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Goal today (Very top down, Pointers to other sources ):

A rotation is:
1. A coordinate, describing the current orientation of that object
2. Something that creates a motion of an object
3. Something that helps us align objects (Lie).

Conventions:
1. ZYZ, ZXZ,XYZ, spin axis (quaternionic)
2. When to use one convention over another
3. Numerically, what different ways to achieve a rotation?

Metric Structure:
1. Difference between two rotations
2. Topology of Euler Angles

Symmetries
1. Zoology of symmetries in cryo-EM
2. Pointer to more details (description of asymmetric unit,
how to convert between conventions)
3. How to use symmetries to make algebra as simple as possible



“Apology”:

No references

Everything here, calculated by hand,
checked many ways, exists in EMAN/Sparx

Certainly nothing here is unique/new.
Probably (but not certainly) quite old.

Inputs from many directions celestial dynamics, computer vision, ...



A rotation may mean either the present orientation (rotated from a given reference)
or an entity which may be used to move a rigid body

think “adjective” vs “verb”

Euler: any motion of a rigid body in 2 or 3 dimensions (that is not pure translation)
may be regarded as some amount of rotation of the body around some axis passing
through some origin.

Rotations add a new twist (to pure translation) in describing the state of a rigid body.
This is because the way that the rotation was applied is crucial in understanding the
new state. The order of operations becomes important.



Orientations, Rotations: some of the basics

Fixed axes: Euler Angles

ZYZ SPIDER (¥.,0,0
ZXZ EMAN (o, alt, az)

ZYZ MRC (0,0,0
ZYZ Imagic  (o,B,y

Spin axes:  Sgi, quaternionic

Will always be
direction perp to grid

ZYZ

A \.YJ

Can label point
on sphere

Does not change
information content
of a z-projection

Any rotation can be described by an axis (ﬁ ) through the origin,

about which a rotation, Q, is performed

See “The Transform Class in SPARX and EMANZ2”, Baldwin and Penczek, JSB (2007) 250-261



ZYZ (in full glory)
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How to Rotate an object (numerically)

Can rotate in Real Space, using naive interpolation
Fourier Space, using naive interpolation

Cangoto polarcoordinates in real space. Apply phase
polar coordinates in Fourier space. Apply phase

Reversible transformations using (3) shears in 2D! (FFTs and phase shifts)

Reversible transformations using shears in 3D!
www.ai.mit.edu/projects/im/broch/shel.html
Rotation of 3D Volumes by Fourier Interpolated Shears, Welling et al 2005

Using mirror operations

Principles Of Symmetry, Dynamics and Spectroscopy, Harter (1993, Wiley)
Quaternions and Rotation Sequences, Kuipers (2002, Princeton)



Differential Version of Movement

ao, +bo,
e f(xy)=f(x+ay+b) Differential form of a translation

e @ %W f (¢ y) = f((x+b)costt) —(y —a)sin) —b,(x+b)sint) +(y —a)cos(t) + a)

Flow of a differential 2D alignment:
rotation by t about the point (—b,a )

AN,y ANy Ty +N; 3, ) r, I Flow of a differential 3D rotation
€ f(r) N f(Rﬁ(Q)r) (rotation by Omega about the spin-axis n)



A Fundamental Difficulty about
Alignments (involving Rotations)

Point 1:

2D rotational/translational alignment and 3D rotational alignment

are intrinsically more difficult than pure translational alignments.
There is no Fourier Transform trick.

(Go to reciprocal space, multiply, inverse transform, peak search)

Point 2:
There is no Fourier Transform trick, because the differential operators
corresponding to the motions cannot be swapped out for scalar phases.

Point 3:

The operators can never be swapped out for scalars, because the order
of the operations must be preserved (3D rotations, rigid body motions
in the plane: non commutative group).



There is a natural sense of magnitude for rotations

Magnitude should be the total amount of rotation that took
place (using the unigue spin axis). That is, Q.

The difference
between two Q, 2, Q 9, Q. .
COS— = COS — COS— — Sin— sin— (i - #2),
rotations can be 2 2 2 2 2 W )
calculated from '
3 . .2 Q2 3
Differentially, (ds)” = d@” +4sin 3 (dn)

5 ’ ~ y 2 Solid leb
(di)? = (d6,) + sin’0,(d¢, ) old angle between

unit vectors

Nearly flat /7

Topologically, The surface is where
let Q be the

.=180. Identify
“radius” antipodal points.



Euler Angles

R=Z,: X Za R = cos Q(I — iih) — sin Qi x +nn,

Euler angles for projections
Euler Angles to use for Docking

alt Taz

What is the total “magnitude” of a rotation?

It is the total spin, Q

Why? The last in plane rotation does
not change info in the projection.

If projections are rotated by -az, then e cos( Q/2) = cos(az+phi) cos(alt/2)
the distance between them is given

by the geodesic (tilt) on the sphere.

“Normal Form”



Cryo EM Symmetries: f(Sr)=f(r)

Inflammasome, C12
C symmetry: axial symmetry (zin EMAN)

D symmetry: Cand additional 2 fold Cypovirus, D3

Sym metries of Platonic Solids: faces regular polygons assembled in the same way around each vertex.
Schlafli symbol {sym around face, sym around vertex}

134A1 o )

(http://www.mathsisfun.com/platonic_solids.html) archaeal A .
tetrahedron (self dual) F=V=4, E=6, {3,3} peptidase y &
o

octahedral (cubic) F=8, V=6, E=12 {3,4} DNA/AuNP

icosahedral (dodecahedral) F=20, V=12, E=30 {3,5}

Helical symmetry (not part of core EMAN package): amphiphysin




C12, 6458, 2015

Title: Cryo-EM Structure of the Activated NAIP2/NLRC4 Inflammasome Reveals Nucleated
Polymerization

Authors:  ZhanglL, Chen S, RuanJ, Wu J, Tong AB, Yin Q, Li Y, David L, Lu A, Wang WL, Marks C,
Ouyang Q, Zhang X, Mao Y, Wu H

Sample: NAIP2/NLRC4 inflammasome, 11-fold disk

Method: Single particle reconstruction (4.7 angstroms resolution)

Protocol: Maximum-likelihood based projection matching
Software: Spider, EMAN2, Relion

CTF correction: Wiener-type filter

Number of particles: 75114

Imposed symmetry: C12

Resolution by author: 4.7 A

Resolution method: FSC 0.143, gold-standard

Other details 9113 images 5 um/



D3 2015-10-28

Title: Genome and RdRp structure within the capsid of non-transcribing cypovirus
Authors: Liu H, Cheng L

Sample: non-transcribing cypovirus
Method: Single particle reconstruction (12 angstroms resolution)

Protocol: cross-correlation coefficient

Software: MRC

CTF correction: Each particle

Number of particles: 28000

Imposed symmetry: D3

Resolution by author: 12 A

Resolution method: FSC 0.143, gold-standard

Processing details: Symmetry-mismatch reconstruction of icosahedral with D3 symmetry imposed.



Tetrahedron, 1188

Title: An archaeal peptidase assembles into two different quaternary structures: A
tetrahedron and a giant octahedron.

Authors: Schoehn G, Vellieux FM, ..., Ruigrok RW, Ebel C, Roussel A, Franzetti B

Sample: TET1 metallopeptidase from Pyrococcus horikoshii

Method: Single particle reconstruction (15 angstroms) Updated: 2011-05-26
(2006) B -

- 134 A |

</[\>> 3

Protocol: projection matching

Software: spider

CTF correction: ctfmix

Number of particles: 6000

Number of class averages: 58

Imposed symmetry: o

Resolution by author: 15A

Resolution method: FSC at 0.3 and X-ray filtering

Processing details: 6000 particles in 58 class average.



Octahedral, 6367, 2015

Title: Electron cryo-microscopy 3D reconstruction of an octahedral DNA/AuNP hybrid
nanoparticle

Authors: Yu G, Yan R, Zhang C, Mao C, Jiang W

Sample: Hybrid nanoparticle of octahedral DNA cage encapsulating a gold nanoparticle
Method: Single particle reconstruction (24 angstroms resolution)

Software: ispr

CTF correction: each particle

Number of particles: 300

Imposed symmetry: (0]

Resolution by author: 24A

Resolution method: FSC 0.143, gold-standard

Processing details: Particles were selected using e2boxer.py in EMAN2. Contrast transfer function (CTF) estimation was performed

using fitctf2.py. After preprocessing (i.e., particle picking, determination of CTF parameters, and phase correction), hybrid particles were masked
using maskGold.py, resulting in two sets of particles: normalized particles (.norm, with the nongold pixels normalized to mean=0 and sigma=1)
and masked particles (.masked) derived from the normalized images (.norm) with gold pixels masked. The entire data set of masked images was
then halved into even and odd subsets from which initial models were derived and iterative refinements were performed independently using
the random initial model method. Using the initial models as references, 2D alighment was performed using projection matching and 3D models
were reconstructed using the direct Fourier inversion approach. The resolution of the reconstruction was estimated based on the 0.143 cutoff of
the Fourier shell correlation between models from even and odd subsets. A final map of the hybrid particle was obtained by pooling the two half
data sets and applying the refinement parameters for masked particles (.masked) to the corresponding normalized particles (.norm).



Icosahedron, 6394, 20151

Title: Structure of Ljungan virus: insight into picornavirus packaging
Authors: Zhu L, Wang XX, Ren JS, Porta C, Wenham H, Ekstrom J-O, Panjwani A,
Knowles NJ, Kotecha A, Siebert A, Lindberg M, Fry EE, Rao ZH, Tuthill TJ, Stuart DI

Sample: Ljungan virus (type: 87-012)
Method: Single particle recc ‘ troms resolution)

Software: RELION

Number of particles: 5558

Number of class averages: 20

Imposed symmetry: |

Resolution by author:3.8 A

Resolution method: FSC 0.143, gold-standard



Helical, EMD-3192, 2015

Title: Helical reconstruction of amphiphysin N-BAR with a membrane tube radius of
140 Angstrom by cryo-electron microscopy

Authors: Adam J, Basnet N, Mizuno N

Sample: Amphiphysin N-BAR with a membrane tube radius of 140 Angstrom

Method: Helical reconstruction (10.3 angstroms resolution)

Map released: 2015-10-28 .-;—~ T et i
— “.N »
Bi 'ﬂ-ﬁ* “M’,-- '
t.,ur“""'
.. ,.,.J# o
. e 4\&’*"
Amphiphysin, 0.06MDa wﬂ-'

Protocol: IHRSR
Software: BSOFT, EMANZ2, Relion, SPIDER, IHRSR

CTF correction: Phases of individual images are flipped

Resolution by author:  10.3 A

Resolution method: FSC 0.5, gold-standard

Processing details: For the reconstruction 1948 segmented particles were used. The particles were 2D classified

by Relion and for the reconstruction the helical symmetry was applied using IHRSR. Helix handedness is not
confirmed by sub-tomogram averaging. Used programs: BSOFT software package, particle picking by EMAN2 with
e2helixboxer, 2D classification by Relion, 3D helical reconstruction by IHRSR implemented into SPIDER.



Keep In Mind

Different packages have different conventions for arranging
symmetric objects.

EMAN always uses high symmetry along z.



Construction of the asymetric unit for Platonic solid;
Baldwin, Penczek, Transform Class, 2007

3.2, Angular description of an asymmetric unit of a platonic
solid

Consider the three Platonic solids that are comprised of
faces that are triangles: the tetrahedron (m = 3), the octa-
hedron (m = 4) or the icosahedron (m = 5). In order to dis-
cuss proper sampling of the asymmetric unit, we need these
boundaries in polar coordinates. Consider, therefore, the
solid arranged such that it inscribes the unit sphere with
one vertex b along the z-axis, a second vertex aligned in
the xz plane denoted by ¢, and a third vertex a at the same
altitude as ¢ such that abc form the vertices of an elemen-
tary face of the Platonic solid in question (Fig. 2).

b
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m

2
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Fig. 2. A triangular subunit of some Platonic solid: either tetrahedron
(m = 3), octahedron (m=4), or icosahedron (m= 5): that has been
projected onto a sphere (thus all the lines shown are arcs on the surface of
the unit sphere). The angle @ = i—" is the smallest ro[.alion such that applied
to a vertex leaves the solid unchanged. The vertex b is oriented along the =z
axis and ¢ is oriented in the xz plane at an angle 6. = acos(7222) to b.
The expression for the unit vector f normal to the face is given by (44).
The asymmetnc unit is demarcated by the segments be, bf, and ¢f. The
expressions for the first two segments are given by (47) and (48),
respectively. The expression for ¢f is given by (50) together with (51).

Define the angle Q =2= to be the amount of rotation
such that when applied to a vertex leaves the solid
unchanged. The situation may be described as

b=(0,0,1), (39)
¢ = (sin 6,,0,cos8,), (40)
& = (sin 0, cos £,sin 0, sin Q, cosd,.), (41)
- b+e+a
= oFcrad (42)
|b+ ¢+ a

The points b, ¢, and f‘, the vector through the center of the
triangle, bca, form the boundary of the asymmetric unit.
The altitude, 6., of the vertex ¢ can be found directly from
the right hand side of (37) with n =3, and 2 = ir—“:

cos {2
cos 0, =1 cos’ (43)
S0
- 1 Q Q Q
f= m(ﬁcosi—k v 1 —2cos Q(cos?jr+jzsin§)),

(44)

At this point, all of the 4 unit vectors, 4, ?J, ¢, and f", of
Fig. 2 are described.

A segment 7i(z) of the great circle with starting point i
and final point ¢ spanning an angular distance f§ (that is

-

i- = cosf) is given by

. sin(B — 1)i + sin t@
i) =P DEID o< o<, 45)

where # is a vector to a point on the unit sphere. The arc
described by (45) 15 mapped out uniformly, meaning
$| = 1. We use the formula to demarcate the asymmet-
ric unit below.



3.2.1. The asymmetric unit

The three line segments joining btoé bto }' and ¢ to f'
(see Fig. 2) define the asymmetric unit of the Platonic solid.
In order to use (45), we need the vertex-face angle, =, given
by (38) above

o 1 1
cosa=fb = w3 an(@/2) V3tan(Q/2)’ (46)

Using (45) with (i@, ) = (b,é,0.) or (b, f,a) or (¢,f,a)
yields

fpo(f) = (sint, 0,cos 1), 0<e<b,, (47)
- . Q . .0
Hpp(t) = {sm:cosg,smfsmf,cosf), 0<r<a, (48)
. ésin(x — £) + fsint

— <1<
Hcf(!) Siﬂ o Fl 0 S {49)

We use (49) together with (40), (43), (44) and (46) to map
out the difficult boundary of the symmetric unit. To under-
stand the segment 7i.; as altitude versus azimuth, however,
we write

fiey = (sin Ocy €OS Py, Sin Oy Sin s, COS Oey). (50)

One may calculate the quantities, j - A, and 3- (A % €)
from (49) and (50). Taking the ratio between these quanti-
ties eliminates the parameterization variable, ¢, yielding:

sin (g_ qt'-:f) 5in¢'ﬂ.!
cot O, = 52 % cotfl. + sin‘_;’ cot e,
CDS{Q _¢'c,|r) Q
=—, 0 ¢, <= 51
1 —2cos(Q2) b 2 (51)

This allows 6. to interpolate between 6, (which is the alti-
tude of the starting vertex ¢, where ¢,,=0) and «, which is
the altitude of the center of the triangle, where ¢, = ‘2—’. The
Egs. (47), (48) and (51) are the expressions for the bound-
aries of the asymmetric unit for T, O, and I symmetries,
with 2 = %"

We will write down in more detail the case of greatest
interest: the icosahedron (I) where m =35, 2= 72.0° 6,
(vertex-vertex angle given by (43)) = 63.43°, « (face-vertex
angle given by (46)) = 37.38°. Then

fine(f) = (sint, 0,cos 1), 0<r<6343, (52)
fip () = (0.809 sinz,0.5878 sin ¢, cos1), 0<r<37.38°

Finally if we parameterize altitude versus azimuth of the
non-trivial segment ¢f

2
cot 0.y = 1.6180cos (?E— d)? 0<o,, <36 (54)

which is to be used with (50).

In this section we have given parameterizations of the
boundaries of the asymmetric units of those Platonic sol-
ids, that have tnangles as faces (T, O, I). It 1s imperative
to establish these parameterizations before one can consid-
er the uniform sampling of Eulerian angles that might be
used to create projections of symmetric objects such as
these (the quasi-uniform distribution of Eulerian angles
for asymmetric objects was covered in Section 2.3).

3.3. Symmetry elements, vertices, faces in the
Transformation Class

The ability to retrieve symmetry elements in SPARX/
EMAN?2? has been significantly extended to allow the user
to specify orientations of symmetry axes. For the case of
C and D symmetries, it is often the case that one wishes
to use the axis as the axial symmetry axis and the following
sequence of function calls in SPARX

RA=TransformdD();
RA.get_sym( *‘cd,2);

sets RA to a rotation around the z axis of 120°, which cor-
responds to the second element (hence the 2 above) gener-
ated by SPARX for C3 symmetry (the first element is the
identity). However, particularly for I symmetry, we have



obliged users who have wished orientations other than
the default.

For example, orniginally there existed, and still exists, the
function get sym

BA=Transform3D{();
RA.get_sym( **icos?*?,3, ‘‘orientation’?);

which allows one to systematically access symmetry ele-
ments of the icosahedron positioned in a specified orienta-
tion with respect of the system of coordinates. In the above
case, one has set RA to the 3rd of the possible 60 symmetry
elements of the icosahedron. The capacity to call symmetry
elements has been extended so that one is able to specify
symmetry elements defined with respect to arbitrary axes.
For example, consider the sequence of calls

vertex=Vecdf(0,0,1);

face =Vecdf(gin(mu),0, cos(mu));
RA=Transform3D{( );

RA.get_sym( **icos??,3,vertex,face);

where mu is the face-vertex angle of the icosahedron (37.3%).
This orients an icosahedron in such a manner that “*vertex™ is
in the direction of the 5-fold axis of the icosahedron and
“face’” 1s in the direction of the 3-fold, then sets RA to the
third symmetry element. The first vector, of the pair of vec-
torsthat appear, denotes the placement of the symmetry axis
corresponding to the higher symmetry. This variant of the
get_sym function uses internally the set_rotation function
described in Section 2.4.1 to find the rotation that maps the
default orientation of face and vertex to that specified by the
user. Then this rotation is applied to each default symmetry
element before being returned to the user.

We realize that it would be unnecessary effort for the
SPARX user to calculate positions of face and vertex that
the user may wish to use as reference orientations; we have
therefore provided a large number of commonly used
options from which the user may simply select. For
example,

RA=TransformdD();
RA.get_sym( ¢ ‘icosg’?,3, *‘mrc’ ?);

would assign to RA the 3rd symmetry icosahedral symme-
try element for the icosahedron as oriented in the MRC
convention: with 2-fold symmetry axes along each of the
coordinate system axes (see (Heymann et al., 2005a)). An
example of another option is **5fz3fx™ that places the ico-
sahedron with a 5-fold axis along z, and one of the five
nearest 3-fold axes placed such that it has no y component.
A list of the possible conventions can be accessed via

icos_poss=get_sym poss( ‘ficos’?);

Now “icos_poss™ has been sent to an array of strings,
including “mrc™ and “*5fz3fx™".

Finally, faces and vertices of the Platonic solids can be
accessed with options similar to just described via “get -

face™ and “get vertex”. For example,

Top face =get_face( *‘icos?®?,3, ‘‘mrc’’);

returns to Top_face an array of Vec3f objects which repre-
sent the vertices of one of the faces of the icosahedron. The
options “mrc’” and 3 affect which particular face, and in
which order the vertices are returned; these options will

be amply documented.

How to move between different symmetry conventions



How to efficiently write down symmetries in EMAN2:

p number of Edges at each face

Platonic Solids g number of edges meeting at each vertex

Tetrahedron: (F=4, V=4, E=6)
(p=0=3)

pF=2E
qV =2E

Octahedral (Cubic) V-E+F=2
(F=8, V=6, E=12) (p=4, q=3)

Icosahedral: (Dodecahedral)
(F=20, V=12) (p=3, g=5)

Either g or p must be 3

V=4p/ Denominator
E= 2pq/ Denominator
F =4g/Denomniator

Denominator =4 — (p-2)(g-2)



Exercise:

Symmetries as word problem (Baldwin and Penczek)

2E is the number of symmetry elements
Symmetry maps an edge into some other edge in one of two orientations.

Br=1
A9 =1

BABA=1 (try it; Vertex belongs to the face.)
This is how symmetries are formulated in code of EMAN2:

Unigue Symmetries < Unigue words

For tetrahedron: A3= B3=1, BABA=1

Only need to use at most one A The 12 symmetry
1, A, B, BA, AB, BB, ABB,BAB, BBA, operations of the
BABB, BBAB, BBABB (only 12 “words”) tetrahedron

(Proof AA = BABAAA= BAB; ABA= BBBABA=BB; ABBA= ABA A ABA=BBABB



Symmetry around face (near to us)

A(p=3):1

Symmetry around green vertex

B(q=3):1

Green vertex belongs to near face

ABAB=1

Slide by Michael Bell




Platonic Symmetries in Other Dimensions

Footnote: Other dimensions

2 dimensions => N — gons

3 dimensions : tetrahedron, cube, icosahedraon
4 dimensions also 24 cell

5+ dimensions hyper tetrahedron, hypercube, (lost icosahedron)

http://math.ucr.edu/home/baez/platonic.html




Non-repeating helical symmetry: (rise over run)

The angle of rotation O required to observe the symmetry is irrational.
B never repeats exactly no matter how many times the helix is rotated.
DNA, approximately 10.5 base pairs per turn.
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Conclusions, and Looking Forward

. Rotations = Orientations

Almost Every Rigid Body Motion is Rotation

Think of Rotations as a single entity (point or member of a group),
rather than product of three things.

Future Directions:

Need to look at resharpening class sums from estimate of rotational
alignments.

Look at rotational FSC.



