
CIBR Mini-Workshop on

Parallel Computing

http://blake.bcm.edu/CIBRClusters

1 clusters.key - March 24, 2015

Part 1

Cluster Architecture

2 clusters.key - March 24, 2015

Shared Clusters at BCM

Genome Center

Cancer Center

CIBR Co-op:

5 clusters (CIBR + 6 PIs)

960+704+640+256+180 = 2740 cores

~24,000,000 CPU-hr/year

350 TB reliable storage

60,000 CPU-hr/qtr free for any CIBR PI

3 clusters.key - March 24, 2015

Shared or Distributed ?

CPU CPU CPUCPU

RAM RAM RAMRAM

CPU CPU

CPUCPU

RAM

Network

Easy Parallelism Inexpensive

4 clusters.key - March 24, 2015

Shared or Distributed ?

CPU CPU CPUCPU

RAM RAM RAMRAM

CPU CPU

CPUCPU

RAM

Network

Easy Parallelism Inexpensive

GPUCPU

RAMRAM

GPU Computing

5 clusters.key - March 24, 2015

SMP or Distributed
1964, CDC 6600, $60m (2012 $), 500 kFlops, 1 CPU

1977, CRAY 1, $33m, 80 MFlops, 1 CPU

1984, CRAY XMP, $25m, 800 MFlops, 4 CPUs - vector

1987, CM-2, $22m, 6 GFlops, 65,536 CPUs, 2048 MPU

1996, Origin 2000, ~$3m, 10 GFlops, 32 CPUs SMP

2005, Cluster, $0.4m, 900 GFlops, 106 nodes, 212 cores

2011, Cluster, $0.22m, 5.5 TFlops, 48 nodes, 576 cores

2015, Tesla K80 GPU, $0.005m, 5.6 TFlops, 1 PCIe board

S

S

S

D

S

D

?

!

iPhone4S

6 clusters.key - March 24, 2015

Typical
Rack 42U

7 clusters.key - March 24, 2015

Cluster Hardware

2U

4 nodes
• 1 Chassis:

• 4 nodes

• 2 processors/node:

• 12 cores/processor

• 128 GB RAM/node

• 2 TB Hard Drive/node

• 10 Gb ethernet

• 96 cores

• 2-4 TFLOPS

• 68 GB/sec RAM

• 512 GB RAM (5GB/core)

• $26,000 ($270/core)

8 clusters.key - March 24, 2015

Cluster Hardware
1 Rack:

20 * 2U ->

$26,000 * 20 -> $520k + ~$30k (rack, etc.)

20*96 cores -> 1920 cores

40-80 TFLOPS Peak

~30 KW

30 KW * 8700 hr/yr = 260 MWH/yr

~$30,000/yr electric bill

A/C bill !?

9 clusters.key - March 24, 2015

Comparison of Languages

Language Time
C++ (-O2) 1

C++ (no opt) 2
Javascript (JIT) 2

Java 5.1
Python 16.5
Perl 24.6
PHP 55.6

Loop/Array/Math Benchmark

10 clusters.key - March 24, 2015

Quad Core Cache Structure
Core 1 Core 2 Core 3 Core 4

RAMDISK &

Network

Registers Registers Registers Registers

Extra

Super

Speedy

Super

Speedy

Just

Speedy

Meh

Ouch

Full Speed

11 clusters.key - March 24, 2015

Speed
300,000 MIPS - (Million instructions per second) current peak
capabilities of a single CPU (with multiple cores)

100,000 MB/sec - Level 1 cache memory bandwidth (32 kbytes/core)

50,000 MB/sec - Level 2 cache memory bandwidth (256 kbytes/core)

35,000 MB/sec - Level 3 cache memory bandwidth (8000 kbytes/CPU)

18,000 MB/sec - RAM (typical DDR3 dual channel)

8,000 MB/sec - PCIe x16 (2.0)

1,500 MB/sec - 12 drive RAID6 with PCIe controller

 800 MB/sec - QDR Infiniband

 150 MB/sec - Typical sequential disk read bandwidth for one drive

 100 MB/sec - Gigabit network

12 clusters.key - March 24, 2015

Hypothetical Cluster

RAID

Storage
Node

Head
Node

Compute
Node 1

Compute
Node 2

. . .

2000MB/sec

gigE
Switch

100MB/sec

100MB/sec

Campus
Network

Scratch

130MB/sec

Scratch

130MB/sec

13 clusters.key - March 24, 2015

Hypothetical Cluster

RAID

Storage
Node

Head
Node

Compute
Node 1

Compute
Node 2

. . .

2000MB/sec

gigE
Switch

100MB/sec

100MB/sec

Campus
Network

Scratch

130MB/sec

Scratch

130MB/sec

IB
Switch

1400MB/sec

14 clusters.key - March 24, 2015

What about the cloud?
Amazon EC2:

c3.8xlarge, $1.68/hour

16 physical core, 4GB RAM/core

15 clusters.key - March 24, 2015

What about the cloud?
Amazon EC2:

c3.8xlarge, $1.68/hour

16 physical core, 4GB RAM/core

Cluster

Prism: $4800 /(3 years * 365 * 24) = $0.18/hour

~140k CPU-hr/yr

16 physical cores, 4GB RAM/core

16 clusters.key - March 24, 2015

XSEDE/TACC

Multiple clusters available, eg:

Stampede: 6,400 nodes + Phi coprocessors

~2 + 7 PF

FREE allocation grants for academic projects

2-3M CPU-hr/year allocations possible

17 clusters.key - March 24, 2015

Part 2

Parallelism

18 clusters.key - March 24, 2015

Simple Task

Take a 20 GB sequence and locate all of the TATA
blocks within it.

Choice of language ?

Run on a cluster ?

Multiple cores ?

How long will it take to run ?

How to make it faster ?

19 clusters.key - March 24, 2015

Another Task

You have 500, 4096x4096 pixel floating point images.
You need to apply a (Fourier) low-pass filter to all of
them

Read -> FFT -> multiply -> IFT -> Write

Image size: 64 MB

Total time for one image on desktop PC: ~3.5 sec

Run on multiple cores ?

Run on a cluster ?

20 clusters.key - March 24, 2015

Slightly Trickier

Iterative Image Alignment - You have a set of 1000,
256x256 images:

average all images together

align each image to the average

repeat 10x

How to handle communications ?

21 clusters.key - March 24, 2015

Amdahls Law

Speedup achievable with many processors is limited
by the non-parallel portions of the task:

S=1/(B+(1-B)/n)

B=fraction of the code which cannot run in parallel

n=number of processors

22 clusters.key - March 24, 2015

23 clusters.key - March 24, 2015

Slightly Trickier

Iterative Image Alignment - You have a set of 1000,
256x256 images:

average all images together

align each image to the average

repeat 10x

How to handle communications ?

24 clusters.key - March 24, 2015

Slightly Trickier

average all images together

All images on 1 node ? (serial !)

How else to handle ?

align each image to the average

Each node needs:

the reference

1 or more images to align

25 clusters.key - March 24, 2015

Coarse vs Fine

Coarse-grained parallelism

Tasks are completely independent (may have shared
input data)

Example: filter 1000 images

Fine-grained parallelism

Tasks need to communicate between each other
continuously

Example: Matrix inversion

26 clusters.key - March 24, 2015

Example

You have 200 sequences and wish to run a multiple
sequence alignment against a set of 20 shorter
reference sequences. How to parallelize ?

27 clusters.key - March 24, 2015

Coarse Grained?
Each of the 200 sequences to one processor, which
computes all of the 20 alignments for that sequence

Advantages:

Very coarse, easy to distribute

Potentially 'perfectly' parallel

Disadvantages:

Only works if you have at most 200 cores

If the 200 sequences vary significantly in length,
total time will be limited by the longest sequence

28 clusters.key - March 24, 2015

Fine Grained

Tackle 1 sequence and 1 reference at a time. Each
processor helps compute the local score

Advantages:

Fine grained - more uniformly scalable

Disadvantages

May be VERY inefficient due to communications
bottlenecks

29 clusters.key - March 24, 2015

Intermediate Approach
Split the overall process into 200*20 = 4000
individual alignment tasks, and send one to each core
as it becomes available

Advantages

Each task independent, so still 'perfectly' parallel

Parallelizable up to 4000 cores

Disadvantages

May still have some inefficiencies with differing
sequence lengths, particularly for large number of
processors

30 clusters.key - March 24, 2015

MD Simulations

31 clusters.key - March 24, 2015

MD Simulations
VERY high CPU/Disk ratio

Long-time single simulation

Many short-time simulations (folding@home)

All of our clusters combined
total ~0.1 Petaflops

32 clusters.key - March 24, 2015

Questions to Ask Yourself

Total time required for I/O

Possible to share data?

Total time required for processing

Memory usage

Interprocess communication

33 clusters.key - March 24, 2015

34 clusters.key - March 24, 2015

Disc Tricks
(for data intensive jobs)

Run on 'storage node'

Purpose-specific node/workstation

Clone data via broadcasting

Copy data to scratch storage on appropriate nodes

Lustre filesystem

Process while copying

35 clusters.key - March 24, 2015

Part 3

Using Clusters

36 clusters.key - March 24, 2015

How to

Interrogate

Your

Cluster !

37 clusters.key - March 24, 2015

Cluster Resources
RTFM (http://blake.bcm.edu/CIBRClusters)

cat /etc/hosts

df -h

mount

ifconfig

/proc filesystem (cpuinfo, meminfo)

qstat -q

Filesystem speed ?

dd if=/dev/zero of=test bs=1M count=2000; rm test

38 clusters.key - March 24, 2015

Subsystems
BQS (Batch Queuing System)

PBS (OpenPBS, Torque, etc.)

SGE (Sun Grid Engine)

HTCondor (UW)

Parallelized programs

pthreads

OpenMP

MPI

39 clusters.key - March 24, 2015

BQS
OpenPBS/Torque

Edit batch script

Submit job (qsub)

to a specific queue (qstat -q)

Job waits in queue (qstat -a)

Nodes allocated ($PBS_NODEFILE)

Script run on the first node ($PBS_O_WORKDIR)

Cleanup/logfiles

Kill a bad job (qdel)

Accounting updated (resources used)

40 clusters.key - March 24, 2015

Batch Script
#!/bin/bash

#

This is an example PBS/Torque script

modify the number of nodes, ppn (processors per node), and walltime

#

#PBS -l nodes=2:ppn=12

#PBS -l walltime=2:00:00

cd $PBS_O_WORKDIR

YOUR COMMANDS HERE

qsub -q <queuename> myscript.pbs

41 clusters.key - March 24, 2015

:q

cput - Maximum amount of CPU time used by all processes in the job. Units: time.

file - The largest size of any single file that may be created by the job. Units:
size.

nodes - Number of nodes to allocate

pcput - Maximum amount of CPU time used by any single process in the job.
Units: time.

pmem - Maximum amount of physical memory (workingset) used by any single
process of the job. Units: size.

ppn - Number of processors to use per node

pvmem - Maximum amount of virtual memory used by any single process in the
job. Units: size.

walltime - Maximum amount of real time during which the job can be in the
running state. Units: time.

42 clusters.key - March 24, 2015

Part 4

Parallel Programming

43 clusters.key - March 24, 2015

Parallel programming

pthreads

OpenMP

MPI

Other niche systems…

44 clusters.key - March 24, 2015

pthreads

Only one node at a time (SMP)

SMP -> easy communications

Somewhat painful to program

Synchronization issues

May be limits in some languages

Available in multiple programming languages

45 clusters.key - March 24, 2015

Python example:

from threading import Thread
import time,sys

def func(n):
 for i in range(10):
 time.sleep(1)
 print n,i
 sys.stdout.flush()

threads=[Thread(target=func,args=[i]) for i in xrange(4)]

for t in threads:
 t.start()
 time.sleep(0.1)

pthreads

46 clusters.key - March 24, 2015

OpenMP

Very good speedups with limited effort

Same code can compile parallel and serial

One node only (SMP)

Needs to be part of the compiler (available in gcc)

http://www.openmp.org

47 clusters.key - March 24, 2015

OpenMP Example
#include <stdio.h>
#include <math.h>
#include <omp.h>

int main() {

int i,j;
double sum=0;

for (i=0; i<100000000; i++) {
 sum+=pow(1.00001,i/1000);
}

printf("%lf\n",sum);
}

48 clusters.key - March 24, 2015

OpenMP Example
#include <stdio.h>
#include <math.h>
#include <omp.h>

int main() {

int i,j;
double sum=0;

#pragma omp parallel
{
#pragma omp for
for (i=0; i<100000000; i++) {
 sum+=pow(1.00001,i/1000);
}
}
printf("%lf\n",sum);
}

49 clusters.key - March 24, 2015

OpenMP Example
#include <stdio.h>
#include <math.h>
#include <omp.h>

int main() {

int i,j;
double sum=0;

#pragma omp parallel
{
#pragma omp for reduction(+:sum)
for (i=0; i<100000000; i++) {
 sum+=pow(1.00001,i/1000);
}
}
printf("%lf\n",sum);
}

50 clusters.key - March 24, 2015

MPI
MPI: Message Passing Interface

Written by computer scientists for computer scientists

Operates on distributed processors

Bindings for many languages

Explicit interprocess communication via messages

All nodes run the same program

Communications problems are common

Zero fault tolerance

51 clusters.key - March 24, 2015

MPI

Many variants - OpenMPI, MPICH, Intel MPI,…

mpicc - MPI aware C compiler

which mpicc - identify which MPI installation

mpirun - convenient program launching tool

Runs the exact same program on each processor!

On most clusters, automatically talks to BQS

52 clusters.key - March 24, 2015

MPI
Outline of one strategy for MPI program:

MPI_Init() - Initialize MPI on all nodes

MPI_Barrier() - Synchronize nodes

MPI_Comm_rank() - Identify CPU (rank)

rank 0:

coordinate processing, perhaps do some

rank 1-n:

perform work assigned by rank 0

MPI_finalize() - clean everything up

53 clusters.key - March 24, 2015

MPI
#include <mpi.h>
#include <stdio.h>
#include <unistd.h>

int main(int argc, char **argv)
{
 int rank;
 char hostname[256];

 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 gethostname(hostname,255);

 printf("Hello world! I am process number: %d on host %s\n", rank, hostname);

 MPI_Finalize();

 return 0;
}

https://hpcc.usc.edu/support/documentation/examples-of-mpi-programs/

54 clusters.key - March 24, 2015

MPI - python
#!/usr/bin/env python
from sys import argv,stdout
from mpi import *

mpi_init(0,[])
mpi_barrier(MPI_COMM_WORLD)
proc=mpi_comm_rank(MPI_COMM_WORLD)
nproc=mpi_comm_size(MPI_COMM_WORLD)
print "Running on %d/%d"%(proc,nproc)

if proc==0 :

print "Stage 1, synchronous send/receive"
print "Rank ",
for i in range(1,nproc):

mpi_send("TESTING",7,MPI_CHAR,i,1,MPI_COMM_WORLD)
print i,
stdout.flush()

print "\nTransmit complete"

else :
data=mpi_recv(7,MPI_CHAR, 0,1,MPI_COMM_WORLD)
print proc," received ",data

mpi_barrier(MPI_COMM_WORLD)
mpi_finalize()

55 clusters.key - March 24, 2015

Other systems?

Many other language dependent systems

May not be broadly supported on 'big iron' clusters

Sysops may be hostile to use of anything but MPI

56 clusters.key - March 24, 2015

Where to Learn More
Passing interest

Youtube has many good videos

Somewhat interested

TACC offers multi-day workshops on parallelism

Really Committed

(if you are a GS) Rice offers Comp 422, a full
semester course on parallel computing

iTunesU - full courses (eg - Stanford)

57 clusters.key - March 24, 2015

