Lecture 11

Team Learning Embedded Computing and Making

> Prof. Steven Ludtke N420, <u>sludtke@bcm.edu</u>

Inside a Computer

Making

- Computer controlled Mills and Lathes
- 3D Printers
 - <u>http://www.thingiverse.com/</u>
 - <u>http://3dprint.nih.gov/</u>
- Embedded processors
 - sensors
 - motors
 - displays

Embedded Computers

		OS	Speed	I/O	Cost
Arduino		None	8/16 Mhz	14-54 digital, 6-14 PWM, 6-16 analog + Shields !	\$6-65
Trinket Pro		None	16 Mhz	18 digital, 2 analog, 6 PWM, 1 SPI	\$9
BeagleBone Black		Linux + Ard I/O	1 Ghz	HDMI, Ethernet, 2 USB, 65 digital, 8 PWM, 4 timers, 7 analog, 4 serial, 2 I2C, 2 SPI	\$45
Raspberry Pi2/3/0		Linux	900 Mhz quad	4 USB, HDMI, Vid, Audio, Ethernet, SD, Camera, GPIO, I2C, SPI	\$35
Intel Edison	What will you make?	Linux	Dual Core 500Mhz	WiFi, Bluetooth 4, I2C, SPI,14 digital, 4 PWM	\$40

Sensors

Magnetic spring Module

High-sensitive voice sensor Module

Metal touch sensor Module

Hall sensor Module **Finger-Pulse sensor Module**

Flame sensor Module

Microphone sensor Module Obstacle avoidance sensor Module

Passive Buzzer Module

Colorful Auto-flash Module infrared-transmit Module

Light break sensor Module

Photo resistor sensor Module

hydrargyrum-switch sensor Module Infrared-receive sensor Module

Push button Module

Laser-transmit Module

humiture sensor Module

Knock sensor module

two-color commoncathode LED Module

Tracking sensor Module

tilt-switch Module

Rotate-encode Module

Joystick PS2 Module

Shock-switch sensor Module

Relay Module

Active buzzer Module

Analog-temperature sensor Module

18b20 temperature sensor Module RGB LED Module

Magic-ring Module

Motors

DC/AC Motor Speed Control		Constant Voltage with Duty Cycle	1 PWM & Power Amp	
Gearbox Motor	Speed Control	Same, but slower	1 PWM & Power Amp	
Continuous Servo	ContinuousDigital SpeedServoControl		1PWM	
Standard Servo Control Angle		PWM Controls Angle	1PWM	
Stepper	Digital Positioning	Stepping Sequence	Unipolar: 4 digital + Amp	

Raspberry PI2

- The Raspberry Pi is a series of credit card-sized single-board computers developed in England, United Kingdom by the Raspberry Pi Foundation with the intention of promoting the teaching of basic computer science in schools and developing countries → \$35
- A 900MHz quad-core ARM Cortex-A7 CPU (~0.35 GFlops) Linux PC
- 1GB RAM
- 4 USB ports, HDMI, Ethernet
- 40 GPIO pins
- Camera interface (CSI)
- Display interface (DSI)
- Micro SD card slot
- VideoCore IV 3D graphics core

Raspberry PI2

Optical Sensor

Raspberry Pi and Motor Controller

Motor

3 Choices

- NeoPixel Strip with 8 RGB Pixels (x10)
 - 8 Pixel strip, full RGB
 - easiest

- SenseHat (x4)
 - 8x8 RGB display
 - mini-joystick
 - 6 Environmental Sensors

- Camera Module (x1)
 - Good quality still/video camera

CLASS PROJECTS

- Must do something useful in some specific context
- Not be trivial
- If you have past programming experience I will expect more

• Please follow these instructions exactly:

- Your class project MUST be submitted by **11:59 PM on Sat, Feb 24**. No revisions will be accepted after this time. You can use Sunday to prepare your oral presentation
- Your submission should consist of:
- one or more .py files (should have sufficient comments to figure out how they work)
- any necessary additional files to demonstrate that the program works
- A 1-2 page PDF file with a brief description of your program, what inputs the program takes, what outputs the program produces, and what it is supposed to do.
- The final item in the PDF should be a command-line to use in running the program, and any necessary instructions to demonstrate that it works.
- Combine all files into a .zip file named: Familyname_Givenname_project_2018.zip
- Email sludtke@bcm.edu with the subject "Class project submission", and attach the .zip file. If the file is too large for email, feel free to transfer it via Box, DropBox, etc.