
Introduction to
Programming for

Scientists
Prof. Steven Ludtke

N420, sludtke@bcm.edu

Lecture 2:
Conditions, Loops & Data

Reminder

• Class material at:

http://blake.bcm.edu/IP18

• (unfinished) intro to programming book posted
on class wiki above. Please don't redistribute.

• If you missed the first lecture, it is archived on
the site above.

http://blake.bcm.edu/IP18

Python
• Data storage

• ‘simple’ types - numbers, strings, ...
• compound types - lists, dictionaries, sets, ...

• Operate on data
• statements - a=b*10, print(b*5+3, ...
• functions - sin(a), len(x), ...
• methods (functions on an object) - “abc”.count(“b”)

• Program Flow
• for ... in ...
• if, else
• while ()

• Interact with the outside world
• User interactions - raw_input()
• Disk and other device access - file i/o

Type conversion
Type Creation Conversion

integer number, no decimal int()
floating point use decimal point float()

boolean True or False bool()
complex x+yj complex()

string "X", 'X', """X""", '''X''' str()
list [a,b,…] list()

tuple (a,b,…) tuple()
set {a,b,...} set()

dict {a:b,c:d,...} dict()

Python
• Data storage

• ‘simple’ types - numbers, strings, ...
• compound types - lists, dictionaries, sets, ...

• Operate on data
• statements - a=b*10, print(b*5+3, ...
• functions - sin(a), len(x), ...
• methods (functions on an object) - “abc”.count(“b”)

• Program Flow
• for ... in ...
• if, else
• while ()

• Interact with the outside world
• User interactions - raw_input()
• Disk and other device access - file i/o

Operators
• + - add (number), concatenate (list,str)

• - - subtract (number), difference (set)

• * - multiply (number), replicate copies (list,str)

• / - division (number)

• // - integer division (number)

• ** - raise to power (number)

• % - modulus (number), string format (str)

• & - logical and (number), intersection (set)

• | - logical or (number), union (set)

• ^ - logical exclusive or (number), symmetric difference (set)

Operators, Functions and
Methods

• Operators : +, -, *, /, %, …

• Functions : sin(x), cos(y), len(s)

• normally return a value

• Not type-specific

• Methods : st.upper(), lst.append(5), lst.sort()

• functions applied to a specific “object”

• don't always return anything

• methods are type-specific

Methods of Strings
• Remember strings are immutable !

• count, find

• replace

• split

• join

• in (statement, not a method)

Python
• Data storage

• ‘simple’ types - numbers, strings, ...
• compound types - lists, dictionaries, sets, ...

• Operate on data
• statements - a=b*10, print(b*5+3, ...
• functions - sin(a), len(x), ...
• methods (functions on an object) - “abc”.count(“b”)

• Program Flow
• for ... in ...
• while ()
• if, else

• Interact with the outside world
• User interactions - raw_input()
• Disk and other device access - file i/o

Simple Program Flow

• if condition :
• Boolean operators

• >, <, <=, >=, ==, !=, and, or, not, in
• for i in list:

for Loops
• Execute 'code' for each item in list, assigning the element

to 'var' in each cycle:
for var in list:

code

Example:
a=[1,2,3,4,5]
for i in a:

print(i,i*2)

Comments

• Anything after ‘#’ on a line is a comment

Homework #2
For all homework assignments, you are free to consult others on concepts, but the
final code you turn in should be your own. If you are just learning programming for
the first time, I would suggest that you try to spend at least 30 min thinking about
each problem before seeking assistance. Even then, the first few assignments
may be frustrating and time consuming, but if you don't practice the fundamentals
now, you may be in real trouble later in the class. The only way to learn
programming is by doing it. There are many possible solutions to each of these
problems. If you need help, you can contact the TA or email me at any time, or find
me any time my office door is open (mornings are usually better). While it may be
possible to Google answers to some of these homework assignments, you won't
learn much if you solve them this way. We will go over the solutions at the
beginning of each class, so the homework must be emailed my midnight the
previous night, as lecture notes will be posted the following morning !

To hand in your homework: At this point in the term, you will use Jupyter Notebook
to create your homework solution(s) as blocks of code, with "Markdown" blocks for
any descriptive text and comments (use #) to document the program inline.
Download the notebook as a .ipynb file and email that as an attachment to:

James.Bell@bcm.edu, muyuan.Chen@bcm.edu, sludtke@bcm.edu

mailto:James.Bell@bcm.edu?subject=
mailto:muyuan.Chen@bcm.edu
mailto:sludtke@bcm.edu

Homework #2

1. From grade school, you will recall that a factor is any integer that another
integer is divisible by. For example, the factors of 12 are 1,2,3,4,6,12. There is
the extended concept of prime factors which include only the factors which are
prime numbers, but that is not our concern in this problem. Write a program to
ask the user for an integer, and display all of the number's factors (exclude 1
and the number itself). No cheating and using a library function to do this. You
should write the code using for loops, if statements and basic math.

2.Write a program to identify the winner of a rock,paper,scissors game. Ask the
user what player 1 picked (rock, paper or scissors), then ask what player 2
picked. Finally, print the winner (player 1, 2 or tie)

