
Introduction to Programming for Scientists

Prof. Steven Ludtke

N420, sludtke@bcm.edu

Lecture 3:
Writing Programs

Group Learning 2

last=input("Max: ")
for i in range(1,last,2):
print(i,i*i)

x=1
y=1.0
for i in range(2,30):
x=x*i
y=y*i
print(i,x,y,x/y)

Group Learning 2

Homework 2.1
• From grade school, you will recall that a factor is

any integer that another integer is divisible by. For
example, the factors of 12 are 1,2,3,4,6,12. There is
the extended concept of prime factors which
include only the factors which are prime numbers,
but that is not our concern in this problem. Write a
program to ask the user for an integer, and display
all of the number's factors (exclude 1 and the
number itself). No cheating and using a library
function to do this. You should write the code using
for loops, if statements and basic math.

Homework 2.1

num=int(input("Enter a number:"))
for i in range(2,num):
 if num%i==0 : print(i)

Homework 2.1

num=int(input("Enter a number:"))
for i in range(2,num/2+1):
 if num%i==0 : print(i)

Homework Review

2. Write a program to identify the winner of a
rock,paper,scissors game. Ask the user what player 1
picked (rock, paper or scissors), then ask what player 2
picked. Finally, print the winner (player 1, 2 or tie)

Programming

• How do we represent the data ?

• Break the task into small pieces

• Code each of the pieces

Programming

• How do we represent the data ?
• Data -> selection of player 1 and player 2, string?

• Break the task into small pieces
• Ask for player 1 choice
• Validate and standardize input
• repeat for player 2
• compute outcome
• display result

• Code each of the pieces

import sys

pick1=input("Player 1 (rock, paper, scissors): ")
if pick1 not in ("rock","paper","scissors"):

print "Bad input!"
sys.exit(1)

pick1=pick1[0].lower()

Functions
A function is used when some action needs to be
completed in different parts of a program, or re-
used in multiple programs. It allows code to be
grouped in a self-contained block, and can also

make debugging easier.

Generally it is not good practice to make functions
that are called only one time strictly for

organizational purposes. Use comments instead.

Examples
def middle(x): return int(str(x)[1:-1])

def between(lo,val,hi):

"""Checks to see if val is between lo and hi"""

if lo<val and val<hi : return True

else: return False

def cmp(a,b):

"""Compare the second element of list a to list b for
use with sort(), returns -1, 0 or 1"""

return a[1]-b[1]

help()

• help(object) - gives help on the object. Returns the
string immediately following the object definition.

def rps(name):
ret=""
while ret not in ("rock","paper","scissors"):
ret=input(name+" (rock,paper,scissors): ")

return ret[0].lower()

pick1=rps("Player 1")
pick2=rps("Player 2")

pick1=rps("Player 1")
pick2=rps("Player 2")

if pick1==pick2 : print "Tie!"
elif pick1=="r" and pick2=="p": print "Player 2 wins!"
elif pick1=="p" and pick2=="r": print "Player 1 wins!"
elif pick1=="s" and pick2=="r": print "Player 2 wins!"
elif pick1=="r" and pick2=="s": print "Player 1 wins!"
elif pick1=="p" and pick2=="s": print "Player 2 wins!"
elif pick1=="s" and pick2=="p": print "Player 1 wins!"

pick1=rps("Player 1")
pick2=rps("Player 2")

table={("r","p"):2, ("p","r"):1, ("s","r"):2, … }

print("Player",table[(pick1,pick2)],"wins")

try, except

• A way to avoid having errors crash your program

• An alternative to lots of ‘if’ statements

• try: - try to do something

• except <exception>: - if something specific fails, do this

• except: - if anything else fails, do this

• http://docs.python.org/library/exceptions.html

http://docs.python.org/library/exceptions.html

import sys
pick1=rps("Player 1")
pick2=rps("Player 2")

table={ ("p","r"):"Paper covers rock",
("r","s"):"Rock breaks scissors",
("s","p"):"Scissors cuts paper" }

if pick1==pick2 :
print("Tie!")
sys.exit(0)

try:
print(table[(pick1,pick2)], "Player 1 wins!")

except:
print(table[(pick2,pick1)], "Player 2 wins!")

DNA → Protein

• Write a program to convert a file containing a DNA
sequence to its corresponding protein sequence*.

* - ignoring post-translational modifications, splicing, and other issues, just a straight translation

Programming

• How do we represent the data ?

• Break the task into small pieces

• Code each of the pieces

Start with the team learning exercise

 cgccatggag accaacaccc ttcccaccgc cactccccct tcctctcagg gtccctgtcc 0
 cctccagtga atcccagaag actctggaga gttctgagca gggggcggca ctctggcctc 120
 tgattggtcc aaggaaggct ggggggcagg acgggaggcg aaacccctgg aatattcccg 180
 acctggcagc ctcatcgagc tcggtgattg gctcagaagg gaaaaggcgg gtctccgtga 240
 cgacttataa aagcccaggg gcaagcggtc cggataacgg ctagcctgag gagctgctgc 300
 gacagtccac tacctttttc gagagtgact cccgttgtcc caaggcttcc cagagcgaac 360

Data Representation

• DNA sequence

• A string

• Strip out whitespace, numbers, etc

• Error checking ?

• Protein Sequence

• A string ?

• Translation Table

• Dictionary (?)

Represent as Dict

{0:['tag', 'taa', 'tga'], 'a':['gca', 'gcc', 'gcg', 'gct'],
'c':['tgt', 'tgc'], 'e':['gag', 'gaa'], 'd':['gat', 'gac'],
'g':['ggt', 'ggg', 'gga', 'ggc'], 'f':['ttt', 'ttc'],
'i':['atc', 'ata', 'att'], 'h':['cat', 'cac'],
'k':['aaa', 'aag'], 'm':['atg'],
'l':['tta', 'ttg', 'ctt', 'ctg', 'cta', 'ctc'],
'n':['aac', 'aat'], 'q':['cag', 'caa'],
'p':['cct', 'ccg', 'cca', 'ccc'],
's':['tct', 'tcg', 'tcc', 'tca', 'agc', 'agt'],
'r':['cgt', 'agg', 'cga', 'cgc', 'cgg', 'aga'],
't':['acc', 'act', 'aca', 'acg'], 'w':['tgg'],
'v':['gta', 'gtc', 'gtg', 'gtt'], 'y':['tat', 'tac']}

Represent as Dict
xlate={ "ttt":"f","ttc":"f","tta":"l","ttg":"l",
"ctt":"l","ctc":"l","cta":"l","ctg":"l","att":"i",
"atc":"i","ata":"i","atg":"m","gtt":"v","gtc":"v",
"gta":"v","gtg":"v","tct":"s","tcc":"s","tca":"s",
"tcg":"s","cct":"p","ccc":"p","cca":"p","ccg":"p",
"act":"t","acc":"t","aca":"t","acg":"t","gct":"a",
"gcc":"a","gca":"a","gcg":"a","tat":"y","tac":"y",
"taa":"0","tag":"0","cat":"h","cac":"h","caa":"q",
"cag":"q","aat":"n","aac":"n","aaa":"k","aag":"k",
"gat":"d","gac":"d","gaa":"e","gag":"e","tgt":"c",
"tgc":"c","tga":"0","tgg":"w","cgt":"r","cgc":"r",
"cga":"r","cgg":"r","agt":"s","agc":"s","aga":"r",
"agg":"r","ggt":"g","ggc":"g","gga":"g","ggg":"g"}

How does this influence the code ?

• DNA triplet -> Amino Acid

• Dict keyed by amino acid:

• for each key

• for each value of that key

• if match stop and return key

• Dict keyed by DNA triplet:

• Look up triplet, return value for key

Programming

• How do we represent the data ?

• Break the task into small pieces

• Code each of the pieces

Steps

• Read file from web

• Preprocess data (just the letters we want)

• Loop over the data 3 elements at a time

• Translate

• Print results

Group Learning 2
import urllib
seq=urllib.request.urlopen("https://www.ebi.ac.uk/ena/data/view/
M11717&display=text&download=txt&filename=M11717.txt").read()

The sequence will have numbers, spaces and newlines in it. This is
a typical DNA sequence representation. Come up with a strategy for
removing all of this annotation, and produce another string
containing just the sequence itself (acgt only).

Group Learning 2
Fix string issue:

import urllib
seq=urllib.request.urlopen("https://www.ebi.ac.uk/ena/data/view/
M11717&display=text&download=txt&filename=M11717.txt").read()
seq=str(seq,"utf-8")

The sequence will have numbers, spaces and newlines in it. This is
a typical DNA sequence representation. Come up with a strategy for
removing all of this annotation, and produce another string
containing just the sequence itself (acgt only).

Group Learning 2
For machines with incorrect SSL configuration (certificate error):

import urllib
import ssl
context = ssl._create_unverified_context()
seq=urllib.request.urlopen("https://www.ebi.ac.uk/ena/data/view/
M11717&display=text&download=txt&filename=M11717.txt",context=conte
xt).read()
seq=str(seq,"utf-8")

The sequence will have numbers, spaces and newlines in it. This is
a typical DNA sequence representation. Come up with a strategy for
removing all of this annotation, and produce another string
containing just the sequence itself (acgt only).

Group Learning 2
Fix string issue:

import urllib
seq=urllib.request.urlopen("https://www.ebi.ac.uk/ena/data/view/
M11717&display=text&download=txt&filename=M11717.txt").read()
seq=str(seq,"utf-8")
dna=seq[6050:]

The sequence will have numbers, spaces and newlines in it. This is
a typical DNA sequence representation. Come up with a strategy for
removing all of this annotation, and produce another string
containing just the sequence itself (acgt only).

Read Data & Preprocess

import urllib
seq=urllib.request.urlopen("https://www.ebi.ac.uk/ena/data/
view/
M11717&display=text&download=txt&filename=M11717.txt").read()
dna=str(seq,"utf-8")

find the sequence ?
dna=dna.split("SQ")[1]
dna=dna[dna.find("\n")+1:]

… but what if there is a "SQ" in the middle of the text
somewhere?

Read Data & Preprocess

import urllib
seq=urllib.request.urlopen("https://www.ebi.ac.uk/ena/data/
view/
M11717&display=text&download=txt&filename=M11717.txt").read()
dna=str(seq,"utf-8").split("\n")

for i,ln in enumerate(dna):
 if ln[:2]=="SQ" : break

dna="".join(dna[i+1:])

New concepts

• enumerate(list)

• returns [(0,item0),(1, item1),(2,item2)…]

• break

• exits a 'for' loop prematurely

Read Data & Preprocess
import urllib
seq=urllib.request.urlopen("https://www.ebi.ac.uk/ena/data/
view/
M11717&display=text&download=txt&filename=M11717.txt").read()
dna=str(seq,"utf-8").split("\n")

for i,ln in enumerate(dna):
 if ln[:2]=="SQ" : break
dna=" ".join(dna[i+1:])

This uses the 'deletechars' option of the string translate
method to remove characters we don't want. Technically
we could also add an upper->lower conversion
dna=dna.translate(str.maketrans("CAGT","cagt","/0123456789
\t\n\r"))

Loop & Translate

out=[]
for i in range(0,len(dna),3):
 triplet=dna[i:i+3]
 try: amino=xlate[triplet]
 except:
 print("Unknown triplet: ",triplet)
 break
 out.append(amino)

out="".join(out)
print(out)

Put it all together
import urllib
seq=urllib.request.urlopen("https://www.ebi.ac.uk/ena/data/view/
M11717&display=text&download=txt&filename=M11717.txt").read()
dna=str(seq,"utf-8").split("\n")

for i,ln in enumerate(dna):
 if ln[:2]=="SQ" : break
dna=" ".join(dna[i+1:])

dna=dna.translate(str.maketrans("CAGT","cagt","/0123456789 \t\n\r"))

xlate={"ttt":"f","ttc":"f", …}

out=[]
for i in range(0,len(dna),3):
 triplet=dna[i:i+3]
 try: amino=xlate[triplet]
 except:
 print("Unknown triplet: ",triplet)
 break
 out.append(amino)

out="".join(out)
print(out)

Nested Loops

• a loop inside a loop
for i in range (10):

for j in range(10):

print i,j

• Continue/break - interrupting the flow of a loop
for i in range(20):

if i==5 : continue

if i>17 : break

print i

While Loops

• While loop - continues as long as a condition is met  

a=0

while a<10:

a=a+0.1

print a

Homework #3

1. Start with the simple DNA -> Protein translation program we wrote in class today. Let's assume
that we've dealt with identifying a promotor, etc, and that the sequence we're getting is within a
few residues of being the start of a coding region of DNA. However, the exact frame hasn't been
identified, and clearly if we start with a frame shift we'll get the wrong sequence. Modify the
program to identify the correct frame by assuming the first ATG we find represents the beginning
of the coding region, then translate only until a stop codon is found. example: if your program were
given 'gatggcagct aaagacgtaa aatgaaaa' it should produce ‘maakdvk'

2. Write a simplified amortization program, that is, a program that keeps track of how much you still
owe on a loan. We will simplify the math a bit: Assume that each month, the amount increases by
the balance times 1/12 the interest rate and decreases by the amount of the fixed monthly
payment. You should ask the user for the amount of the loan, the annual percentage interest rate,
and the payment amount. For each month, print the payment number, interest for the month, and
the remaining balance on the loan after the payment. Continue to write out new months until the
loan is payed off.

Due before class next Friday. Monday is a holiday, no class!

