
CIBR Parallel Computing 
Mini-workshop

Slides available at: 
http://blake.bcm.edu/emanwiki/CIBRClusters

Prof. Steven Ludtke 
N420, sludtke@bcm.edu

CIBR_clusters.key - February 6, 2018



Part 1

Cluster Architecture

CIBR_clusters.key - February 6, 2018



Shared or Distributed ?

CPU CPU CPUCPU

RAM RAM RAMRAM

CPU CPU

CPUCPU

RAM

Network

Easy Parallelism Inexpensive

CIBR_clusters.key - February 6, 2018



Shared or Distributed ?

CPU CPU CPUCPU

RAM RAM RAMRAM

CPU CPU

CPUCPU

RAM

Network

Easy Parallelism Inexpensive

GPUCPU

RAMRAM

GPU Computing

CIBR_clusters.key - February 6, 2018



Units

FLOPS/s - FLoating point OPerationS per second


Kilo - 103 - 1000 (or 1024)


Mega - 106 - 1,000,000


Giga - 109 - 1,000,000,000


Tera - 1012 - 1,000,000,000,000


Peta - 1015 - 1,000,000,000,000,000

CIBR_clusters.key - February 6, 2018



SMP or Distributed
1964, CDC 6600, $60m (2012 $), 500 KFlops, 1 CPU


1977, CRAY 1, $33m, 80 MFlops, 1 CPU


1984, CRAY XMP, $25m, 800 MFlops, 4 CPUs - vector


1987, CM-2, $22m, 6 GFlops, 65,536 CPUs, 2048 MPU


1996, Origin 2000, ~$3m, 10 GFlops, 32 CPUs SMP


2005, Cluster, $0.4m, 900 GFlops, 106 nodes, 212 cores


2011, Cluster, $0.22m, 5.5 TFlops, 48 nodes, 576 cores


2014, Cluster, $0.29m, 40 TFlops, 40 nodes, 960 cores


2015, Tesla K80 GPU, $0.005m, 5.6 TFlops, ~5000 cores


2018, Titan V GPU, $0.003m, 110 TFlops, ~6000 cores

S

S

S

D

S

D

?

?

!

iPhone4S

iPhoneX

CIBR_clusters.key - February 6, 2018



Relative Scaling

1996 2006 2016

CPU 
(workstation) 0.1 GFLOPS/s 20 GFLOPS/s 1000 GFLOPS/s

GPU 50 GFLOPS/s 10,000 GFLOPS/s

Disk Capacity 1 GB 100 GB 10 TB

Disk I/O 8 MB/s 80 MB/s 600 - 1500 MB/s

Network 10 Mb/s 100 Mb/s 1000 Mb/s

CIBR_clusters.key - February 6, 2018



Relative Scaling

1996 2006 2016

CPU 
(workstation) 0.1 GFLOPS/s 20 GFLOPS/s 1000 GFLOPS/s

GPU 50 GFLOPS/s 10,000 GFLOPS/s

Disk Capacity 1 GB 100 GB 10,000 GB

Disk I/O 8 MB/s 80 MB/s 600 - 1500 MB/s

Network 10 Mb/s 100 Mb/s 1000 Mb/s

100x in 10 
years

10x in 10 
years

CIBR_clusters.key - February 6, 2018



Typical 
Rack 42U

CIBR_clusters.key - February 6, 2018



Cluster Hardware

2U

4 nodes
• 1 Chassis:


• 4 nodes

• 2 processors/node:


• 16 cores/processor

• 96 GB RAM/node

• 2 TB Hard Drive/node


• 10 Gb ethernet/IB

• 128 cores 

• 16 TFLOPS (peak)

• 100 GB/sec RAM


• 384 GB RAM (3GB/core)


• $40,000 ($312/core)

CIBR_clusters.key - February 6, 2018



Cluster Hardware
1 Rack:


20 * 2U ->


$40,000 * 20 -> $800k + ~$30k (rack, etc.)


20*128 cores -> 2560 cores


300 TFLOPS Peak


~30 KW


30 KW * 8700 hr/yr = 260 MWH/yr


~$30,000/yr electric bill


A/C bill !?

CIBR_clusters.key - February 6, 2018



Why Do I care?  I'm bored!

7.2. Review Criteria (XSEDE, FREE CLUSTER TIME)


 1. Appropriateness of Methodology: ...


 2. Appropriateness of Research Plan: ...


 3. Efficient Use of Resources: The resources selected should be used 
as efficiently as is reasonably possible and in accordance with the 
recommended use guidelines of those resources. For computational 
resources, performance and parallel scaling data should be provided 
along with a discussion of optimization and/or parallelization work to 
be done to improve the applications. If the reviewers conclude that 
the request is more appropriate on XSEDE resources other than 
those requested, they may recommend an allocation on those other 
resources instead.

CIBR_clusters.key - February 6, 2018



Comparison of Languages

Language Time
C++ (-O2) 1

C++ (no opt) 2
Javascript (JIT) 2

Java 5.1
Python 16.5
Perl 24.6
PHP 55.6

Loop/Array/Math Benchmark

CIBR_clusters.key - February 6, 2018



Quad Core Cache Structure
Core 1 Core 2 Core 3 Core 4

RAMDISK &

Network

Registers Registers Registers Registers

Extra

Super

Speedy

Super

Speedy

Just

Speedy

Meh

Ouch

Full Speed

CIBR_clusters.key - February 6, 2018



Speed
300,000 MIPS - (Million instructions per second) current peak 
capabilities of a single CPU (with multiple cores)


100,000 MB/sec - Level 1 cache memory bandwidth (32 kbytes/core)


50,000 MB/sec - Level 2 cache memory bandwidth (256 kbytes/core)


35,000 MB/sec - Level 3 cache memory bandwidth (8000 kbytes/CPU)


20,000 MB/sec - RAM (typical DDR3 dual channel)


8,000 MB/sec - PCIe x16 (2.0)


1,500 MB/sec - 12 drive RAID6 with PCIe controller or PCIe SSD


   800 MB/sec - QDR Infiniband


  150 MB/sec - Typical sequential disk read bandwidth for one drive


   100 MB/sec - Gigabit network

CIBR_clusters.key - February 6, 2018



Hypothetical Cluster

RAID

Storage 
Node

Head 
Node

Compute 
Node 1

Compute 
Node 2

. . .

2000MB/sec

gigE 
Switch

100MB/sec

100MB/sec

Campus 
Network

Scratch

150MB/sec

Scratch

150MB/sec

CIBR_clusters.key - February 6, 2018



Hypothetical Cluster

RAID

Storage 
Node

Head 
Node

Compute 
Node 1

Compute 
Node 2

. . .

2000MB/sec

gigE 
Switch

100MB/sec

100MB/sec

Campus 
Network

Scratch

150MB/sec

Scratch

150MB/sec

IB 
Switch

1400MB/sec

CIBR_clusters.key - February 6, 2018



Part 2

Parallelism

CIBR_clusters.key - February 6, 2018



Simple Task

Take a 20 GB sequence and locate all of the TATA 
boxes within it.


Choice of language ?


Run on a cluster ?


Multiple cores ?


How long will it take to run ?


How to make it faster ?

CIBR_clusters.key - February 6, 2018



Simple Task

Take a 20 GB sequence and locate all of the TATA boxes within it.


20-120 s to read from disk, 200+ s to read on net


computation minimal


Choice of language ?  Doesn't matter


Run on a cluster ?  No


Multiple cores ?  No


How long will it take to run ?  Disk/Net limited


How to make it faster ?   Faster disk on local machine

CIBR_clusters.key - February 6, 2018



Another Task

You have 500, 4096x4096 pixel floating point images. 
You need to apply a (Fourier) low-pass filter to all of 
them


Run on multiple cores ?


Run on a cluster ?

CIBR_clusters.key - February 6, 2018



Another Task

You have 500, 4096x4096 pixel floating point images. 
You need to apply a (Fourier) low-pass filter to all of 
them


Read -> FFT -> multiply -> IFT -> Write


Image size: 64 MB


Total time for one image on desktop PC: ~3.5 sec


Run on multiple cores ?  Yes. I/O time 0.05 - 0.5 sec


Run on a cluster ?  Maybe, depends on next step

CIBR_clusters.key - February 6, 2018



Slightly Trickier

Iterative Image Alignment - You have a set of 1000, 
256x256 images:


average all images together


align each image to the average


repeat 10x


How to handle communications ?

CIBR_clusters.key - February 6, 2018



Amdahls Law

Speedup achievable with many processors is limited 
by the non-parallel portions of the task:


S=1/(B+(1-B)/n)


B=fraction of the code which cannot run in parallel


n=number of processors

CIBR_clusters.key - February 6, 2018



CIBR_clusters.key - February 6, 2018



Slightly Trickier

Iterative Image Alignment - You have a set of 1000, 
256x256 images:


average all images together


align each image to the average


repeat 10x


How to handle communications ?

CIBR_clusters.key - February 6, 2018



Slightly Trickier

average all images together


All images on 1 node ?  (serial !)


How else to handle ?


align each image to the average


Each node needs:


the reference


1 or more images to align

CIBR_clusters.key - February 6, 2018



Coarse vs Fine

Coarse-grained parallelism


Tasks are completely independent (may have shared 
input data)


Example: filter 1000 images


Fine-grained parallelism


Tasks need to communicate between each other 
continuously


Example: Matrix inversion

CIBR_clusters.key - February 6, 2018



Example

You have 200 sequences and wish to run a multiple 
sequence alignment against a set of 20 shorter 
reference sequences. How to parallelize ?

CIBR_clusters.key - February 6, 2018



Coarse Grained?
Each of the 200 sequences to one processor, which 
computes all of the 20 alignments for that sequence


Advantages:


Very coarse, easy to distribute


Potentially 'perfectly' parallel


Disadvantages:


Only works if you have at most 200 cores


If the 200 sequences vary significantly in length, 
total time will be limited by the longest sequence

CIBR_clusters.key - February 6, 2018



Fine Grained

Tackle 1 sequence and 1 reference at a time. Each 
processor helps compute the local score


Advantages:


Fine grained - more uniformly scalable


Disadvantages


May be VERY inefficient due to communications 
bottlenecks 

CIBR_clusters.key - February 6, 2018



Intermediate Approach
Split the overall process into 200*20 = 4000 
individual alignment tasks, and send one to each core 
as it becomes available


Advantages


Each task independent, so still 'perfectly' parallel


Parallelizable up to 4000 cores


Disadvantages


May still have some inefficiencies with differing 
sequence lengths, particularly for large number of 
processors

CIBR_clusters.key - February 6, 2018



MD Simulations

CIBR_clusters.key - February 6, 2018



MD Simulations
VERY high CPU/Disk ratio


Long-time single simulation


Many short-time simulations (folding@home)

All of our clusters combined 
total ~0.1 Petaflops

CIBR_clusters.key - February 6, 2018



Questions to Ask Yourself

Total time required for I/O


Possible to share data?


Total time required for processing


Memory usage


Interprocess communication

CIBR_clusters.key - February 6, 2018



CIBR_clusters.key - February 6, 2018



Where to Compute
Cost Best for Problems

CIBR Clusters Free+$ 
(co-op)

Moderate jobs, rapid 
access

Limited capacity, 
no GPU

XSEDE/TACC Free 
(application)

Large jobs or smaller 
jobs less urgency

Application, 
capacity limit, 
queue length

Amazon EC2 $$ - $$$ Urgent or very 
infrequent jobs

Expensive, 
significant setup, 
storage issues

Local Workstation $$$ up front  
$ long term

Large data + 
moderate compute

Limited compute 
capacity

CIBR_clusters.key - February 6, 2018



Where to Store
<10 TB 

~150 MB/s
<50 TB 

~1500 MB/s <1 PB Backup

Local Workstation $

Local Workstation 
(RAID) $$ $

Local Storage 
(NAS) $$ $-$$  

(but slow via net) $ $

CIBR  
(cluster use only) Free (limited) Free (limited)

IT Storage ??? ??? ??? ???

Cloud $$$ 
(slow outside cld) $$$ $$

CIBR_clusters.key - February 6, 2018



Part 3

Using Clusters

CIBR_clusters.key - February 6, 2018



The Command-Line

If you are not comfortable with the UNIX

command-line you will be forever limited

to applications pre-configured for you by


others (mostly in the cloud).

CIBR_clusters.key - February 6, 2018



Simple Unix Commands
ssh - log in to a remote computer


passwd - Change your password. Beware on clusters!


man - manual for other commands


ls - list current directory (folder)


cd - change directory


pwd - print working directory (where are you now)


cp - copy a file


mv - rename a file


rm - delete a file


cat, more, less - display text files on the terminal


nano - text editor, easy, almost ubiquitous


vi/vim - text editor, difficult to use, but ubiquitous

CIBR_clusters.key - February 6, 2018



Other Important Facts

echo $<NAME> - show a single environment variable


set - show all environment variables


export <NAME>=<VALUE>


$PATH - list of directories containing programs to run


$HOME - home directory. Also "~"


bash - typical default shell, others: csh, tcsh, zsh, ...


files starting with '.' are hidden, use 'ls -al'

CIBR_clusters.key - February 6, 2018



SSH

Virtually all clusters will be accessed using SSH


ssh <hostname>


ssh-keygen - to configure easier access/secure 
clusters


password for the machine


passphrase for the key (may be empty)


some machines require both!


$HOME/.ssh - where keys/config live, both ends

CIBR_clusters.key - February 6, 2018



SSH

in $HOME/.ssh


id_rsa - private! On machine logging in FROM


id_rsa.pub - copy contents to authorized_keys on 
machine you want to log in TO


authorized_keys - a list of id_rsa.pub lines for all 
of the machines you permit access FROM


ssh-agent - Permits keys with non-empty 
passphrases, but saves you from typing the 
passphrase over and over

CIBR_clusters.key - February 6, 2018



Hypothetical Cluster

RAID

Storage 
Node

Head 
Node

Compute 
Node 1

Compute 
Node 2

. . .

2000MB/sec

gigE 
Switch

100MB/sec

100MB/sec

Campus 
Network

Scratch

150MB/sec

Scratch

150MB/sec

IB 
Switch

1400MB/sec

CIBR_clusters.key - February 6, 2018



Linux Clusters
Every cluster is different. READ POLICIES!


When you log into a cluster, you are logging in to a 
head node


head nodes are used for compiling/installing software, 
configuring your account, and queueing jobs. NEVER 
run a job directly on the head-node.


Compute nodes are allocated, and jobs run by a BQS 
(Batch Queuing System)


Some clusters permit direct login to compute nodes 
via SSH. This is for checking/debugging jobs, NOT 
running them!

CIBR_clusters.key - February 6, 2018



How to

Interrogate

Your


Cluster !

CIBR_clusters.key - February 6, 2018



Cluster Resources
RTFM (http://blake.bcm.edu/CIBRClusters)


more /etc/hosts

df -h


mount


ifconfig or 'ip addr'

/proc filesystem (cpuinfo, meminfo)


'qstat -q' or sinfo 

Filesystem speed ?


dd if=/dev/zero of=tst bs=1M count=2000; sync; rm tst


Some clusters have a 'module' system (TACC)

CIBR_clusters.key - February 6, 2018



Subsystems
BQS (Batch Queuing System)


SLURM


PBS (OpenPBS, Torque, etc.)


SGE (Sun Grid Engine)


HTCondor (UW)


Parallelizing programs


pthreads


OpenMP


MPI

CIBR_clusters.key - February 6, 2018



OpenPBS/Torque

(CIBR prism cluster)

Edit batch script

Submit job (qsub)


to a specific queue (qstat -q)

Job waits in queue (qstat -a)

Nodes allocated ($PBS_NODEFILE)

Script run on the first node ($PBS_O_WORKDIR)

Cleanup/logfiles


Kill a bad job (qdel)

Accounting updated (resources used)

CIBR_clusters.key - February 6, 2018



Batch Script
#!/bin/bash

#

# This is an example PBS/Torque script 

# modify the number of nodes, ppn (processors per node), and walltime

#


#PBS -l nodes=2:ppn=12

#PBS -l walltime=2:00:00


cd $PBS_O_WORKDIR


YOUR COMMANDS HERE

qsub -q <queuename> myscript.pbs

CIBR_clusters.key - February 6, 2018



SLURM

(CIBR sphere cluster)

Edit batch script

Submit job (sbatch)


to a partition (sinfo, scontrol show partition)

Job waits in queue (squeue)

Nodes allocated ($SLURM_JOB_NODELIST)

Script run on the first node ($SLURM_SUBMIT_DIR)

or run tasks (srun)

Cleanup/logfiles


Kill a bad job (scancel)

CIBR_clusters.key - February 6, 2018



Batch Script
#!/bin/sh
#SBATCH --time=1:00 -n48 -p debug

cd /home/stevel/test

srun -c 1 -n 48 python test.py

CIBR_clusters.key - February 6, 2018



test.py

import time
import socket
import sys
import os

t=time.localtime()
print "{}: {}\t{:02d}:{:02d} - ".format(os.getenv("SLURM_PROCID"), 
socket.gethostname(),t.tm_min,t.tm_sec),
time.sleep(10)
t=time.localtime()
print "{:02d}:{:02d}".format(t.tm_min,t.tm_sec)

CIBR_clusters.key - February 6, 2018



Efficient Cluster Use

Many jobs can only work on full nodes. TACC clusters 
only allocate whole nodes at a time.


If you can run your job multithreaded, do that. Use 
one node per job, using all threads available.


If you have a lot of small jobs to run which take a 
similar amount of time, consider grouping them into 
node-sized sets, and queuing whole-node jobs.


NEVER launch hundreds of single-core jobs all at the 
same time.

CIBR_clusters.key - February 6, 2018



Being a good citizen

Virtually all clusters prohibit running programs that 
automatically queue cluster jobs


CIBR clusters need to balance big jobs and small jobs


When sphere is busy, single user can have at most 
10 nodes (240 cores)


If idle for a few hours, ok to use up to 240 more, 
but only for short (<8 hour) jobs


Every cluster will have its own policies. Read them!

CIBR_clusters.key - February 6, 2018



Part 4

Parallel Programming

(a very quick introduction)

CIBR_clusters.key - February 6, 2018



Parallel programming

OpenMP


pthreads


MPI


Other niche systems…

CIBR_clusters.key - February 6, 2018



OpenMP
Very good speedups with limited effort


(somewhat steep learning curve)


Same code can compile parallel and serial


One node only (SMP - symmetric multiprocessing)


Needs to be part of the compiler (available in gcc)


ie - no python/ruby


http://www.openmp.org

CIBR_clusters.key - February 6, 2018



pthreads

Only one node at a time (SMP)


shared memory -> easy communications


Somewhat painful to program


Synchronization issues


May be limits in some languages (Python, Ruby)


Available in multiple programming languages

CIBR_clusters.key - February 6, 2018



Python example:

from threading import Thread
import time,sys

def func(n):
        for i in range(10):
                time.sleep(1)
                print(n,i)
                sys.stdout.flush()

threads=[Thread(target=func,args=[i]) for i in range(4)]

for t in threads:
        t.start()
        time.sleep(0.1)

pthreads

CIBR_clusters.key - February 6, 2018



MPI
MPI: Message Passing Interface


Written by computer scientists for computer scientists


Operates on distributed processors


Bindings for many languages


Explicit interprocess communication via messages


All nodes run the same program


Communications problems are common


Zero fault tolerance

CIBR_clusters.key - February 6, 2018



MPI

Many variants - OpenMPI, MPICH, Intel MPI,…


mpicc - MPI aware C compiler


which mpicc - identify which MPI installation 


mpirun - convenient program launching tool


Runs the exact same program on each processor!


On most clusters, automatically talks to BQS

CIBR_clusters.key - February 6, 2018



MPI
Standard API, mpi4py different syntax


Outline of one strategy for MPI program:


MPI_Init() - Initialize MPI on all nodes


MPI_Barrier() - Synchronize nodes


MPI_Comm_rank() - Identify CPU (rank)


rank 0:


coordinate processing, perhaps do some


rank 1-n:


perform work assigned by rank 0


MPI_finalize() - clean everything up

CIBR_clusters.key - February 6, 2018



MPI
#include <mpi.h>
#include <stdio.h>
#include <unistd.h>

int main(int argc, char **argv)
{
  int rank;
  char hostname[256];

  MPI_Init(&argc,&argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  gethostname(hostname,255);

  printf("Hello world!  I am process number: %d on host %s\n", rank, hostname);

  MPI_Finalize();

  return 0;
}

https://hpcc.usc.edu/support/documentation/examples-of-mpi-programs/

CIBR_clusters.key - February 6, 2018



SLURM
#!/bin/sh
#SBATCH --time=18:00:00 -n48 -p bynode

cd /home/stevel/test2
mpirun ./testmpi

https://hpcc.usc.edu/support/documentation/examples-of-mpi-programs/

CIBR_clusters.key - February 6, 2018



Improved Sieve
from time import time 
from math import * 
t0=time() 

N0=2 
N1=10000000 
primes=set(range(N0,N1)) 
for i in range(2,int(sqrt(N1)+1)): 
 start=N0-N0%i 
 if start<i*2 : start=i*2 
 bad=range(start,N1+i,i) 
 primes.difference_update(bad) 

t1=time() 
primes=list(sorted(primes)) 
print(primes[:10],primes[-10:]) 
print(t1-t0) 

CIBR_clusters.key - February 6, 2018



MPI Sieve
from mpi4py import MPI 
from time import time 
import sys 
from math import * 

comm = MPI.COMM_WORLD 
size = comm.Get_size() 
rank = comm.Get_rank() 
if size==1 : sys.exit(1) 

if rank == 0: 
    print("Starting") 
    t0=time() 
    primes=set() 
    for i in range(1,size): 
        primes.update(comm.recv(source=i, tag=1)) 
    t1=time() 
    primes=list(sorted(primes)) 
    print(primes[:10],primes[-10:]) 
    print(t1-t0) 
else: 
    N0=(rank-1)*10000000 
    N1=N0+10000000 
    primes=set(range(N0,N1)) 
    for i in range(2,int(sqrt(N1)+1)): 
        start=N0-N0%i 
        if start<i*2 : start=i*2 
        bad=range(start,N1+i,i) 
        primes.difference_update(bad) 
    comm.send(primes,dest=0,tag=1) 

CIBR_clusters.key - February 6, 2018



Other systems?

Many other language dependent systems


May not be broadly supported on 'big iron' clusters


Sysops may be hostile to use of anything but MPI

CIBR_clusters.key - February 6, 2018



Where to Learn More
Passing interest


Youtube has many good videos


Somewhat interested


TACC offers multi-day workshops on parallelism


Really Committed


Rice offers Comp 422, a full semester course on 
parallel computing


iTunesU - full courses (eg - Stanford)

CIBR_clusters.key - February 6, 2018


