

If you already have a coordinates file and don’t need to find the particles in a
tomogram but rather just extract them, you can do so with the --coords
option followed by the text file where the coordinates have been stored.

For example:

eZspt_boxer.py mytomogram.rec --coords=mycoords.txt --output=particles.hdf

You always need to specify and output where to save the subvolumes. Also,
very conveniently, you can extract any subset by specifying the --subset=n
option, where n is an integer number.

For example, specifying --subset=10 would extract only the first 10
subvolumes listed, opposed to the entire set. This is very useful whenever
you want to run short tests or trials on a smaller set, or when you need sets
of different sizes, for whatever reason.

The coordinates file must consist of three columns of numbers,
corresponding to each of the X, Y and Z coordinates for the center of each
particle.

For example:

125 123 31

239 464 17

482 12912

Note that usually the smallest coordinates, corresponding to the “height” of
the particles in the embedding ice, are in the third column, as most
commonly Z is the short dimension of the tomogram.

If Y is the short dimension in your tomogram, then the smallest coordinates
should be, in general, in the second column of the coordinates file.
Nevertheless, EMAN2 always writes the coordinates in the “correct” order
assuming Z is the shortest side: X, Y, Z. Therefore, if you generate a

23

coordinates file from a tomogram that you had to flip with the --yshort
option during boxing, there will be no correspondence between the actual
coordinates file and the tomogram. If this is the case (the short dimension of
the tomogram does not coincide with the smallest-values column in the
coordinates file), just specify the --swapyz option, and the Y and Z
coordinates will be swapped as they are read from the coordinates file.

The extracted particles are saved as a single .hdf stack by default. If you want
to save them as separate individual files, specify the following option:
--output_format=single

Note that you still need to provide an ouput name, which will be the basis to
name your particles.

For example:

If you specify --output=particles.hdf and --output_format=single at the same
time, the extracted subvolumes will be named particles 000.hdf,
particles_001.hdf, particles_002.hdf ...

READY! GET SET!... don’t go.

BUILDING AN INITIALMODEL FROM SCRATCH

After having a set of subtomograms, finding and preparing a suitable reference or
initial model for “reference based alignment/refinement” is often be critical.
This is a branch point at which EMAN2 users usually have two options:

1) I want to avoid model bias and therefore do not want to provide an
external reference

In this case, a reference will be generated automatically from the boxed data

itself, at the alignment step. The syntax to add to the alighment command so that

a reference will be built for you automatically will be written out when

alignment is explained.

Automated reference generation is NOT expected to easily yield the best
results, especially if your dataset is small. It is PROBABLY safer and faster
to use a known ‘good reference’ (a model that can nudge your data in the right
direction). Therefore, it is recommended that you build an initial model FIRST
(separately from alignment).

There are 3 methods (and 3 corresponding programs) that can be used to build
an initial model in EMANZ2:

24

Initial model generation by binary tree alignment -
e2spt_binarytree.py

Binary tree alignment is the quickest and simplest method to build an initial
model. This method takes the largest subset of a power of 2 contained in your
dataset and uses that as a subset to generate an initial model. Powers of 2 are
1,2,4,8,16,64,128 ... etc. If you have a set of 100 subtomograms, the largest
subset that is a power of 2 corresponds to 64 particles. The particles in the
subset will be aligned and averaged in pairs as follows: particle 1 with particle 2.
Particle 3 with particle 4. Particle 5 with particle 6; etc. After the first iteration,
the initial 64-particle subset will be reduced to 32 averages of pairs. These 32
averages of 2 particles will then be used for another round of alignment and
averaging of the new particle 1 with the new particle 2, new particle 3 with new
particle 4, etc. The set of 32 pair-wise averages will thus yield a set of 64 new
averages, each representing an average of 4 particles. The algorithm continues
until all particles are merged into 1 average. To run this method, execute the
following command:

eZspt_binarytree.py --input particles.hdf

The program automates any preprocessing steps that might help alignment to
succeed (normalization, filtering, masking, shrinking, etc.). If you want to apply
additional preprocessing parameters, you can supply options such as --mask, --
normproc, --lowpass, etc., but this is rarely necessary. The only relevant options
you might want to consider are --nseedlimit and --parallel. The first one will
limit the size of the subset to consider for seeding the binary tree algorithm. For
example, if you have a set of 1100 particles, the largest power of 2 would be
1024. However, you don’t need so many particles to just build an initial model.
On the other hand, if you're running the program on a machine with more than
one core (processor), you can take advantage of this by parallelizing alignment.
For example, if you have 8 processors on your machine and only want to use 128
particles to build the initial model:

eZspt_binarytree.py --input particles.hdf --parallel thread:8 --nseedlimit 128

Initial model generation by self-symmetry -
e2symsearch3d.py

If you know or suspect high symmetry in your particles, use eZsymsearch3d.py to
build a bias-free initial model from scratch as follows:

eZsymsearch3d.py --input particles.hdf --mask mask.soft:outer_radius=32 --

lowpass filter.lowpass.tanh:cutoff freq=0.01 --normproc normalize.edgemean --
shrink 4 --average --steps 25 --symmetrize --parallel thread:8

25

To increase the chances of this command working, you’ll want to normalize via --
normproc, mask tightly (use a number close to the particle’s radius), lowpass
harshly (to 100 A or more, which is a 0.01 cutoff frequency or more, depending
on the size of the features in your particles) and shrink heavily. The reasons for
applying all these filters and operations are explained in the next section. The --
steps parameter in the command above indicates how many “trials” the program
will run in search for self-common lines to align each particle to the symmetry
axis. The lower the symmetry of your particle, the more trials you need to run
(for example, ~20 or so should be enough for icosahedral viruses, but ~50 to
100 might be advisable for chaperonins like GroEL with D7 symmetry). The --
symmetrize parameter tells the program to apply symmetry to each particle
after aligning it to the symmetry axis. The --average parameter tells the program
to average the particles after they've been aligned to the symmetry axis
(whether symmetrized or not).

Initial model generation by hierarchical ascendant
classification - e2spt_hac.py

Hierarchical ascendant classification is the same as building a “similarity matrix”.
This means that you compute the similarity of each particle in your dataset with
every other particle in the data set. This method is also known as “all vs all”
alignment. This algorithm is the slowest but presumably can also build the most
reliable initial models. This is a general method, long used in electron
microscopy and other research fields; therefore, a detailed description can be
found in the literature, including Galaz-Montoya et al. 2015. This program also
automates any preprocessing steps that might help alignment to succeed
(normalization, filtering, masking, shrinking, etc.). If you want to apply
additional preprocessing parameters, you can supply options such as --mask, --
normproc, --lowpass, etc., but this is rarely necessary.

eZspt_hac.py --input particles.hdf --parallel thread:8

2) Ido not care about model bias. I'm scared by the intimidating warning at
the beginning of the section concerning automated initial model building
and do not want to bother to build an initial model myself. Therefore, 1
feel psychologically coerced to use an external, known reference as an
initial model:
2a)

STEP 2
2.0) Find the prepared symmetric reference with this file name:
el5ref prep_icos_binZ2.hdf
2.1) Make sure it has exactly the same box size (nx, ny and nz values on the
header) and a similar apix (apix_x, apix_y and apix_z values on the header)

26

as the boxed particle. To look at the header of each file, execute these
commands:

eZiminfo.py el5ref prep_icos_binZ2.hdf --header

eZiminfo.py el5pp_set1_stack.hdf --header

If the reference and the particles, for whatever reason, do not have the same
apix in the header, you can use e2fixheader.py to fix the header of any image
file. For example, if the correct apix of the data is 5.0, but the apix parameters
in the header of an image are set to 1.0, you can set the correct value as
follows:

eZfixheader.py --input img.hdf --stem apix --stemval 5.0 --valtype float

This commands means that any header parameter containing the string “apix”
in it will be set to 5.0, floating point.

2b) If you'’re feeling adventurous, you can prepare the raw reference for

alignment yourself (the file called el5ref_raw.hdf). The way to do so is
described below.

PREPARING SUBTOMOGRAMS FOR ALIGNMENT

For a myriad of reasons, it is not recommendable to align and average
subvolumes directly after extracting them, without “preparing” them first.

Particle preparation for alignment is completely automated in all EMAN2 programs
that perform SPT alignment or initial model generation (except eZsymsearch3d.py),
if you run them with default options. However, special scenarios might require that
you deviate from default options and might require that you specify preprocessing
options explicitly. This section aims to explain what preprocessing options do, and
to teach you how to apply them “manually”, for didactic purposes, or if you want to
deviate from default options.

SPT programs accomplish automated subtomogram preprocessing by internally
calling eZspt_preproc.py. If you want to play with preprocessing parameters first to
get a feeling for what the preprocessing options are doing, you can run
eZspt_preproc.py by itself on your stack of particles. To see all the
options/parameters the program accepts and what they’re for, type the following at
the command line:

eZspt_preproc.py -h

27

The same effects can be accomplished using e2proc3d.py, with the exception that
eZspt_preproc.py is parallelized (you can use --parallel thread:N, replacing N for the
number of processors on your machine) and takes fewer options (so it might be less
confusing).

An example command would be:

eZspt_preproc.py --input particles.hdf --lowpass filter.lowpass.tanh:cutoff. freq=0.01 --
highpass filter.highpass.gauss:cutoff freq=0.0005 --mask
mask.soft:outer_radius=64:inner_radius=32 --normproc normalize.edgemean --shrink
2 --parallel thread:12 --clip 128

“Manual” preparation of a reference for alignment

(Skip explanation if you're using a prepared reference and don’t’ want

these details now)

EXPLANATION
The apix and box size of the reference should match those of the data
you want to align to it. Find out what these values are from the header
of the reference and the header of your boxed particle(s) (the header
constitutes a bunch of metadata associated with a file; in this case it’s
information about the EM maps; for example, their box size and apix).

Displaying values on the header of an image file
You can look at the header of the reference by typing this on the
command line:

eZiminfo.py el5ref prep_icos_bin4.hdf --header

Substitute the reference for the filename of your particles to look at
their header.

Find apix x, apix y and/or apix_z (they should all be the same). The
value of those parameters is the apix you need to remember (write it
down if juvenile Alzheimer’s is affecting you).

Also find nx, ny and/or nz. These are the X, Y an Z dimensions of the
box (they should all be the same too, if you boxed with e2spt_boxer;
the numbers might not be all the same for the raw reference though).

Scaling a reference to match your data’s apix

Calculate the scaling factor to apply to the reference by computing (on
a piece a paper, a calculator, or your head; this is NOT a command for
the command line):

scale_factor = apix_of particles / apix_of reference

28

2 The cautious (and the paranoid) SPTers (people who do SPT) shall NEVER
“ blindly trust the apix stored on the header of EM files for scaling purposes.
You should always confirm, visually, that the reference and the data seem to be
scaled reasonably well. This might imply scaling by a factor slightly different than
the one derived from the ratio of apix values.

Run this command at the command line, filling in adequate filenames
and values:

eZproc3d.py <input> <output> --process math.fft.resample:n=scale_factor

The math.fft.resample processor scales images by cropping them in
Fourier space. This is the best method to shrink and clip data as it
avoids aliasing artifacts.

Clipping the box of the reference to match your data’s box
Check the box size of the scaled image with eZiminfo.py and
make sure that the reference and the particles live in boxes of
the same size. If this is not the case, you can clip either of them
(or both) to have the same box size as follows:

eZproc3d.py <input> <output> --clip target_box_size

Let me remind you that a list of good box sizes to use can be found
here: http://blake.bcm.edu/emanwiki/EMAN2 /BoxSize

At this point, you can use the same clipping command to redefine the
box size of both the particles and the reference if they don’t have a
good size. Remember, the boxes need to be identical, and roughly ~1.5
to 2x the diameter of the particles.

Applying a threshold to EM data
You can apply a threshold to the reference if you want to delete
aberrant densities that come up at low or high-density thresholds
(this step is rarely necessary):

eZproc3d.py <input> <output> --process threshold.belowtozero:minval=value

Remember that EMANZ2’s modular approach lets you use any
threshold processor available. Just change the part that says
“threshold.bewlotozero” for the name of another threshold processor.
Take a look at all the existing processors by typing the following at the
command line (you’ll have to determine which ones are threshold
processors either from their name, their description, or by asking
someone who knows):

29

eZhelp.py processors --verbose 10

But.., how to determine what threshold value to use? Open the
reference with eZdisplay.py <reference_file> from the command line. A
nice GUI (window with helpful clickable buttons) will come up,
displaying the volume. Click the middle button of the mouse to bring
up the visualization controller. Find the threshold bar and see how
the densities in the image change as you move it. Determine, visually,
by looking at what number the threshold-bar is at, at what value you
see reasonable densities only. If you have no experience with
visualizing 3D volumes of decent reconstructions and know nothing
about your specimen, or have very bad data, the term “reasonable”
might ironically seem unreasonable. In that case, I can’t help you.

You can also apply to the reference any ‘preparation’ operations that
you apply on the data itself, which you’ll learn about in the next sub-
section.

“Manual” preparation of raw particles for alignment
EXPLANATION

Keep a copy of the raw particles untouched if you want to attempt to
do this manually. The prepared particles are used during alignment,
but averaging should always be done on the raw particles.

The order in which you apply the preparation steps matters. You
might have to apply some of them several times to get things “right” if
you do things in a sub-optimal order. If you get them wrong altogether,
your alignments WILL be wrong. The order here presented is the one
we’ve found to make the most sense; follow it if you're doing things
“manually”:

1) Reverse contrast, 2) normalize, 3) pad/crop/clip (if needed), 4)
mask, 5) apply filters, 6) shrink

Contrast reversal

Some tomographic reconstruction programs yield tomograms with
“black densities” corresponding to the specimen and “white densities”
to the background. This is expected given the nature of electron
microscopy data (the specimen scatters electrons from the beam
more strongly than the background and thus fewer electrons hit the
CCD/DDD camera wherever the specimen gets in the way, compared
to where it doesn’t). EMAN2 likes, and MUST have, white densities
correspond to the specimen (it's really just what makes sense: to add
and average something, instead of the absence of something; thus, this

30

is the established convention: “white” pixel values correspond to high-
intensity values [large numbers], which imply the presence of high-
density material).

The difference is evident, as shown in the following images:

Grid-hole edge

“Black” protein “White” protein

Notice that the edge of the grid hole can also tell you whether you're
working with “white” or “black” densities.

If you bring a random tomogram from elsewhere with the “wrong”
contrast, you can reverse it very easily from the command line as
follows:

eZproc3d.py <input> <output> --mult -1

Normalization

Makes the standard deviation of the pixel values in a given volume
equal to one and the mean equal to zero. This makes particles
“comparable” by compensating for changes in illumination and ice
thickness (particles from one tomogram might look brighter than
those from another, because of differences in dose, ice thickness, etc.).
You can apply this operation from the command line as follows:

e2proc3d.py <input> <output> --process normalize

Again, there is more than one normalization processor... pick
whichever you like from the list of processors. If the particles are
reasonably separated (not clustered) and floating in buffer, you might
want to use --normproc=normalize.edgemean. This sets the mean
value at the edge of the box to zero, and scales the rest of the voxels
accordingly.

Padding/cropping/clipping

The box size of the extracted subvolumes should be ~1.5 to 2x the
diameter of the particles to avoid “aliasing effects” in Fourier space
during aignment, and to provide a clear background during inter-
particle comparisons. If you haven’t defined the box size properly
during the boxing step, or if an unwise collaborator gives you boxed-

31

out data for you to process, you can always fix the box (to an extent)
by padding it with the following command:

eZproc3d.py <input> <output> --process normalize.edgemean --clip N

Substitute N with the box size you want; it will be the length of the box
for the new output file, in all three dimensions, X, Y and Z. If you're
clipping the images into a bigger box, any new voxels added to the box
will be filled in with zeros.

Masking

When particles are crowded, you might end up having more than one
in a given box after subvolume extraction. The box should be centered
on one of the particles so that the central particle is left intact after
“zeroing out” (masking) whatever is beyond the radius of that particle.
This would get rid of the other unwanted, invasive, intruding densities
in the box. Choose your mask carefully, as you can end up zeroing out
wanted densities from the desirable particle. To apply a spherical
mask, do:

e2proc3d.py <input> <output> --process=mask.soft:outer_radius=123

Because of EMAN2’s modular approach, you can use many different
masks. You're not constrained to using “mask.soft”. This can be
substituted for any other masking processor that you see in the list
that comes up when you enter this on the command line:

eZhelp.py processors --verbose=10

The verbose option will give you detailed information regarding the
parameters/options that each listed processor requires or can accept.

Filtering
eZproc3d.py <input> <output> --process=filter.lowpass.tanh:cutoff freq=0.01

Applying a low pass filter to an extracted subvolume smoothens out
the noise in it. It positively affects alignment based on coarse features.
Recall you had already learned to filter tomograms using this option
in section 2 (if you read the corresponding tip-box). This is exactly the
same thing, except that a subtomogram is smaller and thus the
filtering operation will happen much faster.

Keep in mind that you can apply any filter listed in the processors list,
which you can get by typing eZhelp.py processors --verbose=10 at the
command line.

32

Shrinking
eZproc3d.py <input> <output> --process math.fft.resample:n=N

Provide a scaling factor N (larger than 1 to shrink, smaller than 1 to
blow up the data). For example, if you want to shrink a volume to half
of its original size, specify N=2; you can guess that N=3 would shrink
the data to 1/3 of its original size, while N=0.33 would make it 3 times
larger, etc...

Shrinking can provide a great boost in speed. Just think about it: If you
shrink each side of a volume by a factor 2, you actually end up with
1/8 of the original volume, as clearly depicted in the diagram below:

L_j i

[hope it isn’t necessary to explain why having 1/8 of the original
number of voxels to compare during alignment and to process during
averaging would speed things up dramatically.

Another advantage from shrinking is that it averages neighboring
pixels, which enhances the signal (noise is assumed to be random and
thus averages out to zero, whereas signal is consistent, and should
average coherently to non-zero values).

The caveat with shrinking is that you end up loosing high-resolution
information: the image sampling (apix value) is proportionally
reduced. For example, if a particle originally has an apix value of 4.5
A/pixel, and you shrink the subvolume by a factor of 2, it will end up
with an apix of 9 A/pixel.

Note: A/pixel is the number of angstroms along the specimen that one
pixel in an image or one voxel in a volume ‘represents’ or ‘contains’.
The achievable resolution of a subtomogram average depends, among
many other things, on the image sampling of the raw data and is
typically much lower, at best ~3-4x. For example, with apix=4.5 the
best you could possibly do (with current technology), if everything
else were perfect, would be ~11-14 A.

2u

ALIGNMENT AND AVERAGING

Single class iterative refinement - e2spt_classaverage.py

33

This refinement method is so automated now that it is trivial to run for most
projects, but subtle considerations might be the rice to tip the scale between
getting garbage reults vs. obtaining interpretable results. An intelligent
choice of parameters is highly dependent on what data you’re working
with, and what questions you are seeking to answer.

If the particle stack consists of only one particle, the program will return the
aligned particle (because there’s nothing to average).

For now, run the command below, being careful to provide the correct file
name for the stack of raw particles through “--input=" and for the reference
through “--ref="

STEP 3
3.0) This command might look discontinuous but should be ONE single line with
all the parameters in a row, with a single space separating each option that starts
with “--”, for example: --A --B --C ... --N... etc.

eZspt_classaverage.py --input=e15pp_set1_stack.hdf --ref=el5ref prep_icos_bin2.hdf
--savesteps --npeakstorefine=12 --highpass filter.highpass.gauss:cutoff freq=0.005 --
mask=mask.soft:outer_radius=48 --verbose 10 --align=rotate_translate_3d_tree:
sym=icos --parallel=thread:2 --saveali --goldstandardoff --path=spt_phase_plate

EXPLANATION
Why use a reference
The reference is supplied through --ref= in the command above.
Subvolumes are very noisy and have a huge missing wedge, so it might be
very hard or impossible to align them accurately against each other. On the
other hand, a good reference has no missing wedge and virtually no noise.
Aligning your data to it would give it a “nudge” in the right direction. If you
don’t provide a reference, an initial model will be self-generated with a
“binary tree” approach by default (explained above).

What “refinements” mean, and why they’re useful

The --iter option, which is not set in the command above and therefore
defaults to --iter=1, refers to the number of iterations to refine the data.

You generally want to run several rounds/iterations of to arrive at the best
possible trustable average. What this means is that after the program
generates an initial average from the input particles, it uses that average as
the reference for a second round of alignment: it aligns the raw data all over
again to this new average. When you supply a nice model (from the PDB or
EMDB or wherever) as a reference, refinements help to take care of model
bias, and often improve the average too, especially when the initial
model/reference used did not exactly correspond to the
biochemical/conformational state of your specimen. For example, if you use
a chaperonin in the “closed state” as a reference to align chaperonin particles
that are in the “open state”, the average you’ll get after the first round of

34

STEP 4

alignment might look pretty “closed” because of model bias. Subsequent
rounds of refinements should lead to an average resembling more the “open”
state, if your data is any good.

When you do not provide a reference and a self-generated one is used,
refinements help you improve the average you're getting out from the data as
in early iterations some particles might not align well, but can be correctly
aligned as the average improves. Using initial models generated from scratch
lacks the “nudge” in the right direction that some specimens appear to
require sometimes, so with this approach there’s the risk of getting stuch in a
local minimum (i.e., you might run endless refinements and never improve
your average much or at all).

--align= This specifies what aligner you want to use. The different available
aligners differ in terms of speed and accuracy. To get a list of all the aligners
and a description of what they do, type this at the command line:

eZhelp.py aligners

SPT programs will usually use the “tree aligner” by default (--
align=rotate_translate_3d_tree), and you do NOT need to supply it explicitly
unless your particle has symmetry and you want the aligner to take this into
account (as in the command above). The algorithm used by this aligner is
explained in detail in Galaz-Montoya and Hecksel et al. 2016.
--npeakstorefine: This is the number of best answers (local minima) you
want to keep from the “coarse alignment” step, which will be further tweaked
during “fine alignment” steps as the algorithm progresses (again, read Galaz-
Montoya and Hecksel et al. 2016).

--highpass: Phase plate data is subject to ringing artifacts from the cut-on
frequency of the phase plate. This artifact is usually low in resolution and can
highly bias alighments and lead to the wrong alignment. A highpass filter is
usually required to accurately align data obtained with a Zernike phase plate.
If the listed command does not work for the particle you picked, you can try
going back to step 1 and extract a different particle, or you can also
experiment with varying the level of high pass filtration.

--mask: This will exclude aberrant densities beyond the radius of the particle.
--path: This parameter allows you to define a label for the directory where
the output/results files will be compartmentalized for this particular
alignment job. If you don’t provide this parameter, a default numbered series
of “spt” folders will be created as you run alignment jobs.

You are practically done!

If the stack you aligned had contained more than one particle, you would have
gotten back an average (with one particle you just get back the particle in the right
orientation respect to the reference).

The aligned particle will be in the directory defined through --path, and will be
saved to “final_avg.hdf” by default.

Now wait (patiently, if possible) for your job to run. Afterward, follow these last
instructions:

35

4.0) Go into the output directory:

cd spt_phase_plate

4.1) Apply symmetry to the aligned particle by executing this command:
eZproc3d.py final_avg.hdf final_avg_icos.hdf --sym=icos

4.2) Look at the aligned particle after having applied icosahedral symmetry:
eZdisplay.py final_avg_icos.hdf

If you actually want to get an average, repeat steps 1 through 4. Just box more
particles, choose a sensible filename for the stack, such as el5pp_set10.hdf, and
proceed to align the stack to the reference using eZspt_classaverage.py.

You can also try following the commands proposed in Appendix A (the last
section in this User’s Guide).

USING THE WORKFLOW FOR SPT

[discourage using the workflow since it's less powerful, it is slower (not
demonstrated in this tutorial), and it is not as well maintained, so use it at
your own risk.

The workflow is supposed to provide a holistic GUI approach to most things here
described (except initial model building and reference preparation). Use it if you
don’t know that when you see <input> in the instructions of a tutorial you actually
need to substitute it for the name (or path) to a file, and that whenever you see
<output> it’s an opportunity for you to define the name of the file where you want to
save your results.

Start with the following command:

e2workflow.py

Select SPT under “Workflow mode”:

36

EMAN_Z Project Manager

Project Name: Unknown

Workflow Mode SPT = |[EMAN2 Program Interface

Tomography
& Import Tomogram Files
Box Tomogram Files
Examine Missing Wedges
®2 Tomogram Alignment and Averaging
®2 Tomogram Alignment, Break Sym
®2 Tomogram Alignment, Using Symmetry
8 Align to Symmetry Axis
@ Estimate Resolution via FSC

Select Box Tomogram Files (ignore the Import Tomogram Files option).

Jump directly to Tomogram Alignment and Averaging, filling in the parameters as
desired/needed.

APPENDIX A
TASK1

Step 1: Box one particle (as instructed at the beginning of this tutorial).

1.0) Open the phase-plate data tomogram from the command line:
eZspt_boxer.py el5pp_tomo_bin2.mrc --yshort --inmemory

1.1) Set the box size parameter to 140 in the Main tomoboxer window.

1.2) Select ONE particle by centering the mouse’s cursor over it and pressing
left-click (you can tweak the center by holding left-click and dragging)

1.3) Click on File, select Save Box Coord, and save the coordinates of this
particle to a.txt file (proposed filename: e15pp_set1_coords.txt).

1.4) Click on File, select Save Boxes as Stack, and save the actual particle to
an .hdf file (proposed filename: e15pp_set1_stack.hdf).

You MUST type in the appropriate format, both when you save a
coordinates file or a stack.

1.5) Close eZspt_boxer, then check out your boxed particle
eZdisplay.py el5pp_set1_stack.hdf

37

A GUI will come up showing the volume; middle click on it to bring up a panel
with viewing options (you can display the particle at different thresholds, but
this might be very slow on certain computers).
Step 2: Visualize the icosahedral reference (for details on reference and particle
“preparation for alignment” check the corresponding section earlier in this tutorial)

2.0) Find the prepared symmetric reference with this file name:
el5ref prep_icos_binZ2.hdf

2.1) Make sure it has exactly the same box size (nx, ny and nz values on the
header) and a similar apix (apix_x, apix_y and apix_z values on the header) as
the boxed particle. To look at the header of each file, execute these
commands:

eZiminfo.py el5ref prep_icos_binZ2.hdf --header

eZiminfo.py el5pp_set1_stack.hdf --header

Step 3: Align one particle to a reference

3.0) This command looks discontinuous here, but it should be ONE single line
with all the parameters in a row; there should be a single space separating
each option that starts with “--”, for example, --A --B --C ... --N... etc.

There should be NO spaces after double dashes “--” or colons “:”

You can change the value after --parallel=thread to match the number of

processors on your computer.

eZspt_classaverage.py --input=el5pp_set1_stack.hdf --
ref=el5ref prep_icos_binZ.hdf --npeakstorefine=12 --verbose=3 --
mask=mask.soft:outer_radius=48 --highpass
filter.highpass.gauss:cutoff. freq=0.005 --
align=rotate_translate_3d_tree:sym=icos --parallel=thread:2 --
path=spt_phase_plate --goldstandardoff

Step 4: Apply symmetry to the aligned particle

The aligned particle will be in the directory defined through --path, and will
be saved to “final_avg.hdf” by default.

4.0) Go into the output directory:
cd spt_phase_plate

4.1) Apply symmetry to the aligned particle by executing this command:
eZproc3d.py final_avg.hdf final_avg_icos.hdf --sym=icos

4.2) Look at the aligned particle after having applied icosahedral symmetry:
eZdisplay.py final_avg_icos.hdf

38

It should look similar to this:

The particle looks different at different thresholds (click the middle mouse
button on the isosurface to get access to the threshold bar), and depending
on what particle you picked (some are nicer than others; actually, some
particles might not align well at all). You can color the volume with Chimera
to ease visualization. If you can see the threefold density highlighted by the
red circle and triangle, you're doing things right.

Step 5: CONTROL 1

5.0) Apply icosahedral symmetry to the raw boxed particle (before it was
aligned).

eZproc3d.py el5pp_setl_stack.hdf el5pp_setl_stack_icos.hdf --sym=icos

Step 6: CONTROL 2

6.0) Go back to the tomogram and box out an “empty particle” with a 140 box
size and save it to an .hdf file (proposed name: empty.hdf; basically, choose a
region of the tomogram where you see no particles; you thus will box only
ice).

6.1) Align the garbage “particle” just like the first one (copy the command
from the previous alignment and just supply the garbage particle through the
--input option and choose a sensible name for the output directory, such as --
path=spt_empty_particle):

39

eZspt_classaverage.py --input=empty.hdf --ref=e15ref prep_icos_bin2.hdf --
npeakstorefine=12 --verbose=3 --mask=mask.soft:outer_radius=48 --highpass
filter.highpass.gauss:cutoff. freq=0.005 --
align=rotate_translate_3d_tree:sym=icos --parallel=thread:2 --
path=spt_empty_particle --goldstandardoff

6.2) Go into the output directory:
cd spt_empty_particle

6.2) Apply symmetry to the aligned garbage particle:
eZproc3d.py final_avg.hdf final_avg_icos.hdf --sym=icos

You should also get trash this time too:
7 ot &

CONCLUSION:
You can’t get a decent icosahedral average just out of anything.

TASK2

Step 7: Box a larger set/stack
7.0) Go back to the tomogram and box out 5 particles. Save the coordinates
(just as a backup so you don’t have to rebox if the computer crashes) and the
data as a stack, with .hdf format (proposed file name: e15pp_set5_stack.hdf)

Step 8: Align and average a stack
8.0) Align the dataset with multiple particles; make sure to take advantage of
parallelization if you have more than one processor, and select a sensible
name for the directory, such as --path=spt_set5

eZspt_classaverage.py --input=el5pp_set5_stack.hdf --

ref=el5ref prep_icos_binZ.hdf --npeakstorefine=12 --verbose=3 --
mask=mask.soft:outer_radius=48 --highpass

filter.highpass.gauss:cutoff. freq=0.005 --
align=rotate_translate_3d_tree:sym=icos --parallel=thread:2 --path=spt_set5 --
goldstandardoff

8.1) Go into the output directory
cd spt_seth

40

8.2) View the average. (It will still be very noisy)
eZdisplay.py final_avg.hdf
K g o,

Step 9:
9.0) Filter the average at 100A and view it again.
eZproc3d.py final_avg.hdf final_avg_Ip100.hdf --
process=filter.lowpass.tanh:cutoff freq=0.01

eZdisplay.py el5pp_set5_shrink2_average_Ip100.hdf

It might look something like this (the missing wedge is still heavily affecting
it).

(You could have filtered the average automatically by setting the --
postprocess= filter.lowpass.tanh:cutoff freq=0.01 option in eZclassaverage.py)

9.1) Apply symmetry to the average and look at it again.
eZproc3d.py final_avg.hdf final_avg_icos.hdf --sym=icos

eZdisplay.py el5pp_set5_shrink2_average_icos.hdf

41

Implement an easy trick to minimize the missing wedge effects in the
asymmetric 5-particle average (basically, randomize the position of the
missing wedge before aligning the particles against the symmetric reference).

10.0) Open EMANZ2’s iPython programming interface:
e2.py

10.1) Find the number of particles in your stack and save it to a variable (‘'n’):
n = EMUtilget_image_count(“el5pp_set5_stack.hdf”)

10.2) Import python’s random module
from random import *

10.3) Rotate the particles by a random amount in all three angular directions
and write them out to a new stack file (the tab in the lines following the “for
loop” are a MUST):
foriinrange(n):
a=EMData(“el5pp_set5_stack.hdf”,i)
a.rotate(randint(0,360),randint(0,180),randint(0,360))
a.write_image(“el5pp_set5_stack_rand.hdf”,i)

To run the for loop and end it, just press “enter” twice.
Then, to exit the iPython interface type:

Exit

Then press ‘enter’.

Step 11: Repeat steps 8 and 9 for the new “randomized” set.

11.0) Align and average the randomized set, specifying a sensible name for
the output directory; e.g., --path=spt_randomized_set5

eZspt_classaverage.py --input= el5pp_set5_stack rand.hdf --

ref=el5ref prep_icos_binZ.hdf --npeakstorefine=12 --verbose=3 --
mask=mask.soft:outer_radius=48 --highpass

filter.highpass.gauss:cutoff. freq=0.005 --
align=rotate_translate_3d_tree:sym=icos --parallel=thread:2 --
path=spt_randomized_set5 --goldstandardoff

Note that (in theory), instead of randomizing the orientations of the input
data manually as done in step 10, you could have achieved the same effect by
supplying --randomizewegde to e2spt_classaverage.py

eZspt_classaverage.py --input= el5pp_set5_stack rand.hdf --
ref=el5ref prep_icos_binZ.hdf --npeakstorefine=12 --verbose=3 --
mask=mask.soft:outer_radius=48 --highpass
filter.highpass.gauss:cutoff. freq=0.005 --

42

align=rotate_translate_3d_tree:sym=icos --parallel=thread:2 --
path=spt_randomized_set5 --randomizewegde --goldstandardoff

11.1) Go into the output directory
cd spt_randomized_set5

11.2) Filter the average to 1004 and view it
eZproc3d.py final_avg.hdf final_avg_Ip100.hdf --
process=filter.lowpass.tanh:cutoff freq=0.01

eZdisplay.py final_avg_Ip100.hdf

The missing wedge seems to be completely filled in now, and the icosahedron
shape is evident even though symmetry has not applied to the average (you
can apply symmetry, as done in previous examples).

TASK4
Step 12: Asymmetric averaging

12.0) Box some more particles if you wish, with the same box size (proposed
filename: e15pp_set10_stack.hdf)

12.1) Find the asymmetric reference
el5ref prep_icos_binZ2.hdf

12.2) Align your largest data set against the asymmetric reference.

eZspt_classaverage.py --input=el5pp_set10_stack.hdf --ref=

el5ref prep_asym_bin2.hdf --npeakstorefine=12 --verbose=3 --
mask=mask.soft:outer_radius=56 --highpass

filter.highpass.gauss:cutoff. freq=0.005 --align=rotate_translate_3d_tree --
parallel=thread:2 --path=spt_asym_set5 --goldstandardoff

Note that the mask radius has been made larger (to avoid chopping off the
tail) and the “sym=icos” part has been dropped from the aligner (in fact, the
aligner could be dropped altogether, since in the above command it matches
the default value).

43

What you’ll get is uncertain. It actually depends on what particles you picked.
This data isn’t “ideal” in that some el5 particles are too close to other el5
particles; so fancier things might be needed to be able to align the particles
asymmetrically and actually have the virus tails match.

44

