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Abstract

Electron cryomicroscopy (cryoEM) is widely used for the near-native structure determination

of macromolecular complexes. CryoEM data collection begins with sample vitrification

to lock specimens in near-native conformations prior to imaging via transmission electron

microscopy (TEM). Specimen images are then extracted from raw micrographs and used

to generate a 3D reconstruction through a workflow called single particle analysis (SPA) .

Using this technique it is possible to obtain 3D structures at resolutions higher than 8Å, with

some achieving crystallographic resolutions better than 2Å.

Alternatively, if the specimen is tilted during image acquisition through a procedure

known as electron cryo-tomography (cryoET), the tilted micrographs can be combined

computationally to produce a large 3D representations of the bulk sample. Sub-volumes can

be extracted from these 3D reconstructions, aligned to a reference model, and averaged via

a workflow known as subtomogram averaging to yield protein structures, occasionally at

resolutions higher than 10Å.

Modern cryoEM experiments generate massive amounts of data, requiring tremendous

effort to process toward new biological conclusions; however, the gradual development

and automation of computational workflows in user-friendly software packages continues

to reduce this burden. One such package, EMAN2, offers complete workflows for the 3D

reconstruction of cryoEM data.

In this thesis, I describe my contributions to EMAN2 that expedite data processing and
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enhance structural resolutions.

Chapter 1 provides an overview of structural biology, cryoEM data collection, and

computational workflows for cryoEM image processing. This chapter targets non-experts

interested in cryoEM, seeking to provide intuition and definitions in preparation for more

advanced topics discussed in later chapters.

In chapter 2, I present unpublished research on global and local corrections for specimen

motion, corresponding to the first stage of image processing in cryoEM. Here, I compare

motion correction algorithms and examine the influence of measured trajectory discrepancies.

I also analyze the influence of motion correction algorithms on resolution and discuss a

novel use of trajectory information for bad micrograph identification and removal.

In chapter 3, I explore the high-resolution SPA pipeline in EMAN2 and discuss the

philosophy behind the methods we use to approach to the 3D reconstruction problem. I also

present some of my benchmarking results, demonstrating the performance of EMAN2 prior

to the work outlined in the following chapter.

In chapter 4, I outline new software tools for the EMAN2 SPA workflow that were

inspired by my findings during the 2015 EMDatabank Map Challenge. I detail my collabo-

rative work in the development and implementation of a new strategy for particle picking,

a new particle quality metric, and alterations in the global and local filtration of 3D recon-

structions. These changes improve automation and dramatically improve the appearance of

side-chains in high-resolution structures.

In chapter 5, I describe collaborative work resulting in a complete, integrated workflow

for cryoET and subtomogram averaging in EMAN2 that is capable of achieving state-

of-the-art resolutions in purified and cellular datasets. My role in this research was to

integrate numerous workflow components, develop graphical user interfaces, and arrange for

consistent metadata handling throughout the workflow. These contributions greatly reduce

human effort and increase the throughput of cryoET data processing.
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Finally, in chapter 6, I discuss my perspectives about the future of cryoEM as it relates

to my research. Additionally, in an appendix I discuss unpublished cryoEM experiments in

which I resolve the structure of nascent high-density lipoprotein to roughly 50Å through

subtomogram averaging.

Looking ahead, further optimization of computational workflows for cryoEM will offer

increasingly direct paths toward structure determination and biological insights. As more

structures are determined, we will continue to enhance our understanding of the macro-

molecular machinery that enables life at the cellular level.
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Chapter 1

Introduction

This chapter targets non-experts interested in electron cryo-microscopy (cryoEM), seeking

to provide intuition and definitions in preparation for more advanced topics discussed in

later chapters. I begin with an overview of structural biology and various methods for

obtaining structural information about biological macro-molecules, with particular emphasis

on cryoEM. Next, I describe cryoEM data collection and some of the recent technological

developments that have dramatically improved the quality of cryoEM structures. Finally,

I outline three key image processing workflows in cryoEM that are enhanced and further

automated by my doctoral research.
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1.1 What is structural biology?

When you think of a simple mechanical system, it is almost immediately apparent what it is

designed to do. For example, consider a tricycle. In the simplest case, a tricycle consists of a

solid frame, a seat, two round wheels at the rear, handlebars, and pedals connected to a large

front wheel, all of which are necessary for a tricycle to move forward under forces applied

by a rider. Now consider what might happen if any of these components were removed.

The bicycle would no longer function properly, and our assumptions about how it behaves

would no longer be valid. Without handlebars, it would be impossible to maneuver. Without

wheels or pedals, the tricycle would not move forward.

While this conceptualization ignores many of the inherent complexities of the individual

components, it offers insight into the important relationship between an object’s structure

and its function. We do not need to fully understand the dynamics of a moving bicycle to gain

valuable functional insight from its structure alone. This same structure-function paradigm

has guided research in the field of structural biology since its conception; however, instead

of studying the relatively intuitive relationships between the morphology of macroscopic

objects and their function, structural biologists are interested in determining the structures and

molecular organization of individual proteins and macromolecular complexes and drawing

inference from them to answer pressing biological questions.

The functional mechanisms of individual proteins and their biological roles within the

context of cells are significantly more complex than the tricycle example above. When

biologists talk about a protein, they are referring to an organic, polymer chain formed by

a sequence of amino acid residues with one or more biological functions. There are 22

unique amino acid residues that are used to construct proteins, each of which has unique

physicochemical properties that govern how proteins fold in 3D and interact with other

molecules. While some proteins are intrinsically disordered and do not fold into a consistent
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3D structure under physiological conditions, many proteins naturally fold into conformations

that enable their highly-specialized protein functions, and others require the mediation of

other proteins to fold into their functional state.

Certain classes of proteins perform relatively intuitive functions. For example, protein

complexes called ribosomes are responsible for manufacturing other proteins by translating

the information encoded in ribonucleic acid (RNA) into proteins (Figure 1.1A1). Membrane

pumps move substances across the cellular membrane to maintain homeostatic conditions

by modulating the concentration of ions and other molecules inside cells (Figure 1.1 A2).

Enzymes are another common type of protein that catalyze chemical reactions so they occur

fast enough to sustain key cellular functions (Figure 1.1 A3). In light of these descriptions,

it is clear that the cell is a factory for macromolecular machines, and the structure-function

paradigm tells us that understanding the structural details of these components will grant

insight into how these proteins interact and function in the crowded cellular environment to

facilitate life.

Despite their small size (with diameters ranging from 0.4-100µm), individual cells

correspond to profoundly intricate systems with an immense number of molecules that

enable cellular function and reproduction. Simple calculations reveal that individual cells

contain millions of proteins [153]. The field of structural biology exists to obtain a better

understanding the structures and functions of each of these machines, generally focusing

on features ranging from the placement of individual atoms to the organization of large

macromolecular complexes. These diverse features occur at scales from angstroms to a

hundreds of nanometers, though structural biologists do occasionally study features with

lengths of multiple microns when examining macromolecular complexes within whole cells

(Figure 1.1 B).

Structural biology describes the various levels of protein organization in a hierarchy

consisting of primary, secondary, tertiary, and quaternary structural elements (Figure 1.1
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C). When studying any protein, it is important to consider interactions that occur within

each of these categories. For example, knowledge of a protein’s primary structure, also

called its sequence, enables us to identify other proteins with similar sequences that often

have similar functional roles. Secondary and tertiary structure elements offer important 3D

information that tell us about interaction sites and can be leveraged for rational drug design.

At the highest level, quaternary structure tells us about how multiple protein chains bind

together, and is particularly important when examining complexes that consist of more than

one subunit. The information encoded in each of a protein’s structural elements provides

insight into its functional role and how it may interact with nearby proteins and protein

complexes.

1.2 Obtaining protein structures

The examination of protein structures requires specialized equipment and experimental

techniques. Structural biologists have developed a wide array of biochemical and biophysical

methods to answer questions about the structure and organization of macromolecules through

quantitative analysis. However, of the techniques used, relatively few are capable of deter-

mining the full, 3D structure of studied specimens from a single dataset. These include

nuclear magnetic resonance (NMR), X-ray crystallography (XRC), and electron cryomi-

croscopy (cryoEM); each offers unique advantages and shortcomings.

NMR experiments begin with a purified protein sample, which is inserted into a strong

magnetic field and perturbed with electromagnetic radiation in the radio-frequency range

[138]. The atomic nuclei in the sample resonate in response to the radio-waves, producing a

measurable signal that can help characterize the molecular components present in a sample.

There are also many methods for extracting more detailed spatial information using NMR.

For example, one technique called correlated spectroscopy (COSY) extracts the relative
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Figure 1.1: Overview of structural biology∗ (Continued on next page).

∗Protein illustrations in A and B are licensed under a Creative Commons Attribution 4.0 International license

by David S. Goodsell and the RCSB PDB.
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Figure 1.1: A. Example proteins. 1. Ribosomes such as this use the information encoded in

ribonucleic acid (RNA) to assemble amino acids into chains, forming other protein structures.

2. Membrane transporters such as the TolC-AcrAB complex shown here move molecules

across cellular membranes, helping maintain homeostatic conditions. 3. Enzymes. Shown

here are a set of glycolytic enzymes that break down sugars to produce energy for cellular

functions in the form of adenosine triphosphate (ATP)molecules. B. Length scales. Structural

biology studies topics spanning a wide range of length scales from cells, which span multiple

microns (10−6m) to atoms and small molecules, spanning only a few angstroms (10−10m).

While objects larger than ∼100 nm can be examined using a light microscope, higher-

resolution techniques such as X-ray crystallography (XRC), nuclear magnetic resonance

(NMR), and electron microscopy are required to visualize features ranging from protein

complexes to individual atoms. C. Taxonomy of protein structure elements superimposed on

a structure of hemoglobin [66] (PDB 2HHB). Protein structures are taxonomized according

to their primary, secondary, tertiary, and quaternary structure elements. A protein’s primary

structure corresponds to its sequence of amino acids. Secondary structure assigns spatial

relationships between sequence elements, forming motifs such as the α-helix shown in this
example. Tertiary structure describes how secondary structure elements conform within a

single chain, and quaternary structure describes how multiple amino acid chains combine to

form a complex.

separation between protons in the sample, providing a set of inter-atomic distances that

can be used for structure determination. Quantitative analysis of COSY and other spatial

NMR data yields a set of constraints that correspond to a collection, or ensemble, of possible

structural models. An obvious advantage of this technique is that ensemble models are

capable of expressing the relative flexibility of structures, allowing flexible proteins to be

examined with this technique. Conversely, the interpretability of the experimental data

diminishes with specimen size, so this technique has generally been used to examine small

molecules and proteins with short sequence lengths.

In comparison to NMR, X-ray crystallography examines proteins that form large crystals

under specific buffer and concentration conditions [103, 187, 206, 212]. In such cases it is

possible to illuminate the sample with X-rays and record diffraction patterns that contain

sufficient information to determine the structure of the crystalized protein. Automated,
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iterative refinement of the resulting data facilitates the generation of atomic coordinates that

are consistent with the diffraction pattern, ultimately yielding structural details about the

content of a single unit cell in the crystal that was experimentally examined [2]. While this

technique is capable of obtaining the highest resolution structural details, a major downside

to crystallography experiments is the common use of non-physiological buffer conditions

to enable crystal formation [174], often resulting in non-native protein conformations that

are not observed in biological contexts. This technique is also limited by protein size, since

crystallization of large and multi-component complexes is not always possible [147].

In contrast to both X-ray crystallography and NMR, recent advances in the field of

cryoEM facilitate increasingly routine determination of protein structures at a range of

resolutions, some of which are surpassing 2Å and occasionally even matching the resolution

one can obtain using techniques such as X-ray crystallography without the challenge of

crystallization prior to data acquisition [120]. In cryoEM we rapidly freeze protein samples

in vitreous (non-crystalline) ice prior to imaging, trapping proteins in near-native confor-

mational states. 2D images, called electron micrographs, are then recorded and combined

computationally to derive a 3D cryoEM density map corresponding to the studied structure,

and protein modeling techniques can be used to build atomic models [218].

An advantage of cryoEM techniques is that they facilitate direct 2D and 3D visualization

of specimens with a wide variety of sizes and shapes [163, 164]. Similarly, computational

techniques in this field are even capable of splitting imaging data into groups that correspond

tomultiple protein conformations, conferring information about protein folding and dynamics

[132, 191]. On the other hand, results from cryoEM experiments are only as good as the

samples they study. Today’s best resolved structures attain resolutions previously achievable

only via crystallographic techniques [45], certain highly heterogeneous specimens are limited

to the nanometer resolution range and resemble blobs. Moreover, the cost of maintaining

and running an electron microscopy suite makes this technique cost prohibitive for many
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labs; however, following trends observed in NMR and X-ray crystallography, dedicated

cryoEM facilities are being established to democratize data collection. This will enable a

growing number of researchers to use cryoEM to solve purified protein structures and even

examine proteins in the context of individual cells.

1.3 Electron cryomicroscopy of biological samples

Before delving deeper into cryoEM, it is important to understand why we use electron

microscope technology instead of conventional light microscopes. For centuries, optical

light microscopes have facilitated the visualization of living things from cells to tissues, and

much of modern medicine is founded on observations made possible by this technological

marvel. Light microscopes typically use light sources that emit electromagnetic waves

in the visible spectrum with wavelengths between 400nm and 700nm, corresponding to

near-ultraviolet blue and near-infrared red light, respectively. Physics tells us that to visualize

an object, it is normally necessary to probe it with a wavelength of light that is smaller than

the object being observed. Essentially, waves with shorter-wavelengths (or equivalently,

higher-energies) provide higher-resolution details that are passed over by lower-energy

waves with longer wavelengths. Given a set of perfect lenses, light microscopes facilitate

the visualization of objects larger than ∼200nm. While this resolving power is sufficient

to locate individual cells on a microscopy slide, it is insufficient to observe objects such as

small organelles and individual proteins.

1.3 Transmission electron microscopes

Visualizing such details requires more sophisticated imaging techniques, and electron

microscopy is one popular method for accomplishing this. Electron microscopes essentially

replace visible light (sometimes called photons) in a light microscope with electrons and
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take advantage of a number of their quantum properties. There are two types of electron

microscope used widely in structural biology, namely the transmission electron microscopes

(TEM) and the scanning electron microscopes (SEM). The field of cryoEM relies on TEM.

Just like photons, quantum mechanics tells us that electrons can behave like particles and

waves. By accelerating electrons in the microscope column to near the speed of light, we

can modulate their wavelength to be significantly smaller than that of visible light used in a

standard light microscope. The wavelength of electrons in a TEM depends strongly on the

operating voltage of the microscope used. Specifically, the relationship between microscope

operating voltage, U , and the wavelength of electrons it emits is given by

λ =
h

2meeU(1 + eU
2mec2

)
1
2

, (1.1)

where h is Planck’s constant, me is the mass of an electron, c is the speed of light, and

e is the charge of an electron. Current high-resolution cryoEM experiments tend to use

instruments with an operating voltages of 300keV, which accelerates electrons to relativistic

speeds that are roughly 70% the speed of light (2.1x108m/s). Therefore, equation 1.1 tells us

that such instruments produce electrons with wavelengths of 1.96pm (1.96x10−12m). This

is over 100 times smaller than the effective diameter of a single hydrogen atom, meaning

that electron microscopes enable us to examine molecular and even atom-level details of

certain radiation tolerant specimens. Compared to a light microscope, electron microscopes

allow visualization ranging from ∼1mm (10−3m) to fractions of an angstrom (1Å= 10−10m)

depending on the type of instrument andmagnification used, making them incredibly versatile

for use in fields from material science to biochemistry.

TEM operate in much the same way as a compound light microscope (Figure 1.2). TEM

have a light source, set of lenses and apertures, specimen stage, and a detector or camera.

Since electron microscopes use electrons rather than photons, such instruments require the
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use of electromagnetic coils rather than glass lenses to bend and focus the beam. Additionally,

because electrons have a high probability of interacting with molecules in the air [95], the

electron microscope columns must be kept under high vacuum to enable the beam to reach

the specimen.

Because incident electrons can also interact within the sample, it is important that samples

be thin to improve the chance that electrons are transmitted through the sample and reach

the detector. As electrons pass through samples, they may scatter off other molecules.

Interactions during which energy is lost are termed inelastic scattering events and are known

to reduce image signal. To mitigate this effect, a device known as an energy filter is used

to remove such electrons prior to detection. However, the majority of scattering events are

elastic, and in the case of thin samples, it is rare for incident electrons to scatter more than

once. When these two conditions are met, unscattered and scattered electrons interfere to

produce a “phase contrast” image [213]. Some of the consequences of this interference are

discussed in a later section discussing contrast transfer in electron microscopes.

1.3 Sample preparation for cryoEM

While removing air from the column improves imaging conditions, biological specimens do

not tolerate exposure to high vacuum conditions, presenting obvious challenges for the study

of macromolecules by cryoEM. In the harsh vacuum of the microscope column, water in

the sample rapidly evaporates, first concentrating ions in around the sample and eventually

either drying the sample to the grid in a denatured state or releasing it into the column. To

mitigate this effect, a variety of sample preparation techniques are used including chemical

fixation, negative staining, and cryo-fixation [38, 221].

Chemical fixation has been used extensively to keep samples from evaporating in the

high vacuum environment of the microscope column; however, such techniques tend to

distort the sample [129], meaning that observed specimens may no longer assume their
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Figure 1.2: Transmission Electron Microscopes (TEM). The layout of TEM generally
resemble compound light microscopes, which illuminate a sample and project transmitted
light into an eyepiece or camera. However, TEM use electrons rather than photons as an
illumination source, requiring specialized electromagnetic lenses to manipulate the beam. In
both instruments, lenses bend and focus incident light and apertures help limit the amount
of light that reaches the specimen and detector. (Continued on next page)

∗Modified light microscope image is licensed under a Creative Commons Attribution 4.0 Interna-

tional license by Sarah Greenwood. TEM image was generated by Muyuan Chen.
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Figure 1.2: The Condenser lens system controls the intensity of the beam and the area it

illuminates. The condenser aperture absorbs high-angle light that might otherwise scatter off

the sides of the microscope column. The specimen can be moved vertically and horizontally

in the column as well as tilted. When the specimen is moved vertically closer to the focal

point where the beam converges, the specimen is brought closer to focus. Defocusing simply

means moving the sample out of focus, and the defocus value, ∆z, corresponds to the
specific distance the specimen has been moved from the focal point. The Objective lens

system is present to focus electrons scattered off the specimen and improve image contrast

by removing electrons scattered to high angles. Projector lenses enable high-magnification

imaging by expanding images before projecting them onto a detector.

native-state conformations. Another approach to prepare samples prior to imaging without

chemical fixation is the use of negative stains. In this technique, a heavy atom dye is added

to the sample and allowed to dry onto a TEM grid prior to imaging. Drying the sample

prevents evaporation in the column, but drying is associated with a natural concentrating

effect and can degrade high-resolution information in recorded images. So while negative

staining can inform researchers about the presence or absence of a sample, structural results

obtained from such experiments should be thoroughly validated through other techniques.

In contrast to these protocols, cryo-fixation [58] has become exceptionally popular.

Rather than introducing chemicals that alter sample behavior and appearance, cryo-fixation

involves applying specimens to TEM grids (Figure 1.3 A) and rapidly freezing specimens in

liquid ethane, removing heat from samples at a rate of 104-106K/s to around 80K (−193◦C).

When frozen this quickly, water does not have time to form crystals. Instead, water molecules

nearly stop moving in an instant and remain kinetically trapped in place around the sample,

leaving the specimen in its fully hydrated state. Slow freezing tends to result in contami-

nation in the form of ice crystals. To prevent the specimen from melting and evaporating

when inserted into the microscope column for imaging, electron microscopists rely on

specially equipped devices such as dewars and liquid nitrogen reservoirs of that maintain

the temperature of specimens at cryogenic levels between 80-90K.
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Besides holding the specimen in a near-native state without additional chemicals and

associated artifacts, another important reason why cryo-fixation has become so popular is

that lower temperatures have been shown to reduce radiation damage to biological specimens

[16]. It is thought that exposure to radiation gradually breaks bonds and frees hydrogen atoms

within samples, gradually forming gas bubbles in the sample that become visible a dose of

∼10e−/Å2
[81, 108]. By operating at liquid nitrogen temperatures, the negative influences

of radiation are reduced sufficiently to enable imaging; however, microscopists must still

exercise careful control over the electron dose administered to specimens to maximize data

quality [10].

To keep specimens thin and improve the reproducibility of the sample vitrification

process, microscopists use specialized, robotic devices to automatically blot away excess

sample and plunge TEM grids into liquid ethane to vitrify samples in a reproducible manner

[55]. When successful, this produces thin layers of ice that span TEM grid holes (Figure 1.3

B). Nevertheless, optimizing sample preparation for imaging is one of a few bottlenecks in

the current cryoEM imaging pipeline. This typically involves modifying the sample’s buffer

solution, specimen concentration, and freezing conditions, and can require months of time

to bring a protein sample from expression and purification to a state in which high-quality

images may be obtained.

1.3 CryoEM data acquisition

Historically, cryoEM imaging data was recorded on physical film; however, film devel-

opment and digitization to enable computational image processing is time-consuming. The

development of charge-coupled devices (CCD) cameras for TEM applications eventually

enabled microscopists to record digital images directly (Figure 1.4 A1) [63, 149]. By

avoiding film development and digitization, CCD imaging has greatly expedited data acqui-

sition. However, the resulting digital images are characterized by relatively weaker signal at
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Figure 1.3: TEM sample preparation. A. Round 3mm TEM grids are typically made
of metallic materials such as copper or gold and contain a mesh of grid bars. Atop this
metallic mesh is a substrate, typically made of a ∼20nm thick amorphous carbon film
with regularly spaced holes over which a liquid specimen is suspended. B. Typically,
an excess of sample is applied to TEM grids. Excess liquid and specimen is wicked
away using absorbent filter paper, leaving a thin film of specimen suspended across grid holes.

∗Protein illustrations in B are licensed under a Creative Commons Attribution 4.0 International

license by David S. Goodsell and the RCSB PDB.
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high-resolution due, in part, to the requirement of a scintillator layer and fiber-optic coupling

to convert incident electrons into photons that can be detected with a CCD [26, 150].

More recently, advances in the radiation-hardening of complementary metal oxide

semiconductor (CMOS) camera technology have led to the production and widespread use

of direct detection devices (DDD) over scintillator-coupled CCD and film technologies [106,

144, 151] (Figure 1.4 A2). This improvement has enabled the determination of near-atomic

resolution protein structures by cryoEM [8]. The latest DDD can provide uncompressed 8k x

8k image data typically between 10-40 frames per second (fps), generating movie recordings

that facilitate the correction of specimen motion and sub-pixel electron counting without

interfering optics that degrade incident signal [127].

It is common to quantify the differences between detectors by measuring their detective

quantum efficiency (DQE), amounting to the percent of incident signal that is actually

detected at different spatial frequencies or feature sizes represented in an image [145]. Having

a high-DQE at high resolution allows a detector to capture information from important, yet

small-scale structural details when imaging proteins. Compared to their CCD predecessors,

modern detectors more than double DQE at all spatial frequencies (Figure 1.4 B), dramatically

enhancing the structural resolutions that may be obtained via cryoEM [65, 188]. A great deal

of this success can be attributed to new imaging modes enabled when using DDD including

counting and super-resolution modes as well as the ability to correct for stage and specimen

motion that previously degraded results.

Compared to CCDs, which integrated all incident signal (Figure 1.4 C1)), DDD operate

at frame rates sufficient for electron counting. In counting-mode, each pixel measures the

number of electrons that strike a particular location during a brief exposure [146], greatly

improving the precision with which we detect incident electrons and eliminating noise with

less intensity than a single electron strike (Figure 1.4 C2). Multiple exposures are recorded in

sequence, accumulating more precise signal and reducing background noise. Careful control

32



must be maintained over the dose rate of incident electrons to ensure that multiple electrons

are not detected within the same set of pixels during a single exposure. Such events cannot be

separated due to hardware and software limitations, resulting in coincidence losses. However,

if care is taken to avoid multiple electron strikes during an exposure, counting-mode can

dramatically improve imaging statistics over the alternative, integrating-mode [128].

Super-resolution mode builds on top of counting mode, enabling the detection of incident

electrons to sub-pixel accuracy (Figure 1.4 C3). In counting mode, electron strikes are

detected and the maximum intensity pixel adjacent to the electron strike is assigned a value

of 1 count. However, since electron strikes are recorded across multiple pixels, it is possible

to localize electron strikes more precisely. To accomplish this, super-resolution imaging

involves calculating the centroid of pixels activated by an incident electron and assigning

a value of 1 count to the sub-pixel nearest the centroid. While this increases the effective

image dimensions by two along the x and y directions, the increased precision of electron

detection improves high-resolution DQE.

Exposure times for CCD and film are typically around 1s. If the stage or specimen moves

during image acquisition, the resulting data will appear blurred along the direction of motion.

Therefore, even small vibrations diminish data quality, particularly when longer exposure

times are used. In contrast, the high frame-rates of DDD produce movies corresponding

to a set of brief exposures recorded in short succession, enabling corrections for stage and

specimen motions that occur during image acquisition [127] (Figure 1.4 D). While there are

many algorithms for performing such corrections, the majority rely on the simple concept of

cross-correlation to bring individual movie frames into register with each other and minimize

signal degradation due to motion blurring. However, the algorithms that perform these

corrections must contend with extremely high noise levels, and a consensus has not yet been

reached about which correction strategy, if any, is optimal.

As microscopes and detector technology have improved, there has been simultaneous
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Figure 1.4: DDD movie acquisition and motion correction
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Figure 1.4: A. CCD cameras for TEM (1) consist of a scintillation layer coupled to a
charge-couple device array via a fiber optic coupling. The scintillation layer converts
incident electrons to photons, which travel through the fiber optic coupling and are
detected by he CCD array. Conversely, DDD cameras (2) consist of a radiation-hardened
complementary metal-oxide semiconductor (CMOS) sensor, which are able to detect
electron strikes without intermediate optics that degrade signal. B. To measure the relative
difference between cameras, it is common to use a metric called Detective Quantum
Efficiency (DQE) [145]. This measure assesses the ratio of an input signal that is detected
by comparing their signal to noise ratios at various length scales represented in images, the
smallest of which are determined by the “Nyquist” frequency, fNyq=1/(2 Å/pixel). DQE
values range between 0 and 1, with DQE=1 corresponding to a perfect detector. The DQE
curves shown∗ demonstrate how CCD cameras performed worse than film data, but DDD
cameras like the K2 Summit outperform both CCDs and film. C. DDD can operate in
multiple imaging modes. Integration mode (1) involves summing incident electron signal
directly. If signal from an electron strike covers multiple pixels, the measured intensity
is proportional to the fraction of incident signal detected in each pixel. In counting mode
(2), the pixel corresponding to the maximum detected intensity is given a value of 1 count,
improving detective precision. Super-resolution mode (3) extends counting mode by
calculating the centroid of signal from an incident electron and assigning, to sub-pixel
accuracy, the pixel corresponding to the centroid a value of 1 count, improving DQE as seen
in B. D. Because DDD record multiple images in sequence (movie), these images (frames)
can be aligned to reduce blurring due to motion during image acquisition.

∗DQE curves were reproduced from Gatan.com with permission from Gatan. The corresponding

data were originally published in Li et al. [127].

development in automated strategies to expedite data acquisition and ultimately structure

determination via the cryoEM technique[43, 215]. A non-exhaustive list of commonly

referenced software interfaces includes LEGINON [37, 175], SerialEM [141], and UCSF

Tomography [244]. Each of these packages was designed to link directly to the microscope

control server, automating both common and complex tasks from screening and 2D imaging

to tilt-series acquisition for 3D studies. Thanks to these automated modalities, more cryoEM

data is being collected now than ever before [43]. It is not uncommon for high-resolution

structural projects to examine hundreds of thousands to millions of 2D projection images of

macromolecular complexes before pairing down datasets to the best 20,000-100,000 views.
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1.4 Image processing methods

With the exception of analog film data, cryoEM data is obtained in the form of digital images.

Each image consists of an array of intensity values called pixels (Figure 1.5A), allowing us to

apply any conceivable mathematical operation involving arrays or matrices. When handling

data in the form of 3D volumes, we call each element of the corresponding 3D array a voxel

rather than a pixel. Pixels in cryoEM data and voxels in 3D reconstructions represent a

certain number of angstroms along the x and y (and z) directions related to the magnification

used during imaging. Higher numbers of angstroms/pixel (Å/pixel, or “Å/pix”) correspond

to data recorded at lower magnification, whereas a smaller Å/pix corresponds to a higher

magnification. Assuming a constant detector and image size, lower magnification data shows

more surface area, while higher magnifications depict higher-resolution details.

One common operation that can be performed on images in real space is cropping, which

simply corresponds to extracting a subset of adjacent pixels, typically in a square or rectangle.

This operation is used very frequently to extract protein images from micrographs. It is also

possible to resample images through an operation called binning in which we fill a new,

smaller array with the average of neighboring pixel values.

Another family of mathematical functions called affine transformations can also be

applied to images, including translation, rotation, scale, reflection, and shear operations. It

is common to represent one or more of these affine transformations as a series of matrix

multiplications applied to the pixels in the image array. For example, rotating a 2D image

by 70◦ and translating it in the y direction by 25 pixels corresponds to multiplying the image
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Figure 1.5: Overview of image processing. A. In digital image processing, images are

represented by an array of pixels, each of which has an intensity value. The location of

each pixel is denoted by its array indices. B. An image before and applying an affine

transformation corresponding to a rotation by 70 degrees corresponds and an upward shift

of 25 pixels. C. The signal to noise ratio (SNR) of an image is one among many measures

of the quality of an image. Images containing significant amounts of noise have low SNR

values (left), whereas images containing significantly more signal than noise have high SNR

values (right). Raw cryoEM data typically has SNR levels below 1 [83]. (Continued on next

page)
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Figure 1.5: D. Averaging can be used to improve SNR. Provided that a set of images are

oriented such that their underlying signal aligns, the sum of the underlying signal will scale

linearly with the number of images averaged, whereas the noise will scale as the square

root of the number of inputs. As more images are averaged, the noise essentially “averages

out,” thereby increasing the SNR of the result. E. An effect known as reference-bias can

be observed when aligning and averaging many unique images containing pure noise to a

common reference. As more images are averaged, the average of the aligned noise images

begins to resemble the reference [94, 97].

by this transformation matrix


cos(70◦) −sin(70◦) 0

sin(70◦) cos(70◦) 0

0 0 1



1 0 0

0 1 25

0 0 1

 =


cos(70◦) −sin(70◦) 0

sin(70◦) cos(70◦) 25

0 0 1



Figure 1.5 B shows the result of this operation on a simple test image. Similar to the

rotation and translation matrices shown above, each affine transformation can be represented

by a matrix.

Image alignment tasks can be expressed as a series of affine transformation and comparison

steps. For example, consider the case where we want to align two images that have been

rotated and translated with respect to each other by an unknown amount. It is fairly straight-

forward to develop an iterative strategy by which we first test all possible pixel-wise trans-

lations and measure the similarity the two images. Choosing the translation that offers

the maximum similarity measure, we can then test all possible rotations using a specified

angular step. Choosing the rotation that produces the maximum similarity between the two

images, we can again test all possible translations and rotations, perhaps over a smaller

range since the initial translation helped bring the images into close proximity. As we iterate,

our alignment will continue to improve. However, this approach is undeniably tedious
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and time-consuming. There are a number of more mathematically elegant approaches for

performing image alignment that are significantly faster [238]. The most common approach

used to align images in cryoEM is cross-correlation [177].

A common word used to describe cryoEM data is “noisy.” In image processing, noise

refers to information in an image other than the signal one is attempting to detect or analyze.

In the case of single particle cryoEM data, there are multiple sources of noise arising from

electrons scattering off the buffer solution surrounding the sample, random detection events

due to low-dose imaging, detector artifacts such as hot pixels, and contaminants including

crystaline-ice and other non-specimen material that are combined with the protein signal.

One strategy to improve the signal to noise ratio (SNR, Figure 1.5 C) is to average images

together with the same underlying signal. Since consistent image intensity scales linearly

with the number of inputs and noise scales with the square root of the number of inputs,

noise is reduced relative to signal as we average an increasing number of identical images

(Figure 1.5 D). However, when aligning large numbers of noisy images to an underlying

model, it is possible for the average of even pure noise images to begin to resemble the

alignment reference (Figure 1.5 E). Therefore, one must use caution and validate results

when processing cryoEM data to avoid this potential pitfall.

Alternative representations of the data can help us better understand complex phenomena

including noise, specimenmotion, and TEM-specific distortions. Themost common alternate

used in cryoEM is the Fourier transform, which is often abbreviated “FFT” in reference to the

widely-used “Fast Fourier Transform” algorithm. Mathematics tells us that every periodic

function, or signal, can be expressed as the sum of a set of sine and cosine waves with certain

frequencies. A Fourier transform is a mathematical operation that decomposes an input signal

into its component frequencies (Figure 1.6 A), offering insight into the relative number of

waves at each frequency required to represent the transformed function. It is common to say

that a Fourier transformed image exists in Fourier-space, and its untransformed counterpart
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exists in Real-space. With this in mind, the Fourier transform of a 2D input signal such as a

cryoEM image corresponds to a measurement of its information content in all directions and

at all spatial frequencies that can be represented in an image. Waves with low frequency

(long wavelength) are represented near the origin of transformed images, and changes to

the value at the origin correspond to a constant shift of the image intensity (Figure 1.6 B).

Conversely, higher-frequency waves are represented closer to the edge of images, with the

highest-radius pixel values corresponding to waves that oscillate every pixel. Using this

representation, we can identify the relative signal in images coming from features ranging

from the entire width of the image down to a single pixel in size.

In addition to 2D Fourier transforms, it is also common to study the 1D power spectrum

of an image as a global measure of image quality. Quantitatively, the 1D power spectrum is

the rotational averaged intensity of the 2D Fourier transform of an image (Figure 1.6 C).

Analysis of the 1D power spectra of a series of micrographs can show relative differences in

global specimen thickness. Thick samples transmit fewer electrons, yielding little signal at

high-resolution signal, whereas, thin samples provide higher SNR at all spatial frequencies.

The falloff of intensity in 1D power spectra is sometimes described by a Gaussian envelope

expressed as a function of spatial frequencies [62]. This is a useful representation because it

allows us to explain a set of complex phenomena that take place in electron microscopy as a

single function. We often call the steepness of the envelope’s decay a B-factor in reference

to a term commonly used in X-ray crystallography that relates to the thermal vibrations of

atoms that degrade high-resolution information. However, in cryoEM, the term is used more

liberally to include a number of factors that can degrade signal including stage drift and

specimen motions, sample thickness, and sub-optimal electron detection.

The Fourier transform concept can be used to understand another important type of image

processing operation called filtration, which involves multiplying the Fourier transform

of an image by some mask. The effect of this multiplication is to reduce or even remove
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Figure 1.6: Fourier transforms (caption on following page).
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Figure 1.6: A. A Fourier transform is a mathematical operation that converts a signal (left)

into a set of waves that sum to produce the input signal. The computational algorithm often

used to calculate a Fourier transform is called the Fast Fourier Transform (FFT). Each wave

represented in a FFT has an oscillatory frequency and amplitude, which are represented on

the x and y-axes of the 1D Fourier transform, respectively (center). If we extract a single

peak and calculate its inverse FFT, we see the corresponding wave (right). B. The Fourier

transform of 2D signals (images) describe not only the amplitude and oscillatory frequency

of information, but also the direction of wave propagation. Peaks closer to the origin/center

of a 2D FFT correspond to lower frequency waves, whereas high-frequency waves are

represented near the edge of the FFT. Moveover, the FFT of the sum of a set of input

signals corresponds to the sum of their individual FFTs. C. In addition to amplitudes, FFTs

information about the spatial translation of a signal, which is encoded in the “phase” spectrum

of the FFT. While the amplitude pattern observed in a FFT is translationally invariant, i.e. it

does not change in response to a translation of the input, phase information changes as an

image is translated. This information can be used for image alignment, and image translation

can be performed by shifting phase values in a FFT. D The 1D Power spectrum is obtained

by radially averaging the intensity observed in a 2D FFT. This returns a function that tells

us the relative information content at each radius in the FFT and is useful for analyzing

the signal and noise content of an image as well as demonstrating how noise can corrupt

an input signal. E. Filtration is a common image processing operation that is typically

performed on the FFT of an image. A lowpass filter (top) removes information at high radius

in the FFT of an image, reducing information with rapid variations such as noise. Therefore,

a lowpass filtered image tends to appear blurred, but less noisy. Conversely, a highpass

filter (bottom) removes information at the origin of an FFT, keeping only information at

high-spatial frequencies. In the example show, the underlying image signal is corrupted

by a gradient across the image. By removing information at low spatial frequency, we can

remove the gradient while preserving features with finer details.

information at particular spatial frequencies. For example, a low-pass filter removes high-

spatial frequency information including noise and other rapidly varying features (Figure 1.6

E), which makes the image appear somewhat blurred. The opposite of a low-pass filter is a

high-pass filter, which removes low-resolution information but can increase edge visibility

around objects. An interesting application of this filter is to remove a slowly varying gradient

across an image as is shown in Figure 1.6 E.
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1.5 Computational workflows in cryoEM

CryoEM traditionally focuses on a relatively small collection of image processing workflows,

namely 2D single particle analysis, 3D electron cryotomography, and 3D subtomogram

averaging. However, there is considerable flexibility within these workflows, facilitating the

processing of a wide variety of samples. Understanding the steps in the canonical workflow

promotes more efficient use of existing software tools and provides an excellent starting

point for developing new procedures that push the field forward.

1.5 Single particle analysis

Single particle analysis (SPA) remains the most common computational image processing

approach used in cryoEM.This technique seeks to reconstruct a 3D cryoEMdensity map from

many (104-106) 2D images of individual proteins (termed particles) from cryoEM images

(Figure 1.7) [208]. SPA projects generally begin with the importation of 2D micrographs or

rawDDDmovies. The latter must be aligned and averaged to produce 2D images for analysis;

however, there are considerable benefits to this extra preprocessing step. In particular, movie

data processing enables improved signal through electron counting and drift correction as

well as dose fractionation via frame weighting or exclusion.

At this stage, some preliminary analysis of the raw micrograph data is advised to exclude

poor quality images prior to subsequent steps that are more computationally intensive. For

example, data quality is often a limiting factor in obtaining a high-resolution structure via

cryoEM, so it is always useful to understand the quality of a given dataset and what can be

done to improve it. Even a cursory glance through recorded micrographs can help identify

images with significant amounts of ice contamination, overlapping proteins, and stage drift.

The next step involves extracting particles from the imported micrographs (Figure 1.7

A). This step involves locating the center point of particles in each image and can be a
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Figure 1.7: Single particle analysis workflow. A. Single particle analysis begins with

particle extraction, in which individual, randomly-oriented proteins are localized in electron

micrographs (left) and extracted with a consistent box size (right). (Continued on next page)
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Figure 1.7: B. An initial model is generated and uniform projections are calculated at a range
of ”Euler angles” that completely describe the orientation of the 3D structure represented in
projection images. The azimuthal angle (Az) corresponds to a rotation about the z-axis,
and altitude (Alt) corresponds to a rotation about the rotated y-axis. A final rotation, phi,
corresponds to a rotation about the rotated x-axis, which is observed as an in-plane rotation
in projection images. C. Once projections are calculated, particles are compared with each
projection and assigned an orientation based on the projection they most closely resemble.
Particles with identical orientations are averaged, forming “class averages” with signal
proportional to the number of particles assigned to a given orientation. D. The “Fourier
slice theorem” tells us that the calculating the FFT of a projection of an image is the same
as extracting a central slice from the FFT of the image. This panel demonstrates this
principle in 2D; however, it applies in 3D as well. E Since class averages correspond to
projections from known orientations, we can use the Fourier slice theorem to insert the
Fourier transform of class averages into an empty FFT volume. Taking the inverse FFT of
the filled Fourier volume results in a 3D map.

∗The depicted β-galactosidase dataset (EMD-5995) was originally published in [18] and obtained

from EMPIAR-10012, EMPIAR-10013.

tedious, manual process. Once the locations of each particle are determined, a box size (in

pixels) is specified and particles are extracted, yielding 1 square image of each particle with

edge dimensions corresponding to the specified box size (Figure 1.7 B). Automated routines

have been developed to expedite this particle boxing procedure, ranging from reference to

filter-based routines [245]. While such algorithms have failure cases and never perform with

100% accuracy, they provide a considerable speed boost over manual particle picking.

Once particles are extracted, the next step is to correct particle images for characteristic

distortions due to the contrast transfer function (CTF) of the microscope, which impacts all

TEM images. The CTF is most easily observed in Fourier space, where it generally appears

as a radial, oscillatory pattern [62]. The set of concentric rings is commonly called “Thon

rings” [222] after the microscopist who studied their dependence on specimen defocus. The

rate of oscillation is given by:

CTF (∆z) = −2 sin[π(∆zλw2 − Csw
3λ3/2)], (1.2)
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where ∆z is the defocus of the specimen, meaning its position relative to the focal point, λ

corresponds to the wavelength of incident electrons (Eqn. 1.1), w is spatial frequency, and

Cs is the microscope’s coefficient of spherical aberration. A curious feature of the CTF is

that it falls below zero over certain spatial frequencies, implying that such regimes contribute

‘negative’ contrast. Essentially, at spatial frequencies over which the CTF is greater than

0, objects with greater density appear darker and intensity is linearly related to the density

of the specimen. Conversely, when the CTF is less than 0, denser objects exhibit negative

contrast and appear brighter.

Additionally, because the CTF oscillates above and below zero, if images with different

defoci are summed, they would deconstructively interfere, canceling out important spatial

details. Likewise, because the contrast transfer function has values above and below zero, it

is difficult to interpret images prior to CTF correction because image contrast is inverted in

regimes where the CTF falls below zero. Considering that information is completely absent

from images at spatial frequencies corresponding to CTF zero-crossings, it is necessary

to obtain images at a range of defoci to fill Fourier space with information at all spatial

frequencies [170]. To ensure that information is preserved and interpretable when combining

particles from multiple micrographs with unique defoci, we invert contrast in each regime

where they fall below zero through a process called “phase flipping” to ensure that infor-

mation adds constructively (Figure 1.8 C).Accurately accounting for any visible astigmatism

beforehand ensures that any irregular (non-circular) Thon ring patterns are accounted for

when performing this correction.

Since each imaged object spans a relatively broad range of spatial frequencies, the CTF

can make data interpretation and summation challenging and requires careful restorative

corrections. Such processing requires precise knowledge of the zero-crossings of the CTF

within experimental data. To accomplish this, a theoretical CTF curve defined by the CTF

function parameters described above is fit to the observed Thon ring intensity pattern,it is
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Figure 1.8: Contrast transfer function. A. TEM images have a characteristic distortion

called the contrast transfer function (CTF) that should be corrected prior to use in single

particle reconstruction. The CTF spreads out information and inverts contrast certain spatial

frequencies as a function of specimen defocus (Figure 1.2). Here we show the influence of

CTF on a test image at two defoci. The first row shows a simulation of an image recorded

close to focus. The second row shows the same image simulated far from focus. As the

specimen is moved farther from focus, images are increasingly distorted by the CTF. B. The

CTF can be mathematically “fit” by comparing measured curves from experimental images

with theoretical curves obtained from the derived mathematical formula for the CTF (Eqn.

1.2). The parameters that yield the closest match between the theoretical and experimental

curves are used for further corrections. (Continued on next page)
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Figure 1.8: C. Information is absent where the CTF crosses zero, so it is necessary to

record data at multiple defocus values (defoci) to fill in these missing details. However, it is

necessary to “phase flip” the data in regimes where the CTF falls below zero to ensure that

information constructively interferes when summed.

possible to determine the precise defocus of images and apply restorations that correct for

well-studied aberrations such as astigmatism and spherical aberration (Cs) [71].

Historically, the implementation ofmethods to CTF-correct and combine images spanning

a range of defoci enabled structural resolutions to surpass the 10nm level with CCD camera

technology [29, 51]. Popular stand-alone software packages for measuring and correcting for

CTF include CTFFIND [154, 181] and GCTF [241]. Additionally, certain cryoEM software

suites such as EMAN2 also offer built-in tools for CTF correction and facilitate importation

of results from external packages [20, 133].

Once CTF parameters have been determined for each micrograph, it is possible to exclude

micrographs with little high-resolution information due to large B-factors and large defocus

values. Strong B-factors correspond to weak signal at high-resolution, and high-defocus

values convolve images with a rapidly oscillating CTF that can make images difficult to

phase flip. Therefore such images are often removed by assigning user-defined threshold

criteria above and below which micrographs are excluded from further processing. The

remaining images are retained, and CTF curves are used to process the results, generating a

set of phase-flipped images.

Next, CTF-corrected particles are used to generate an initial model. During this step,

particles are combined using a variety of alignment and averaging routines to generate a

3D map that best represents the underlying particle data. This can be accomplished using a

number of techniques, including methods such as stochastic gradient descent (SGD). In this

technique, we begin with a 3D volume with random values. Small “batches” of particles
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are then inserted into the 3D volume in the orientation they most closely resemble. As

each batch of particles is inserted, we update the map with the 3D average of the particles

from the current batch and repeat. After a number of iterations, the map generally shows

strong resemblance to the particle data and can be used as an effective starting point for

high-resolution 3D refinement.

Once obtained, the initial model is used as the starting reference for 3D refinement.

During this phase, particle orientations are refined iteratively, often through projection

matching [171], to enhance the resolution and quality of map features. This iterative process

cycles through orientation determination and reconstruction tasks, ultimately leading to

a final 3D reconstruction. A common approach for particle orientation determination is

class averaging. During this process, a set of evenly spaced 3D projections is generated

from a specified 3D initial model (Figure 1.7) A). Next, particles are compared with these

projections and assigned the orientation of the projection they most closely resemble (Figure

1.7) B). Finally, determined orientations are used to insert particles into a new, refined 3D

reconstruction, which is used as a seed for the next iteration of refinement. This iterative

process continues until convergence, which generally requires ∼3-5 iterations.

The process of 3D reconstruction is important in cryoEM and worth discussing in

somewhat greater detail. Recall that particle images produced onTEM instruments correspond

to projections of the sample. Therefore, while it is possible to insert particles into 3D in

real space, this requires literally smearing out the projection intensity along the axis lying

perpendicular to the particle’s orientation, requiring that we handle large 3D volumes for

each particle. Instead, it is more common to leverage a mathematical principle, which states

that a projection in real space corresponds to a slice in Fourier space (see example in Figure

1.7 C). Using this principle, we can avoid smearing the particle density across real space by

first calculating the Fourier transform of particles and inserting them as slices into Fourier

space (Figure 1.7 D). Once all particles have been inserted, the inverse Fourier transform
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can be calculated, resulting in a final 3D map, though additional post-processing steps are

commonly applied to mask out noise surrounding the map, normalize intensity values, and

smooth out its features [172].

In the class averaging approach, the number of projections is typically chosen such that

every voxel in Fourier space contains information from at least 3-4 particle slices, meaning

that smaller particle and map sizes require fewer projections, but higher resolution details

can be captured when using larger box sizes. Regardless of map size, a digital Fourier

volume will contain a finite number of voxels. This means that particles with very small

orientation differences will be represented as slices through the same set of voxels in Fourier

space. Therefore, it does not make sense to subdivide such particle data into multiple classes

since they will ultimately contribute to the same slice. The overall effect of limiting the

number of orientations in 3D refinement in this way is to reduce computational complexity

and computing time with negligible effects on map quality.

Avoiding model bias is challenging, and existing protocols for the reduction of model bias

can be computationally expensive. Under ideal circumstances, a collection of reconstructions

would be generated using a bootstrapping procedure, and confidence could be assigned to

map features according to their consistency throughout the dataset. However, there is always

a limited number of particles and computational resources, so it is more common to perform

so-called “gold-standard” refinements [98]. During this process, the data is split in half and

reconstructed to produce two maps for each map refinement iteration. Particles from the two

sets are never processed together, reducing the likelihood that consistent features between

the two maps might be misinterpreted [173].

To accomplish this mathematically, we calculate the Fourier shell correlation (FSC)

between the two reconstructed maps after each iteration, which tells us about the similarity

of the two maps at each spatial frequency represented in Fourier space (Figure 1.9 C). Since

spatial frequencies are related to resolution by the Å/pix value of the data, the FSC gives us
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a sense of the size of features one can interpret confidently after a round of refinement. The

FSC curve is also used to generate a filter that effectively erases structural features that are

inconsistent between the two maps. After filtration, the maps are averaged and serve as the

starting map for the next round of refinement.

One of the reasons why FSC curves are required is that they are currently the primary

means of quantitatively measuring the resolution of cryoEM maps. The FSC has a charac-

teristic falloff that is related to the SNR of the data. As the measured agreement between the

maps falls toward zero at higher spatial frequencies, the correlation between map features

become weaker and eventually fall off into noise. For now, the community has settled upon

a threshold criterion of FSC=0.143 when comparing even and odd maps, meaning that the

spatial frequency at which the FSC falls below this value is considered the resolution of the

average map at that iteration [184].

Despite its popularity in the field of cryoEM, gold-standard refinements and FSC-based

resolution calculations have their shortcomings. Besides not being as robust and bias-free as

a more statistically accurate strategies like bootstrapping, FSC-measured resolution values

are strongly influenced by the mask applied to the maps prior to computing the FSC (Figure

1.9 B). Masks are applied primarily to focus comparisons on the protein structure rather than

surrounding noise as well as to scale resolution values to correspond with biological features

of interest. Nevertheless, while using a mask for noise reduction is useful, it can overstate

results when taken to the extreme [173].

As an alternative to Fourier-based resolution measurements, new methods for measuring

map quality in real space are becoming increasingly prominent. The majority of these

are focused on comparing maps against models as a measure of structural validity, taking

advantage of existing tools from X-ray crystallography [3]. The philosophy behind such

approaches is to link resolution values to the modelability of a structure. Ultimately, the

biological insight we can gain from high resolution structures depends on our ability to place
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Figure 1.9: Gold standard processing. A. During gold-standard 3D refinement, particles are
split into even and odd subsets (left), where even and odd simply identify whether the index
of a particle is divisible by 2. Splitting in this way ensures that the resulting subsets are
random and do not overlap. Even and odd particle sets are reconstructed in 3D (right) using
the approach outlined in 1.7, yielding an even and odd map. B. After reconstruction, a mask
is applied to each structure to diminish non-structural noise located outside the structure of
interest. The “tightness” of the mask can be tuned to remove more or less content proximal
to the structure. C. After masking, the Fourier shell correlation (FSC) is calculated between
the masked even and odd maps. This measure tells us about the similarity of features in the
maps as a function of resolution. An FSC of 1 corresponds to an exact match, but because
the particles that contribute to the even and odd maps are unique, reconstructions tend to
become increasingly dissimilar at higher spatial frequencies. The field has agreed upon
FSC=0.143 as the cutoff for measuring resolution, meaning that the resolution at which the
FSC curve falls below 0.143 is defined as the resolution achieved by the 3D reconstruction.
Note that tighter masks yield higher resolution values; however, if a mask is too tight,
structural features are erased, ultimately resulting in an over-reported resolution.

∗The depicted β-galactosidase dataset (EMD-5995) was originally published in [18] and obtained

from EMPIAR-10012, EMPIAR-10013.
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representative atoms into the density map and derive important biochemical information.

However, while real space measures are insightful and do relate to biochemical features of

interest, they are difficult to compare between maps from different datasets, and one user’s

interpretation of the outcomes may differ from another depending on the modeling software

and metrics used for comparison. Ultimately, a combination of both approaches remains

the current standard, and researchers are expected to perform both types of analysis prior to

structure deposition.

Map quality and measured resolution can suffer when fundamental assumptions about

SPA experiments are broken. These generally relate to specimen properties that can be

assessed in raw imaging data [56]. One requirement is that specimens be monodisperse.

If 2D projection images contain overlapping particles, the information in these images is

difficult to decouple, reducing resolvability. It is generally preferable to dilute samples to a

point at which particles do not overlap. Another requirement is that particles are oriented

randomly, and a dataset should sample all possible views. Missing and preferred specimen

orientations tend to produce characteristic smearing artifacts in the final reconstruction

that can degrade map quality. Likewise, while it is not a fundamental assumption, single

particle experiments generally require a large number of particles to reduce noise in the final

reconstruction. If too few particles are used, the even and odd reconstructions will be noisier

and therefore disagree more at high spatial frequencies.

Another important assumption is that particles represent projections from a common,

rigid underlying structure. In practice, a SPA dataset contains not only images of a single

purified protein but also ice contaminants, denatured proteins, and other non-specimen

material. Moreover, because proteins are flexible, cryoEM datasets commonly capture

multiple conformational states of a protein within a single dataset. While such conforma-

tional differences are often of significant biological relevance, averaging multiple protein

conformations and non-specimen images rapidly degrades map resolution, so care must be
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taken to analyze and handle heterogeneous data.

In some cases, comparative refinements amongmultiple software packages are performed

to understand variations present in the data; however, a number of algorithmic approaches

exist to resolve heterogeneous structures. Generally, such strategies involve assigning each

particle to one of a collection of reference maps [132, 191], requiring more computational

resources than traditional single-map refinements and missing the continuous-time details

of state-to-state transitions. Nevertheless, understanding the dynamic behavior of proteins is

an important part of structural biology research, so considerable effort is being placed into

the development of new tools for heterogeneity analysis.

Electron Cryotomography

Rather than relying solely on 2D techniques like SPA, it is possible to acquire 3D information

about a specimen via a technique known as electron cryotomography (cryoET). This approach

is particularly useful for examining large objects such as whole cells and can also be useful

for studying purified protein samples and cellular lysates obtained after bursting cells to

spread out their contents.

In cryoET, a large 3D volume is a reconstructed from a collection of 2D images (called

a “tilt series”) recorded at different tilt angles (Figure 1.10 A). For a variety of reasons,

images for cryoET projects generally span a tilt range of roughly −60◦ to 60◦ in increments

of 2− 5◦, typically starting with angles near 0◦. Specimens cannot be imaged on their sides

since the beam cannot penetrate through the specimen holder, TEM grid, and vitreous ice

surrounding the specimen when oriented edge-on with respect to the beam. Additionally,

exposure time must be limited since the specimen is damaged by radiation from the beam

as images are recorded. Since the most crucial, highest-fidelity information in a tomogram

is recorded at low tilt angles, First recording low tilt angles, where the most crucial and

highest-fidelity information in a tomogram is found, minimizes radiation damage to the
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Figure 1.10: CryoET data collection and 3D reconstruction. A. CryoET data collection

involves rotating the specimen stage (left) and recording images at a range of tilts (right),

forming what is known as a tilt series. B. Images are aligned and inserted into Fourier

space, relying on the Fourier-slice theorem described in 1.7D. C. Because of the geometry

of cryoET data collection, a wedge of information in the filled Fourier volume is void of

projection information and commonly referred to as the “missing wedge.” Because this

information is missing, when we inverse Fourier transform the Fourier volume, information

in the 3D map is smeared along the z-direction, presenting considerable challenges to the

interpretation of 3D information in cryoET reconstructions.
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specimen that might negatively influence high-resolution information content [92].

Once tilt series have been obtained, they are computationally aligned and reconstructed

into a 3D volume using software packages such as IMOD [116], and more recently EMAN2

[39, 77]. While 3D reconstruction approaches are similar to those used in SPA, the geometry

of each tilt series introduces some subtle yet important differences. Specifically, the geometry

of slices in Fourier space depends on the tilt angles at which the tilt series was recorded. In

cryoET, since the specimen is rotated in the column about a common central tilt axis, the

projection/slice theorem tells us that each tilt image image corresponds to a central slice

about a common line in Fourier space (Figure 1.10 B). Because a full 360◦ tilt series cannot

be collected for reasons described above, there is information missing in Fourier space. This

missing region is commonly referred to as the “missing wedge.” This missing information

produces a characteristic streaking artifact along the z-axis of reconstructed tomograms

(Figure 1.10 C).

As tilt images are collected, the specimen and stage move not only within individual

exposures but also between them. Likewise, the specimen not only undergoes translational

motion but also more complex 3D movements, including bending and bowing of the ice

layer. While translational motions can be accommodated via straightforward alignment

procedures, accounting for warping is more challenging, particularly after combining tilt

images in 3D. To compensate for such effects, local reconstruction techniques such as the

one introduced in chapter 5 are becoming more common.

Additional features for cryoET have been incorporated as automated data acquisition

software has improved. These allow careful control over electron dose, exposure time, and

tilt range, making it easier and faster to record higher quality data [141]. Software control of

the microscope also helps minimize aberrant behavior between tilt images that can degrade

quality and significantly improve the consistency of imaging conditions across tilt series
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from an entire imaging session. Likewise, they have opened new frontiers in tomogram

montaging to record data over larger areas than could be examined with acquisition over a

single field of view [166]. Batch acquisition is now enabling tomography data to be collected

at a rate where high resolution results can be obtained after relatively few imaging sessions

[155].

Subtomogram averaging

Tomograms of purified samples and cells include a wealth of biological information; however,

missing-wedge artifacts and high noise levels make volumetric interpretation difficult. One

way to compensate for missing wedge artifacts and noise is through the alignment and

averaging of subtomograms that contain particles of interest. The application of this technique

is known as single particle tomography (SPT) or subtomogram averaging (Figure 1.11) [31,

75, 104, 227].

Obtaining a 3D reconstruction via subtomogram averaging begins with particle extraction

from 3D tomographic reconstructions. An initial model is generated from the data or obtained

from an existing homologous structure and used as a reference for the first alignment step.

The simplest alignment procedures involve parameter sweeps across particle translation and

rotation with respect to the reference, scaling proportionate to the number of particles and

the rotational and translational sampling, though more sophisticated algorithms are generally

used in practice [76]. While each particle is smeared along the z-axis due to the missing

wedge in Fourier space, it is assumed that they are in unique orientations. Therefore, when

particles are rotated into register with each other, their missing wedges no longer align, so the

process of summing the aligned particles together fills Fourier space with information that

was previously absent (Figure 1.11 A). Once aligned, the process of averaging reduces noise

proportionate to the square root of the number of particles, implying that the use of more

particles will yield stronger structural signal and reduce noise in the final map. From this
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Figure 1.11: Subtomogram averaging. A Subtomogram averaging begins with the extraction

of 3D sub-volumes from a 3D tomographic reconstruction that contain randomly oriented

particles. Extracted particles are aligned to an initial model and averaged to yield a 3D map

(subtomogram average). As with single particle refinements, gold standard processing can

be applied to subtomogram averaging as well (1.9). (Continued on next page)
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Figure 1.11: B. Missing wedge artifacts (Figure 1.10) are present along the z-axis of
extracted particles (left). When particles are aligned to the initial model, their missing
wedges no longer align, and the sum of the aligned particles fills Fourier space, reducing
missing wedge artifacts in the final reconstruction.

∗The depicted β-galactosidase dataset (EMD-5995) was originally published in [18] and obtained

from EMPIAR-10012, EMPIAR-10013.

point, the process can be repeated until further iterations no longer yield enhanced resolution.

Additionally, in the case of high-resolution projects, 3D particle locations can be used to

extract data from the original raw tilt series, permitting more precise CTF and geometrical

corrections (Figure 1.11 B).

As with SPA, the fundamental assumption that all subtomograms correspond to an

identical, rigid structure still applies. The majority of cases break this rule, and averaging

dissimilar structures together only serves to blur the resulting cryoEM density map. In such

cases, one of two strategies is applied. In the first, heterogeneity is reduced by subdividing

the data into more similar subsets. In the process, many particles are discarded, but the

remaining subset maximizes the clarity of features in the final map. Alternatively, it is

possible to apply methods such as multiple model refinement with subtomograms, and doing

so allows multiple conformational states to be extracted.

1.6 Organization of the thesis

My thesis focuses primarily on the development of computational workflows and techniques

for cryoEM within the EMAN2 software suite [217], focusing on my collaborative work

in the areas of single particle reconstruction (SPR), electron cryo-tomography (cryoET),

and subtomogram averaging. In the next chapter, I discuss some of my work in the area of

cryoEM specimen motion correction software. In chapters 3 and 4, I focus on single particle

analysis in EMAN2 and algorithmic advances we have made through our participation in the
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EMDatabank Map Challenge validation effort. In chapter 5, I discuss recent work in the area

of cryoET and subtomogram averaging, where we have developed a complete, user-friendly

workflow for processing cryoET data. In chapter 6, I describe how my research is related to

some of the exciting new developments in the field of cryoEM and offer some perspectives

about the future directions of the field. Finally, in an appendix, I describe key aspects of my

wet-lab research on high-density lipoprotein size, shape, and structure.
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Chapter 2

Analysis of corrections for global and

local specimen motion

The research outlined in this chapter is unpublished.
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2.1 Introduction

Transmission electron microscopes (TEM) image an entire field at once, meaning they are

subject to any motion of the stage or specimen during imaging. It is currently thought that

mechanical stage drift, electron radiation damage, and local charging cause specimen motion

observed in micrographs, though additional factors may contribute [32, 81]. Regardless of

their source, motions as small as fractions of a nanometer (10−9 meters) can degrade the

quality of images and hence the 3D structures they can yield. For this reason, images with

significant drift have traditionally been discarded, but recent technological development

for TEM has produced a new type of camera called a direct detection device (DDD) that

facilitates specimen motion correction.

DDD cameras record a stack of micrographs in rapid succession, providing improved

signal characteristics over scintillator-coupled CCD cameras [15, 144, 152]. Because

DDD produce movies rather than single-exposure images, recorded movie frames may

be computationally aligned via cross-correlation techniques to compensate for the drift

of the stage and specimen during movie acquisition. In the absence of such corrections,

high-resolution information is blurred; however, by applying a motion correction algorithm,

it is possible to enhance the high-resolution information content of electron micrographs,

allowing researchers to retain a significant fraction of data that would otherwise be discarded

[127].

While conceptually similar, the algorithms used to correct for specimen motion vary

widely, using different criteria to guide, smooth, and otherwise bias frame translations

toward the optimal alignment. Most whole-frame motion correction algorithms rely on cross-

correlation methods to obtain translation vectors for each frame to bring them into register

with a stationary frame or the frame average [179] (Figure 2.1). However, because movie data

are notoriously noisy, there is rarely a definitive maximum in the cross-correlation computed
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between pairs of movie frames. Likewise, the presence of relatively strong fixed background

patterns in DDD movies typically bias algorithms toward 0 translation and away from the

actual translation between frame pairs (Figure 2.1 C). Therefore, specialized algorithms

to combat these challenges have been developed. A non-exhaustive list of widely-used

whole-frame motion correction algorithms includes Unblur [34], Motioncor [127], DE-

process-frames [229], alignframes within the IMOD software suite [116], e2ddd_movie.py

in EMAN2 [20], and alignframes_lmbfgs [185].

Beyond the global alignment of whole frames to each other, objects within cryoEM

images are occasionally observed to exhibit locally correlated and even uncorrelated motions

rather than isotropic, global motions [9]. In such cases, whole-frame alignment routines

can only provide partial motion correction, but local motion correction algorithms such as

MotionCor2 [243] and an Optical Flow approach developed within the XMIPP software

suite [1] among others [186] are undergoing rapid development. On one hand, the concept of

aligning sub-frames is intuitive; however, in the low-signal, high-noise regime of cryoEM,

it is rare to have sufficient signal to perform alignments in sub-frames smaller than ∼1024

pixels. This severely limits the efficacy of local alignment routines except for in specific

cases involving structures with large molecular weight or high density. Therefore, while such

local approaches are technically more precise, they may become less accurate with increased

locality. Whereas whole-frame alignment routines take advantage of the signal present in the

entire field of view, local algorithms seek to find peaks in cross-correlation images computed

using significantly smaller image sizes. Ultimately this reduces the signal to noise ratio of

computed cross-correlation images, making peak detection more challenging. Nevertheless,

it is vital that we correct for local motion to maximize the utility of each recorded image.

In my examinations of the motion measured by many of the aforementioned algorithms,

I have observed trajectory differences in a significant fraction of the data. In this chapter, I

compare alignments from different motion correction algorithms and examine the discrep-
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Figure 2.1: Alignment of DDD movie frames. A. DDD movies consist of a series of

short exposure frames, each of which possesses limited signal. B. When averaged without

alignment, specimen and stage drift can be observed as blurring in real space and weaker

signal in Fourier space. C. To reduce blurring artifacts due to motion, movie frames must be

aligned. To accomplish this, we determine the relative shifts between all pairs of frames

(left). While it is possible to measure relative shifts exhaustively, it is significantly faster

to use Fourier-accelerated cross-correlation algorithms. These algorithms calculate one

cross-correlation function (CCF) for every pair of movie frames (left). In the case of DDD

movies, these CCF images tend to have a strong central peak, corresponding to a fixed

background pattern present in each image due to detector imperfections. Adjacent to this

fixed background peak is another peak, corresponding to the true translation between the

frames. Different algorithms have unique ways of robustly determining this peak, but each

ultimately determines the peak location for each pair of frames. (Continued on next page)
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Figure 2.1: D. Once CCF peak locations have been determined, the data are regressed using

ordinary least squares or robust variant of the algorithm that accounts for the adjacency of

frame-frame pairs to generate a trajectory that best agrees with relative translations measured

between each pair of frames. E. After a successful alignment, blurring artifacts are reduced,

and Fourier intensity appears more isotropic.

ancies between their results. I also examine two specific algorithms in a semi-competitive

fashion to analyze their influence on a final 3D reconstruction and explore novel methods for

using these data to remove bad micrographs prior to processing according to the trajectory

data alone. Because frame alignment directly influences the attainable resolution in single

particle analyses, assessing the strengths and weaknesses of each algorithm may have a

critical impact on the selection of a specific algorithm, its parameters, and ultimately on

quality of the final reconstructions.

2.2 Methods and Analysis

To understand the extent of specimen motion and the variability of trajectories measured

by various motion correction algorithms, I designed an analysis pipeline to examine frame

trajectories measured by DDD motion correction algorithms. The pipeline takes as input a

movie and its associated dark and gain reference images, applies a common set of corrections,

and runs alignment routines separately using their default parameters. Throughout the

pipeline, I collect timing data for each algorithm, ensuring that the memory cache is cleared

prior to runtime to factor in read and write times.

I applied this pipeline to the 4 datasets described in Table 2.1 and analyzed the global

motion trajectories and associated power spectra. Timing information for this processing is

detailed in Table 2.2. All timing benchmarks were performed on the same hardware except

differences in CPU/GPU requirements, taking advantage of parallelization where possible.
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Initial examinations of the movie trajectories showed a number of cases exhibiting

disagreements in measured motion on the order of 0-8 pixels (Figure 2.2, middle column),

corresponding to a distance of ∼0-4Å. Examination of the 1D power spectra for aligned,

averaged movies shows that the falloff in Fourier intensity is influenced by algorithm choice

(Figure 2.2, right column). Visual inspection is generally inadequate to distinguish whether

specific algorithms preserve more information at high spatial frequencies than others, but it

is clear that frame trajectory differences at the observed level cannot yield equivalent frame

averages. Given an Å/pix of 0.6, differences greater than ∼3Å can blur information beyond

2/3 Nyquist frequency, suggesting that algorithm choice can impact the resolution of 3D

reconstructions.

It is currently understood that mechanical stage drift, electron radiation damage, and

local charging cause specimen motion observed in micrographs and DDD movies. When

considering physical specimen parameters as well as imaging conditions for each of the

samples depicted in 2.2 and described in Table 2.1, there is a slight correlation between

diminished differences observed in the aligned power spectra and specimen molecular

weight. This is likely because higher molecular weight specimens tend to yield higher-

contrast images, enhancing cross-correlation peaks and resulting in more robust frame

alignments.

Next I sought to determine the extent to which motion correction algorithms differ across

high-resolution cryoEM datasets. I mined the EMDataBank and Electron Microscopy Public

Image Archive (EMPIAR) for depositions containing raw movie frames for alignment and

identified 4 candidate single-particle datasets, namely EMPIAR 10200 [246], EMPIAR

10202 [216], EMPIAR 10204 (to be published), and EMPIAR 10216 (to be published). The

parameters of these datasets are described in Table 2.3.

From each of these datasets, I extracted 250 randomly chosen movie files and performed

motion corrections using two of the previously tested algorithms whole-frame correction
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Specimen HIV DIS dimer RNA TRPV1

Source Kaiming Zhang EMD-5778

Manuscript unpublished Liao et al, 2013

Weight (kDa) 30 380

Microscope JEOL 3200FSC FEI Polara 300

Detector K2 (bin x2) K2

Å/pix 1.198 0.61

Total dose 50 41

Dose per frame 2 1.37

Frames per second 2.5 5

Specimen Mayaro Virus β-galactosidase
Source Jason Kaelber EMD-5995

Manuscript unpublished Bartesaghi et al, 2013

Weight (kDa) 52000 470

Microscope JEOL 3200FSC FEI Titan Krios

Detector K2 K2

Å/pix 0.65 0.64

Total dose 35 45

Dose per frame 1.4 1.2

Frames per second 5 2.5

Table 2.1: Global motion correction parameters and runtimes. A. Parameters linked to
stage and beam-induced specimen motion. Here I have curated a collection of 4 datasets
with varying molecular weight and image recording parameters. All samples were applied
to plasma cleaned/glow discharged Quantifoil holey carbon grids with the following
geometries: HIV DIS dimer RNA (R2/1, 200 mesh), TRPV1 (R1.2/1.3, 400 mesh),
β-galactosidase (R2/2, 200 mesh), Mayaro virus (R2/2, 200 mesh). Super-resolution data
was processed in all cases except the HIV DIS dimer RNA. Reported doses are expressed in

e−/Å
2
.

∗BGal (EMD-5995) movie [18] obtained from EMPIAR-10013. TRPV1 (EMD-5778) movie [130]

obtained from EMPIAR-10005. Mayaro virus (recorded by Jason Kaelber) and RNA (recorded by Kaiming

Zhang and Zhaoming Su) data were obtained from the National Center for Macromolecular Imaging (NCMI).
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Program Package Processor Walltime

(cores) (min)

DE_process_frames-2.8.1.py CPU (32) 1.9 ± 1.3

e2ddd_movie.py EMAN2 CPU (32) 5.9 ± 1.4

alignframes IMOD GPU 0.5 ± 0.2

alignframes_lmbfgs.exe CPU (1) 5.1 ± 2.2

unblur_openmp_7_17_15.exe CPU (1) 2.1 ± 0.3

dosefgpu_driftcorr Motioncorr v2.1 GPU 2.3 ± 0.6

Table 2.2: Global algorithm runtimes. CPU hardware: Intel ® Xenon ® CPU E5-2650 v2 at

2.60 GHz (16 physical cores, arch x86_64). GPU hardware: nVidia Tesla C2070 2.0 with

5301Mb memory. 128GB DDR3 RAM. Memory cache cleared between trials.
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Figure 2.2: Comparison of global motion correction algorithms. Six motion correction

algorithms were run on a set of movies from 4 unique datasets. Movies exhibiting the largest

differences among calculated trajectories were pulled for examination, four of which are

depicted here (left, center). (Continued on next page)
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Figure 2.2: Whole-frame trajectories are plotted such that (0,0) corresponds to the middle
frame of each movie. 1D power spectra (right) show that motion correction influences
signal present at a range of spatial frequencies. Each power spectrum was computed using a
tile size of 2048 without overlap.

∗BGal (EMD-5995) movie [18] obtained from EMPIAR-10013. TRPV1 (EMD-5778) movie [130]

obtained from EMPIAR-10005, Mayaro virus and RNA movie data obtained from the National Center for

Macromolecular Imaging (NCMI) with permission from Jason Kaelber, Kaiming Zhang, and Zhaoming Su.

70



Table 2.3: Motion correction dataset parameters.
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algorithms, namely IMOD’s alignframes and Motioncor. The same pipeline discussed

previously was used to obtain trajectories. Once trajectories were calculated, I measured the

magnitude of the mean of pairwise differences between trajectories in angstroms (Figure 2.3

A). From these results, it is clear that there is a range of differences in measured trajectories.

While most trajectories differ by fewer than 2 pixels, I see that ∼5% of data are influenced

by larger discrepancies (Figure 2.3 B).

Given these findings, my next experiments focused on determining the influence of

various motion correction strategies on map quality and whether movie trajectory differences

might be a viable metric for removing data prior to processing. These tests were performed

using a subset of data from a published, 3.2Å resolution reconstruction of β-galactosidase

[18].

First, I examined the influence of global and local alignments on map resolution after

3D refinement. My tests focused on the alignframes program from the IMOD software

suite for global alignment as well as “MotionCor2” for both global and local alignments. I

processed each of the 509movies from the dataset using the default parameters of alignframes.

Motioncor2 alignments were performed using “-Patch 1 1” and “-Patch 8 8” for global and

local alignments, respectively. Next, for each of these alignment results, I performed five

iterations of 3D refinement starting from a high-resolution map calculated using EMAN2.

This starting map was obtained using movie frames that were corrected with a legacy version

of the original MotionCor algorithm (v2.1), somewhat reducing possible bias toward one

of the algorithms under examination. The default refinement parameters were passed to

e2refine_easy.py with the exception of the mass and symmetry parameter, which were set to

465 kDa and D2 respectively. Additionally, a target resolution of 3Å was also specified.

The resulting 3D maps were analyzed using ‘internal’ gold-standard FSC curves and

‘external’ map/model FSC curves computed against a model of the 2.2Å β-galactosidase

structure [17] obtained using the EMAN2 program, e2pdb2mrc.py. These FSC curves
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Figure 2.3: Analysis of movie trajectory discrepancies. Top. Number of movies is affected by

global-alignment discrepancies between 0 and 3Å calculated across 250 movies drawn from

each of the 4 datasets examined. Bottom. Distributions of the mean discrepancy between

global trajectories in pixels. The right-most bar corresponds to the count of movies with

discrepancies greater than 2.0 pixels. The horizontal dashed line at count=12.5 corresponds

to 5% of the 250 movies examined from each dataset.
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show that MotionCor2 global and local alignments achieve higher resolution results than

alignframes, and there are more subtle gains obtained from using a local motion correction

strategy (Figure 2.4).

Next, I examined global and local alignments to examine whether removing fractions of

the data according to measured global trajectory differences might influence map resolution.

In the case of global alignments, I compared 3D reconstructions obtained after removing

particle data from aligned movies with the greatest disagreement between global frame

alignments calculated using IMOD and MotionCor2. I chose to examine cases ranging from

keeping 100-50% of the data in increments of 10%. The same fractions of randomly selected

particles were removed in a parallel analysis to determine whether my removal criterion had a

beneficial influence. The subsets of the data produced after random or deterministic removal

were refined for five iterations using e2refine_easy.py with the previous MotionCor2 global

map as an initial model.

Results were analyzed as in the previous experiment; however, rather than using FSC as

a metric for comparison, spectral signal-to-noise ratio (SSNR) curves were generated from

the FSC curves using the relationship [224]

SSNR(q) =
FSC(q)

1− FSC(q)
, (2.1)

where q denotes spatial frequency. Representing the data in this way helps us understand the

influence of particle removal on the signal present in 3D reconstructions. In comparison to

FSC, SSNR decreases linearly with particle count, so the influence of my particle removal

analysis is more intuitive in this space (Figure 2.5). Nevertheless, from the resulting curves,

it is clear that my global alignment-based removal criterion did not yield higher SSNR at

any particle count compared to the random benchmark.

I performed similar tests on local alignments, excluding particles based on the mean sum
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Figure 2.4: Comparison of algorithms on map/model and gold-standard FSC. Recon-
structions were generated starting from DDD movies aligned using various alignment
algorithms (IMOD’s alignframes, MotionCor2 global, and MotionCor2 local). Map/model
FSCs (left) were calculated against a 2.2Å structure of β-galactosidase∗, and gold-standard
FSCs were generated during 3D refinements (right). Here MotionCor2 local correction
outperforms both global correction approaches.

∗2.2Å β-galactosidase structure [17] obtained from PDB (5A1A).
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Figure 2.5: Particle exclusion according to whole-frame trajectory discrepancies. Solid.

Map SSNR was determined after removing a fraction of particle data with the largest root

mean square difference (RMSD) between whole-frame trajectories determined using IMOD

alignframes and MotionCor2. Dashed lines represent map SSNR computed after randomly

removing a fraction of particle data, serving as a performance benchmark against which the

success of my deterministic, global motion-based criterion can be measured.
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of square differences between local trajectories calculated using MotionCor2 over 1024 x

1024 pixel patches. Note that unlike the previous global motion criterion, this strategy seeks

to remove particles based on local trajectory information obtained from a single motion

correction algorithm. In the first case, I removed particles from micrographs in which

significant, unique local motion was measured, reasoning that significant variability among

local trajectories may be a sign of bad data quality. The second criterion involved removing

particles from micrographs where measured motion was highly consistent, reasoning alter-

natively that the best local motion results should capture significant variability, and that

stationary and consistently moving micrographs may correspond to algorithmic failures.

As before, I examined reconstructions calculated after removing 0-50% of the particle

data in increments of 10%. The same fraction of randomly selected particles was removed

in a secondary set of refinements, providing a comparison for the success of my particle

removal strategy. All of the particle subsets were subject to five iterations of single particle

refinement using e2refine_easy.py with the previously calculated MotionCor2 local map as

an initial model.

Looking closely at the local-alignment SSNR curves for the first criterion seeking to

minimize local motion (Figure 2.6A), I observe minimal to no separation between the SSNR

of my random benchmark and my removal criterion. However, analysis of the 10% removal

curve shows that this approach can be used to improve signal when applied sparingly.

Conversely, the curves in Figure 2.6 B show positive separation between the deterministic

and random removal criterion when used to remove 10-30% of the data. Beyond 30%, the

SSNR curves for maps produced using my local motion-based removal criterion become

indistinguishable from the random benchmark. Conversely, for cases in which less than

30% of particle data were removed, I observe that the SSNR of maps produced using my

deterministic, local motion-based method is boosted over the random particle removal model,

indicating that my local motion-based removal criteria is excluding data that would otherwise
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Figure 2.6: Particle exclusion according to local trajectory comparison. A. Solid lines

represent map SSNR determined after removing a fraction of particle data with the

largest RMSD between MotionCor2 local trajectories. B. Solid lines represent map

SSNR determined after removing a fraction of particle with the smallest RMSD between

MotionCor2 local trajectories. Dashed lines correspond to map SSNR calculated after

randomly removing a fraction of particle data, serving as a performance benchmark against

which the success of my deterministic, local motion-based criteria can be measured.
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negatively contribute to a 3D refinement.

Within the window observed, there is a curious difference between refinements including

all particles (0% removed). Despite the same number of particles being used, the SSNR

curves generated show differences at nearly all spatial frequencies. While this can be

partially explained by particle orientation reassignment during iterations of 3D refinement,

the cryoEM community has not yet been able to fully explain the reasons underlying this

phenomenon. Even in the absence of a proper explanation, error bars would assist with the

interpretation of these data; however, because each curve requires multiple iterations of high-

resolution 3D refinement, obtaining such error bars would require significant computational

resources.

2.3 Discussion

Here I have shown that global motion correction algorithms exhibit trajectory differences

and that these differences have an impact at spatial frequencies capable of influencing map

resolution in roughly 5% of the data from typical high-resolution projects. The observed

differences can be many pixels, meaning they extend even to intermediate-resolution spatial

frequencies and may impact the quality of affected images. Differences are observed not

only for small particles with very low contrast but also on frames containing high-contrast

virus particles. There also appears to be little correlation between trajectory differences and

other specimen and imaging parameters.

Some of the observed differences between global motion correction algorithms may be

due to the need for local corrections in these frames and how this local motion is interpreted

globally by each algorithm. However, it is impossible to assess whether this is truly the

case since most of the algorithms I have examined do not perform both local and global

corrections. While cryoEM has achieved high-resolution structures despite this issue, there
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is room for improvement in most projects. The community is in need of a more in-depth

study of the reasons for these discrepancies.

I examined a subset of available alignment packages to understand which best corrects

for motion globally. My findings suggest that MotionCor2 offers this best-case global

alignment; however, IMOD’s alignframes algorithm offers a significant speed boost and

should continue to be considered for lower resolution projects, particularly tomography data.

When examining local corrections produced by MotionCor2, I found that resolutions were

slightly better than with global motion correction. After this realization, I examined local

trajectory differences and discovered that map SSNR can be enhanced by removing particle

data according to a set of motion-based criteria, suggesting that the cryoEM community

could obtain resolution gains through further analysis of these data.

Nevertheless, my study was performed on a small dataset, limiting the scope of my

results. While I was able to derive measurable differences in map SSNR between my

extracted dataset and random removal of particles, more particles would be required to

analyze this effect without comparison to a random baseline. Specifically, the ability of my

selected subset of the particles to retain higher SSNR as particles are removed as compared

to a random baseline suggests that it may be possible to obtain higher map resolutions by

performing the same procedure in the presence of more particle data.

Similarly, while my experiments examined map quality after removing particles from

micrographs with highly variable and minimized motion, I did not explore the removal

criterion in which both tails of the distribution of particle trajectory differences were excluded.

My observations indicate that each tail separately yields an improvement over random particle

removal depending on the percent of particles removed. Therefore, removing the optimal

fraction of both tails simultaneously may enhance my results.

Still, my findings indicate that variability in local motion is a proxy measure that can

be used to remove bad micrographs without running comparative alignments with multiple
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algorithms. By calculating the local, patch-wise trajectories and excluding based on their

differences, I have arrived at a method to reduce the number of so-called bad particles that

go into a refinement prior to any iterative refinements.

2.4 Conclusions

Because frame alignment ultimately determines the attainable resolution in single particle

analyses, assessing the strengths and weaknesses of each algorithm and the advantages of

local corrections is vital to the selection of a specific, optimal algorithm and ultimately

influences the quality of the final map produced in datasets targeting high resolution. Never-

theless, the motions occurring within the specimen are still poorly understood, and the

existing algorithms to compensate for this motion do not provide identical answers when

characterizing these motions, raising concerns over whether the cryoEM community is

making optimal use of the available data. Here I have examined global correction algorithms

and shown that these exhibit differences in a considerable fraction of recorded movies.

Moreover, the differences I have observed are of sufficient magnitude to measurably degrade

map resolution as reported by gold-standard and map-model FSC.

My analyses have shown that MotionCor2 offers comparatively better alignments than

other examined alignment packages, and its local motion correction capabilities further

improve results as measured by FSC. However, the speed benefit provided by IMOD’s

alignframes package should not be overlooked for low-resolution projects. Additionally, I

found that local corrections yield novel insights that facilitate better-than-random removal of

bad particles from micrographs in which particular types of motion are observed. Although

my experiments were unable to measure resolution-specific improvements after removing

particle data due to the limited particle count for this dataset, I was able to extract results

indicating that local trajectories can be used deterministically to improve map SSNR.
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Increasing the particle count for future studies would enhance the clarity of these results,

though the volume of computing resources required to perform such a task would be extreme.

Instead, a non-exhaustive search with ranges chosen on the basis of these findings would be

a more reasonable path forward, particularly if used on a project targeting high resolution

for which significant processing is already anticipated.

Our benchmarking and examinations of local motion correction in the context of bad

particle removal offer insights into best practices for cryoEM image pre-processing. However,

my experiments shed relatively little light on the physical causes and effects of beam-induced

specimen motion. Further analysis of local motion may yield interesting insights in this area,

particularly if excluded bad micrographs are extracted and examined in greater detail. Specif-

ically, observing where images are recorded on TEM grids and their proximity to specimen

holes may offer unique insights into charging-related effects that are hypothesized to cause

drum-like motion of the vitreous ice layer and embedded specimen [32, 81]. Likewise, there

are likely relationships between ice thickness and motion as well as specimen temperature

during imaging that have yet to be studied in depth. In addition to these proposed directions,

further analysis of these data may lead to more productive use of collected image data. It

is my hope that these findings serve to inform the next generation of motion correction

algorithms, offering improved corrections and higher-resolution structures.
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Chapter 3

Single particle analysis in EMAN2

This work was published in Bell, J. M., Chen, M., Baldwin, P. R., Ludtke S. J. (2016).

High Resolution Single Particle Refinement in EMAN2.1. Methods. (100) 25-34.
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3.1 Introduction

EMAN was originally developed in 1998 as an alternative to SPIDER [72, 73] and IMAGIC

[225] the two primary software packages used for single particle reconstruction at that time.

Its successor, EMAN2[217], has been under development since 2003, using a modular design

which is easy to expand with new algorithms. This also marked the beginning of collaborative

development with the SPARX project[100], which is co-distributed with EMAN2.1, and

shares the same C++ core library, but has its own set of workflows and its own conceptual

framework. It is now one of over 70 different software packages identified as being useful

for cryoEM data processing by the EMDatabank. In 2014, based on EMDB statistics, the top

seven packages accounted for 96% of published single particle reconstructions: EMAN[217],

SPIDER[72, 73], RELION[192, 194], IMAGIC[225], SPARX[100], XMIPP[196] and

FREALIGN[89]. Surprisingly, each of the seven packages takes a significantly different

approach towards the single particle reconstruction problem. With highly homogeneous data

with high contrast, it is possible to achieve virtually identical reconstructions using multiple

software packages. However, if the data suffers from compositional or conformational

variability, a common issue which may often be biologically significant, then each package

will be impacted by the variability in different ways, and there can be considerable value in

performing comparative refinements among multiple software packages to better understand

the specific variations present in the data.

This manuscript focuses not on the problem of heterogeneous data, but rather on a

canonical refinement of highly homogeneous data, and the methods used in EMAN2.1

to produce a reliable high-resolution structure from the data. The fundamental problem

faced by all software packages that perform single particle analysis is the same. A field

of monodisperse macromolecules is embedded in a thin layer of vitreous ice[59, 143]

and imaged on a transmission electron microscope calibrated for optimal parallel-beam
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conditions. Ideally, each particle will be in a random orientation and be well away from the

perturbing influences of the air-water interface and/or any continuous substrate (carbon or

gold). The practical reality often does not match this idealized case. Frequently some level of

preferred orientation is observed in the particle population, and there will always be a fraction

of particles which have been partially denatured or otherwise perturbed from their idealized

conformation, even in the absence of conformational flexibility. Such conformational

variability may, in fact, be functionally relevant, rather than an artifact to be eliminated.

Each particle image collected on the microscope represents a projection of the Coulomb

potential of the particle, distorted by the properties of the microscope optics and detector,

generally described by approximate, but well-understood contrast transfer (CTF) andmodulation

transfer (MTF) functions[62], respectively, which are corrected for during data processing.

These artifacts are largely well understood, and corrections for these are a fundamental

part of the reconstruction process in any modern cryoEM software package. Since the

particles are in random orientations, the orientation of each particle must be determined

before they can be combined to produce a 3D reconstruction. This can occur via projection

matching in real or Fourier space or self or cross-common-lines in Fourier space. In some

cases, particles are classified and grouped together prior to, or as part of orientation determi-

nation. Finally, in some cases, Bayesian methods are used, in which each particle is placed

fractionally in multiple orientations when any uncertainty is present. There are advantages

and disadvantages to each of these approaches.

The following sections focus on the approach which evolved over time to produce

EMAN2.12, wich was capable of producing high-resolution reconstructions very efficiently,

often with a small fraction of the computational requirements of its competitors at the time

of its release. My role in this work was to benchmark the performance of single particle

refinement in EMAN2, and my findings are reported toward the end of this manuscript. This

baseline information establishes an important baseline for comparison of future advances in
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EMAN2 (as is outlined in chapter 4) and other software packages.

3.2 Single Particle Reconstruction in EMAN

3.2 Project Manager

EMAN2.1 has a graphical workflow manager called e2projectmanager.py. This program

can guide the user through canonical single particle reconstruction, subtomogram averaging

and related tasks. It will use standardized naming conventions for folders and image files,

producing awell-organized project with a complete record of all processing performed therein.

In this manuscript, we describe the methodologies and algorithms employed to achieve

a high-resolution reconstruction. However, for those attempting to learn how to use the

system, we refer the reader to extensive online tutorials (http://blake.bcm.edu/eman2)

and documentation for detailed usage instructions.

3.2 Movie Mode Imaging

Until a few years ago, images were collected on film or CCD cameras in a single exposure,

and if there were any stage drift during the, typically ∼1 second, exposure the images would

be discarded. Similarly, if there were any specimen charging or a significant amount of

astigmatism, the images would also be discarded. With the development of direct detectors

[106], a single exposure is now often subdivided into many frames forming a ‘movie’ with

up to ∼100 frames. By aligning the frames before averaging to produce a ‘micrograph’,

it is often possible to eliminate the majority of the drift which was previously a large

problem[34]. There are additional variants of this methodology which focus on aligning

the individual particles within a micrograph, since they may not all move in a uniform way

[186, 197]. There are a number of software packages for performing whole-frame alignment

[127, 229], and this issue remains an active area of development. Since this is still such a
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rapidly evolving area, we will not focus on the details of this process in this manuscript.

EMAN2.1 has a program, e2ddd_movie.py, for whole-frame movie processing and another,

e2ddd_particles.py, for per-particle alignment, both of which are functional but remain under

active research and development. The user is also free to use any other tool for movie

mode alignment they prefer and can import the resulting averaged micrographs, or particles

directly into the refinement pipeline.

3.2 Image Evaluation

Data may be imported at any stage prior to CTF correction. If images are brought into

the project as micrographs, rather than boxed out particles, the first steps in processing

are micrograph quality assessment, and whole-frame defocus and astigmatism estimation.

There is an interactive program (e2evalimage.py) which segments each micrograph into tiled

boxes, then computes the average power spectrum of these tiles as well as their rotational

average. The user can assess any residual drift and interactively adjust the automatically

determined defocus and astigmatism. There is also an automated program which makes the

CTF estimate for all images without user interaction (e2rawdata.py), as well as programs

for importing values from other programs such as CTFFIND [154, 181] and RELION [194]

or using the new EMX format (http://i2pc.cnb.csic.es/emx). Typically, for small

projects with a few hundred images, the user will interactively assess the image quality

as well as ensure accurate initial fitting. This may be impractical for larger projects with

thousands of images, so the automatic import tool may be preferable in those situations.

There is an opportunity later in the workflow to make automatic quantitative assessments

which do a reasonable job of detecting low-quality images through the use of thresholds in

cases where manual assessment is impractical.
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3.2 Box Size Selection

Before particle picking/boxing, regardless of what software is used, it is important to select

a good box size for your project. There are three concerns when selecting a box size.

First, the microscope CTF (Contrast Transfer Function) and MTF (Modulation Transfer

Function) cause particle information to become delocalized, so for proper CTF correction

without artifacts or information loss, the box must be large enough to include this delocalized

information. Second, as discussed in section 2.6, EMAN2.1 requires that the box size be

1.5-2.5 times larger than the maximum dimension of the particle to perform accurate SSNR

(spectral signal to noise ratio) estimations. Third, the specific choice of box size can have

a significant impact on refinement speed. Algorithms like the FFT, which are used very

heavily during processing, are very sensitive to the specific box dimensions. There are cases

where increasing the box size can actually make processing faster, not slower. For example,

if using a box size of 244, switching instead to a size of 250 can make the refinement run

nearly 2 times faster. There is a full discussion of this issue and a list of good sizes in the

online documentation (http://blake.bcm.edu/emanwiki/EMAN2/BoxSize).

There may be some particles, such as very large viruses, where, due to large particle size,

meeting the canonical size requirement would make the box size excessive. For example, a

virus with a diameter of 1200Å, sampled at 1Å/pixel would technically require a box size of

1800 pixels, which could lead to issues of memory exhaustion, and significant slowdowns

in the 3D reconstruction. In such cases, reducing the box size below recommended limits

may be the only practical choice, even if it produces some minor artifacts.

When importing particle data from another software package or non-EMAN particle

picking tool, if the box size doesn’t meet EMAN2’s requirements, ideally the particles should

be re-extracted from the original micrograph with a more appropriate size. If this impossible

due to unavailability of the original micrographs or other problems, then CTF correction
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should be performed on the particles with their current suboptimal size, and they can be

padded to a more appropriate size during the phase-flipping process, along with appropriate

normalization and masking to prevent alignment bias. It is critical that particles not be

zero-padded or masked prior to CTF/SSNR estimation and phase-flipping. To mask particles

in such a situation typically the phase-flipped particles would be processed by setting the

mean value around the edge of each particle to zero, resizing the box, then applying a soft

Gaussian mask falling to zero around each particle to eliminate the corners of the original

box, without masking out any of the actual particle density. These tasks can be completed

using e2proc2d.py.

3.2 Particle picking

There are a wide variety of particle picking algorithms available in the community developed

over the years, and this has been an active area for over two decades [245]. EMAN1

used a reference-based picker, which works quite well, but runs a risk of model-bias when

selecting particles from low contrast micrographs. EMAN2.1 currently has two algorithms,

an implementation of SWARM [232] and a Gaussian-based approach implemented through

SPARX (but shared with EMAN2). Neither of these approaches require projections of a

previous 3D map, reducing selection bias. For particles with high symmetry, like icosahedral

viruses, there are fully automated approaches such as ETHAN [113] which can do a nearly

perfect picking job even with very low contrast images. Various algorithms also vary widely

in their ability to discriminate good particles from bad in cases where there is significant

contamination or other non-particle objects present in the image. There is an advantage if

picking is performed in EMAN2.1 or if coordinates are imported rather than importing the

extracted particles. For example, box sizes can be easily altered, and per-particle movie

mode alignment cannot be performed without per-particle coordinate information.

89



3.2 Particle-based CTF and SSNRAssessment

One of the unique features in EMAN2 is its system of particle-based data quality assessment.

Standard data assessment methods in Cryo-EM, like the whole micrograph assessment

provided in e2evalimage.py, treat any contrast in the image which produces Thon rings

(oscillatory CTF pattern) as signal for purposes of image assessment. There are multiple

problems with this assumption. First, if there are contrast-producing agents such as detergent

or other large-molecule buffer constituents, then these produce contrast across the full depth

of the ice layer, which in many cases is over 1000Å thick, producing CTF pattern averaging

over a range of defocuses. At low resolution, this will tend to average out to a single defocus

value near the center of the ice, which is a good approximation for most purposes, but it may

cause CTF oscillations to interfere destructively at high resolution.

A second problem with this assumption is that, from the perspective of the reconstruction

algorithm, “signal” refers only to features present in the particle which coherently average

into the 3D reconstruction. If there are broken particles, a carbon film, or detergent producing

contrast, they will be treated mathematically as noise by any 3D reconstruction algorithm.

This fact can be critical when assessing whether sufficient contrast exists within an image

to proceed with image processing, and for proper relative weighting of the particles from

different micrographs.

To achieve a better estimate of the true contrast provided by only the particle, we perform

this quality estimate on boxed out particles, rather than entire micrographs. This assumes

that the selected particles are largely good, well-centered, and that box size recommendations

have been followed. The goal of this method is to isolate the contrast due to the particle

(signal) from the contrast due to anything else (noise). This is accomplished using a pair of

complementary real-space masks acting as windowing functions for the Fourier transform

(Figure 3.1). The exterior mask isolates a region of each box expected to contain background,
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using these regions much like the solvent blank in a spectroscopy experiment. While there

will be cases, for example, where neighboring particles intrude on this region, unless the

crowding is severe, this will simply cause a modest underestimation of the SSNR. The

central region of each box is then expected to contain the particle of interest with background

noise comparable to the background found in the other region. If the rotationally averaged

power spectrum of the middle region is M(s) and of the peripheral region is N(s), then we

can estimate the SSNR as

M(s)− N(s))/N(s) (3.1)

which is then averaged over all particles in one micrograph. M(s)−N(s) is the background

subtracted power spectrum, which can be used for CTF fitting and structure factor estimation.

While this SSNR estimate can be subject to minor errors due to particle crowding, or poor

box size selection, it should still be far more accurate than any method based on the entire

micrograph, or even particle-based methods which assume a non-oscillatory background.

The background subtraction method in EMAN1was based on fitting a sum of exponential

decays through the zeroes of the presumed CTF. However, with counting mode detectors now

becoming widely used, there is a new problem with coincidence loss at intermediate spatial

frequencies. This loss appears as a significant dip in both signal and noise at intermediate

resolutions. Rather than trying to build ever more complicated functional models of the

expected background, we opt instead to simply measure the background as described above.

Once an estimate of the defocus is available, we can also compute a simple background

curve which interpolates between the zeroes of the CTF. This curve produces a stronger CTF

pattern which can be used for more accurate defocus/astigmatism fitting. Since the fitting is

performed directly on particle data, we can be confident that the defocus we are seeing is

the average defocus of the actual particles, minimally perturbed by the defocus of any thick

or thin carbon present in the image.
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Figure 3.1: Per-particle SSNR estimation. A. Exterior mask. B. Central mask. C. Raw
unmasked particles. D. Background region. E. Particle region. F. Power spectra for each
masked particle stack compared to traditional background estimate (dotted line), which
underestimates noise and overestimates signal. SSNR is computed from the two masked
curves. In this β-galactosidase example, there is only a modest difference between the two
background calculations. In specimens with detergent or continuous carbon, the impact on
SSNR estimation can be as much as an order of magnitude [158]

Illustration generated by Muyuan Chen.
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Aside from the background and full support for astigmatism correction, the CTF model

in EMAN2.1 remains the standard weak-phase approximation used in EMAN1 [134]. Phase-

flipping corrections are performed as a pre-processing step, including astigmatism if present.

Several different algorithms are available for performing CTF amplitude correction and

final filtration of the 3D reconstruction, as discussed in 2.11. CTF parameters are stored

in the header of the phase-flipped particles for later use during processing, including the

SSNR estimate, which is available as an optional weighting factor in many of the alignment

algorithms and similarity metrics.

3.2 Particle sets

It is frequently desirable to perform multiple refinements using different subsets of the full

particle data set. For example, when generating a low-resolution initial model, it is often

useful to use the highest defocus particles, which have the highest contrast at low resolution.

Later in refinement, when high resolution is being targeted, it may be desirable to compare

the refinement achieved with only the very best micrographs, with the highest SSNR at high

resolution, for example, with a refinement performed using all of the available data. This

can help identify any possible issues with model/noise bias and improve confidence in the

veracity of the final reconstruction.

EMAN2.1 includes the ability to group particles together into text files with a .lst

extension, with each line in the file pointing to a particle in another file containing actual

image data. EMAN will treat these .lst files as if they were actual image stack files when

viewed as part of a project. Unlike STAR files used in some other packages, these files are

used strictly for assembling subsets of particles and do not contain per particle metadata,

which, in EMAN2, is stored centrally for each micrograph in the info/*.json files and/or

actual image file headers.

A standard naming convention is used for all particle files in the system. Particles from
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eachmicrograph are in a single stack file called, for example, particles/micro1234.hdf. Unlike

EMAN1/2.0, in EMAN2.1 variants of each particle data file can be easily generated and may

include different sampling and or box-size in addition to any filtration ormasking the usermay

wish to apply as a preprocessing operation. Any such particle variants are named with a “__”

(double underscore) separator, e.g. micro1234__ctf_flip.hdf, or micro1234__ctf_filtered.hdf.

Each additional stack will include the same particles as the original parent file, but with

arbitrary user-specified processing applied. Moreover, when sets are assembled from portions

of the particle data, the set generator looks for all variants of each micrograph particle stack

and forms additional sets corresponding to each version. In subsequent processing, the

user can then use whichever variant they like, regardless of which portion of the data they

selected. For example, down-sampled and low-pass filtered particles could be used to

generate reference-free class averages, and then the corresponding particles at full sampling

could be extracted for further processing.

3.2 2D Reference Free Class-averaging

While demanding that 2D class-averages appear like one of the projections of a 3D map is a

powerful restraint, this restriction is undesirable for initial analysis of our 2D particle data.

If, for example, the particles exhibit conformational variability, then it will not be possible

to construct a single 3D map which is consistent with all of the data. For this reason, initial

class-averaging is performed using reference-free, also known as unsupervised, methods.

e2refine2d.py uses an iterative process to generate reference-free class-averages (Figure

3.2), which requires an initial set of class-averages as seeds. While the process is termed

‘reference-free’ meaning no external references are provided and no 3D projections are

involved, the previous round of results is used at the beginning of each iteration to align the

particles. In the first iteration, alignment references are derived from rotational-translational

invariants computed for each particle. These initial ‘seed’ averages are frequently of relatively
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low quality, and often classes will contain poorly discriminated mixtures of populations.

Much like 3D initial model generation, the sole purpose of this step is to provide some

self-consistent alignment references to bootstrap the iterative process.

Once seed averages have been produced, the iterative process begins. A user-selected

number of the least-similar initial averages are identified and mutually aligned to one another.

The particles are then aligned to each of these initial averages, using the alignment from

the best-matching class-average. Note that there is no classification process occurring at

this point, this is strictly alignment to try and bring similar particles into a common 2D

orientation, and is based on a small fraction of the reference averages. The similar program

in EMAN1 (refine2d) made use of all of the averages as alignment references, but not only

did this dramatically slow the process, but it could actually make the particle alignments less

self-consistent, as similar class-averages were often in slightly different 2D orientations.

Once the particles are aligned, PCA (principal component analysis) is performed on the

full set of class-averages after mutual alignment similar to that performed on the particles.

Since the averages are derived from the particles, the first few basis vectors produced by

performing PCA on the averages should be quite similar to those from the full set of particles.

A projection vector is then computed for each particle into the subspace defined by the first

N PCA images, where N is user selectable (typically ∼10). K-means classification is then

applied to these particle subspace projections to classify particles into the user-specified

number of classes.

The classified particles are then aligned and averaged in a separate iterative process for

each class-average (Figure 3.2, lower loop). In this process, particles are mutually aligned

and compared to the previous iteration average. The aligned particles are then averaged,

excluding a fraction of the particles which were least-similar to the previous iteration average.

This new average then becomes the alignment reference for the next iteration. The number

of iterations, selection of alignment and averaging algorithms, and the fraction of particles to
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Figure 3.2: An overview of the iterative processing strategy implemented for reference-free

classaveraging in e2refine2d.py
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exclude can all be specified by the user, though the default values are normally reasonable.

The final averages then become the seeds for the next round of the overall iterative class-

averaging process. These averages can then be used for initial model generation (2.10),

heterogeneity analysis, assessment of final reconstructions (2.12), and other purposes.

3.2 Symmetry

When solving a structure by single particle analysis, the internal symmetry of the structure

must be specified. The question of symmetry could be viewed as somewhat philosophical, as

it should be obvious that at room temperature in solution, even themost rigid protein assembly

will not be truly symmetric to infinite resolution. So the question under consideration is

whether one should impose symmetry on the map at some specific target resolution or to

answer some specific biological question.

For example, icosahedral viruses often have one vertex which differs from the others.

However, if full icosahedral (5-3-2) symmetry is imposed, a significantly better resolution

will be achieved. Even with one different vertex, the other 11 nearly identical vertices will

dominate the final average. A common approach in such situations is to impose icosahedral

symmetry and refine to the highest possible resolution, then to relax the symmetry and obtain

an additional lower resolution map with no symmetry, and use the pair of reconstructions

for interpretation.

Another illustrative example is CCT [50]. CCT is a chaperonin, which forms a 16-mer,

consisting of 2 back-to-back 8 membered rings. Unlike simple chaperonins such as GroEL

or mm-cpn, where the subunits are identical, each CCT ring consists of 8 different, but highly

homologous, subunits, which cannot even be structurally distinguished in the closed state

until one has achieved very high resolution. The highest symmetry that could be specified

for this system is clearly D8, which might be suitable under some conditions to resolutions

as high as 5–6Å. Beyond this point, one would expect the distinct structure of each subunit
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within a ring to begin to emerge. As the two rings are compositionally identical, it could

still be argued that D1 symmetry should still be imposed. However, each subunit also binds

and hydrolyzes ATP, and differential binding would clearly break even this symmetry. The

question is whether this symmetry breaking occurs in any single pattern which would permit

multiple particles to be averaged coherently. To examine this question, symmetry would

need to be completely relaxed.

When the symmetry of a particular target is unknown, there are various approaches to

help elucidate this information directly from the cryoEM data. Very often a simple visual

inspection of the reference-free 2D class averages can answer the question. However, there

can be cases where, due to preferred orientation, a 2D view along the symmetric axes is

simply not present sufficiently in the particle population to emerge during 2D analysis.

There can also be situations where the low resolution of the averages combined with a

large interaction surface between subunits can make it difficult to observe the symmetry

even along the symmetric axis. That is, the symmetric view may appear to be a smooth

ring, rather than to have a discrete number of units. In short, there may be situations where

the symmetry is not immediately obvious. Performing multiple refinements with different

possible imposed symmetries can help resolve ambiguities, but even this may not always

resolve the issue at low resolution.

Performing a refinement with no symmetry imposed is guaranteed to produce a structure

which is asymmetric to the extent permitted by the data. If the structure were truly symmetric,

then symmetry will be broken by model bias. When attempting to relax the symmetry of a

map with only very slight structural asymmetries, EMAN2.1 refinement offers the –breaksym

option, which will first search for the orientation of each particle within one asymmetric

unit, and then perform a second search in that specific orientation among the different

asymmetric subunits. This tends to produce much more accurate orientations in the case of

near symmetry.
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Given that all large biomolecules possess handedness, mirror symmetries are prohibited,

leaving us with a relatively small group of possible symmetries to consider, all of which are

supported in EMAN [13]: Cn symmetry is a single n-fold symmetry aligned along the Z-axis;

Dn symmetry is the same as Cn, but with an additional set of n 2-fold symmetry axes in the

X-Y plane, one of which is positioned on the X-axis; octahedral symmetry is the symmetry

of an octahedron or cube, with a set of 4-3-2 fold symmetries arranged accordingly, with

the 4-fold on Z; cubic symmetry is, strangely, not the full symmetry of a cube, but includes

only the 3-2 components of that higher symmetry, with the 3-fold on the Z-axis; finally,

icosahedral symmetry has 5-3-2 fold symmetries, with EMAN using the convention that the

5-fold axis is positioned along Z and a 2-fold on X. For icosahedral symmetry, a commonly

used alignment convention is the 2-2-2 convention where orthogonal 2-fold axes are on

the X, Y and Z axes. e2proc3d.py provides the ability to move between these orientation

conventions. There is also support for constrained helical symmetry, where the symmetry

specification includes a limit on the (otherwise infinite) number of repeats.

Details on all of these supported symmetries are available via the e2help.py command

or in the documentation (http://blake.bcm.edu/emanwiki/EMAN2/Symmetry).

3.2 Initial Model Generation

High-resolution 3D refinement is also iterative, and thus requires a 3D initial model. There

are various strategies in the field for producing initial models ranging from common-lines

[93], to random conical tilt [93] to stochastic hill climbing [61] to subtomogram averaging.

The canonical approach for low-symmetry structures (with C or D symmetry) is embodied

in e2initialmodel.py. This program is effectively a Monte-Carlo performed using a subset

of manually selected class averages (discussed in 3.2.8) as input. The user must identify

as broad a set of different particle views as possible without including projections of other

compositional or conformational states of the particle.

99

http://blake.bcm.edu/emanwiki/EMAN2/Symmetry


Input class-averages are then treated as if they were particles in a highly optimized form

of the method used for high-resolution refinement (discussed in 3.2.11). The class-averages

are compared to a set of uniformly distributed projections of an initial model, which is used

to identify the orientation of each class-average, which is then in turn used to make a new 3D

model. The initial model is produced by low-pass filtering to 2/5 Nyquist and masking to 2/3

of the box size, pure Gaussian noise, independently for each of N different starting models.

The goal of this process is to produce random density patterns roughly the same size as the

particle. After refining each of these random starting models, the final set of projections is

compared against the class-averages as a self-consistency test, and the results are presented

to the user in order of agreement between class-averages and projections (Figure 3.3).

The 2D images produced in ∗_aptcl.hdf files consist of pairs of class-average/projections

for the corresponding 3D map. It should be apparent in Figure 3.3 that the pairs for the better

starting model (A) match quite well, whereas the pairs for the poor starting model (B) have

significant disagreement. While agreement between projections and class-averages is not

proof of an accurate starting model, any significant discrepancies are proof of a bad starting

model. For this reason, it is not always possible to identify bad starting models using this

method.

There is also a program called e2initialmodel_hisym.py for particles with octahedral,

cubic or icosahedral symmetry. This program also requires class-averages as inputs but uses a

method similar to self-common-lines to identify the correct orientation of each class-average

with respect to the symmetry axes, and generally will produce much better initial models for

such high symmetry objects.

Other methods such as random conical tilt and subtomogram averaging are also available

[77], but each of these methods requires following a complete workflow and collecting

specialized data, which is beyond the scope of this paper.
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Figure 3.3: Reference-free class-averages used to produce an initial model using a
Monte-Carlo method implemented in e2initialmodel.py. Two of the possible 3D starting
maps are shown on the left along with corresponding class-average projection pairs for
comparison on the right. For a good starting model, projections (1st and 3rd columns) and
class-averages (2nd and 4th columns) should agree very well. The lower map exhibits poor
agreement, so the higher ranked upper map would be used for 3D refinement.

Illustration generated by Muyuan Chen.
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3.2 High Resolution Refinement

High-resolution refinement in EMAN is effectively a fully automated process, using a

program called e2refine_easy.py, once the data has gone through the preprocessing steps

above. The internal process used for refinement is outlined in Figure 3.4. While the user

does not need to understand the details of this process to make use of the program and

produce a high-resolution reconstruction, understanding the basic process makes it possible

to examine some of the intermediate files generated during processing, which can be useful

when diagnosing problems should they occur. It should also be mentioned that each time

e2refine_easy.py is run, producing a new refine_XX folder, a refine_XX/report/index.html

file is also created with detailed information on all of the specific parameters used in any

given reconstruction based on the heuristics built into e2refine_easy.py. After completing a

refinement, the first thing the user should do is look at this report file.

Technically, e2refine_easy.py has ∼80 different command-line options available, which

permit very detailed control of the algorithms used for every purpose during the refinement.

However, almost none of these are intended for routine use, and only a small handful

are presented to the user via the e2projectmanager.py graphical interface. If needed, the

remainder must be manually added to the command-line. The user generally specifies

symmetry, target resolution and a refinement ‘speed’, then e2refine_easy.py uses a complex

set of heuristics based on these values and all of the other information available about the

particle data to select values for the other parameters automatically. The speed parameter

controls the angular sampling and a few other parameters. The default speed of 5 was

computed to provide sufficient sampling to achieve the target resolution with a comfortable

margin. Smaller speed values increase angular sampling past this point, compensated

by including each particle in multiple class-averages. This makes the refinement take

considerably longer to run, but may produce slight resolution increases and slightly improve
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Figure 3.4: Overview of automatic refinement workflow described in the text and imple-

mented in e2refine_easy.py. The process begins by splitting a user-specified set of particles

into even (white) and odd (grey) sets. Following the “gold standard” protocol, the initial

model is phase randomized twice at resolutions higher than ∼1.5x the target resolution. The
two perturbed starting maps are then refined independently against the even and odd halves of

the data. Iterative refinement begins by reprojecting the initial map and classifying particles

according to their similarity to these projections. Classified particles are then iteratively

aligned and averaged as shown in Figure 3.2 (lower). The resulting class averages are then

reconstructed in Fourier space to form a new 3D map, which becomes the starting map for

the next iterative cycle. At the end of a user-specified number of iterations (typically 3–5),

the process terminates. A Fourier shell correlation is computed between all pairs of maps

produced from refining the even and odd subsets to assess resolution at each iteration and

monitor convergence. In the final step, the even and odd maps are averaged, CTF amplitudes

are corrected and the FSC is used to create a Wiener filter, ensuring that only the consistent

portions of the separate refinements are visualized in the final averaged map.
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the smoothness of the map. The specific values of all parameters are available to the user

after refinement in a text file called 0_refine_parms.json.

EMAN2 is a modular system and has a wide range of algorithms for each task in the

system. For example, there are over 20 different algorithms which can be used for 2D

alignment, and most of these support specification of an image similarity metric to define

mathematically what optimal alignment is. There are 14 choices available for this (3 of which

are functionally equivalent to a dot product between images). Through extensive testing

over years of development, we have identified which algorithms tend to produce the best

results for 3D refinement in different systems and target resolutions, and these decisions are

embedded in the system of heuristics in e2refine_easy.py. It should be noted that this means

that EMAN2 is not intrinsically a “correlation-based refinement”. Indeed, correlation is

used as the similarity metric for determining 3D orientation only for very coarse refinements

at low resolution. For higher resolution refinements, the heuristics will normally select a

Fourier ring correlation (FRC) metric, with SSNR weighting and a resolution cutoff. For

many data sets, this selection of algorithm has little impact on the final structure, and most

reasonable algorithm combinations would produce near identical results.

However, it is possible to find simple examples where commonly used similarity metrics

will produce suboptimal results. This is the sort of situation EMAN2’s heuristics are designed

to avoid. One of the first macromolecules to inspire the development of alternative similarity

metrics in EMAN was GroEL. If the correlation coefficient is used to determine the orien-

tation of perfect side views of GroEL, but the envelope function of the data is narrower than

the envelope function of the 3D model used as a reference, the extra “blur” of the particles

will cause them to match slightly tilted projections better than true side-views. This, in

turn, produces a slightly distorted 3D map, which will not correct itself through iterative

refinement. If, however, the data and model are compared using filter-insensitive metrics

such as FRC, this problem does not arise, and the correct orientations are found.
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In addition to the images themselves, obtaining a 3D reconstruction requires the CTF/MTF

for each image, which we have already determined in step 2.6 above, and the orientation

of each particle. Additionally, EMAN2.1 includes an additional step where particles in

nearly the same orientation are mutually aligned and averaged in 2D iteratively prior to

3D reconstruction. This step permits e2refine_easy.py to converge typically within 3–5

iterations, whereas the iterative reconstructions in many software packages which simply

determine the orientation of each particle and reconstruct immediately can require as much

as 50–100 iterations to converge.

When iteratively refining in 3D, model bias can be a significant issue. The iterative class-

averaging process used in EMAN begins with the same projections other software packages

use to determine orientation, but then align the particles such that they are self-consistent

with each other, rather than with the reference which was used to classify them. This initial

step allows the 2D averages to rapidly shed any initial model bias and permits the overall

3D refinement process to converge very quickly. The only negative side effect is that, near

convergence, the particles are being aligned to class-averages rather than 3D projections, and

the averages have higher noise levels than the final reconstruction, which was based on all of

the data rather than data only in one particular orientation. For this reason, e2refine_easy.py

includes heuristics which gradually reduce the iterative class-averaging process to achieve

rapid convergence and the best possible resolution in the final reconstruction. The iterative

class-averaging process is identical to the process described above used within e2refine2d.py

(Figure 3.2, bottom).

e2refine_easy.py performs all reconstructions using “gold standard” methods (Figure

3.4). In this approach, the particle data is split into even/odd halves at the very beginning of

iterative refinement, and the initial model is perturbed independently for each refinement by

phase-randomizing at high resolution. This ensures that the starting models are significantly

different from one another and that if high-resolution convergence is achieved independently
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in the even and odd halves that this did not result from any model bias. For symmetries

which do not constrain the orientation or center of the 3D maps, the odd map is oriented to

match the even map at the end of each iteration, to make the FSC computed in each iteration

meaningful. It should be clear that this approach does not eliminate the bias itself, but only

prevents the bias from influencing the resolution determined by FSC. This is mitigated by

iterative class-averaging which can effectively eliminate significant model bias.

e2refine_easy.py also supports the concept of using one version of the particles for

alignment, and a different version for the actual reconstruction. This is most commonly

used with movie-mode direct detector images for which there remain a range of different

theories about the best strategy for achieving high resolution when using such images. One

method involves making a high-dose average and a low-dose average of each particle. The

high-dose average is then used for alignment, all the way through class-averaging, and

the low-dose average is used for the final average after alignment. Another independent

method involves performing damage-weighted averaging of all frames in a dose series,

where only information presumed to be minimally damaged is included in the particles. In

this strategy, only one version of each particle is required, as this average contains both

optimal low-resolution contrast as well as high-resolution detail. The best method remains a

topic of active research.

A typical e2refine_easy.py strategy begins with a quick ∼5 iteration refinement using

downsampled and lowpass filtered particles to improve the starting model and achieve

an intermediate resolution (10–20Å) map. If this refinement doesn’t converge after 3–4

iterations, it may imply that the initial model was suboptimal. In this situation, either

additional iterations can be run to try and converge to the correct low-resolution structure, or

the process can be repeated using a new initial model. After this, the fully sampled unfiltered

data can be used, typically with speed set to 5, and refined for ∼5 iterations (to ensure

convergence). Finally, a third refinement is typically run with speed set to 1 for∼3 iterations,
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to see if any final resolution improvements can be made.

Figure 3.5 shows the result of the complete analysis process described above, following

the instructions for one of our single particle reconstruction tutorials (http://blake.bcm.

edu/emanwiki/Ws2015). This tutorial makes use of a small subset of the β-galactosidase

[18] data from the 2015 cryoEMMap Challenge sponsored by EMDatabank.org. This tutorial

set is a small fraction of the original data, downsampled for speed, and is thus not able to

achieve the full resolution in the original publication, but the refinement can be completed

quickly to near 4Å resolution on a typical desktop or laptop computer. We extracted 4348

particles (of about 30,000 total particles), and downsampled them to 1.28Å/pixel. This data

set includes a significant number of “particles” which are actually ice contamination, and

the tutorial includes instructions for identifying and eliminating these. The final speed=1

refinement to push the resolution past 4Å can require a somewhat larger computer than a

typical laptop, or a somewhat longer run time, but most laptops can get very close to this

resolution in the target 24 hour period. The human effort involved in this process should be

only a few hours, even for a novice.

3.2 Assessing Final Map

Once a final reconstruction has been achieved, it remains to turn this map into useful

biochemical/biophysical information. If very high resolution has been achieved (2–5Å) it

may be possible to trace the protein backbone and even perform complete model building

based solely on the cryoEM data [11, 12, 198]. At subnanometer resolution, the secondary

structure should be sufficiently visible to at least confirm that the structure is largely correct.

At lower resolutions, additional steps, perhaps even experiments, must be performed to

ensure the veracity of the reconstruction [98]. In cases where a model is constructed for the

map or is available from other experimental methods such as crystallography, it is critical

that a map-vs-model FSC is computed to assess the resolution at which the model is an
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Figure 3.5: Refinement results of the β-galactosidase test data subset from the EMAN2.1

tutorial. e2refine_easy.py was run 4 times sequentially in this test, and the final FSC curves

from each run are combined in one plot. The first 2 runs used downsampled data for speed,

so the FSC curves do not extend to as high a resolution. The inset shows that β-strands can
be clearly resolved and α-helices have the appropriate shape. Equivalent results could have
been achieved in a single run, but the intermediate results are useful in the context of the

tutorial and require less compute time. The inset table describes the basic parameters and

wall-clock time of each refinement run. Note that the final run was performed on a Linux

cluster using 96 cores (∼250 CPU-hr).
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accurate representation of the data. When this is combined with the standard model validation

methods required in crystallography [41], fairly strong statements about the veracity and

resolution of the cryoEM map can be made.

3.3 Conclusions

There are a wide range of tools available in the community for performing single particle

reconstruction as well as related cryoEM image processing tasks. We strive to ensure that

EMAN2.1 produces the best possible structures as well as being among the easiest to use and

most computationally efficient packages available. However, there are many biomolecular

systems in single particle analysis in which flexibility or compositional variability play a

key role. Crystallography, by its nature, is ill-suited to collecting data on heterogeneous

molecular populations. Single particle analysis data collection, on the other hand, produces

solution-like images natively. This shifts the problem of resolving heterogeneity to being

computational rather than experimental. In our experience, despite using similar high-level

concepts, handling of heterogeneous data is where the various available software packages

differ most from one another. While a highly homogenous data set collected to high resolution

will generally produce near-identical structures in any of the standard available software

packages, in the presence of heterogeneity, different packages will take this into account

in different ways, producing measurably different results. This variation can exist at any

resolution level, depending on the biophysical properties of the particle under study.

Due to this, it can be very useful to have the ability to cross-compare results from

EMAN2.1 with other software packages. We make this a simple process for several software

packages through the e2refinetorelion3d.py, e2refinetofrealign.py, e2reliontoeman.py, e2emx.py

and e2import.py programs. When different results are obtained among two or more packages

it is critical to carefully examine each result, and even look at some of the internal validations
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provided by each software. For example, in EMAN2.1, one might compare 2D reference-free

class-averages with the 2D reference-based class-averages with reprojections of the 3D map,

to see if any disagreements match inter-software differences.

The Cryo-EM field has now reached a level of maturity where well-behaved molecular

systems studied on high-quality microscopes and detectors can readily produce recon-

structions in the 3–5Å resolution range, as demonstrated by the nearly 100 structures

published at this resolution so far in 2015. While some of the reason for the even larger

number of lower resolution structures published in the same time can be attributed to the

lower end equipment many practitioners are still limited to, the larger factor is almost

certainly specimen purification and sample preparation, which remain the largest barriers to

routine high-resolution studies in the field. Some of these issues can be solved by software,

and analysis of heterogeneous data is probably the most active area for software development

at this time. Indeed, resolution-limiting specimen variability can be used as an opportunity to

study solution behavior of macromolecules rather than viewing this as a resolution-limiting

factor. In addition to robust tools for high-resolution refinement, EMAN2.1 also has a range

of tools available for this type of analysis, as described in additional tutorials available on

our website. For well-behaved specimens, however, it should be possible to rapidly achieve

near specimen-limited resolutions using the straightforward methods we have described.
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Chapter 4

Software tools inspired by the

EMDatabank map challenge

This work has been published in Bell, J.M., Chen, M., Durmaz, T., Fluty,A.C., Ludtke,

S.J. (2018). New software tools in EMAN2 inspired by EMDatabank map challenge.

Journal of Structural Biology, 204 (2), 283-290.
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4.1 Introduction

Toward a more universal benchmark for measuring resolution and ensuring valid chemical

structures are published, in 2015, the Electron Microscopy Data Bank (EMDatabank)

initialized a community-wide validation effort called the CryoEM Map Challenge [122].

The overarching goals of this project were to establish benchmark datasets, compare and

contrast reconstruction techniques, and provide an opportunity to share results obtained

with “best practices.” Each participant was asked to reconstruct any/all of the 7 benchmarks

provided, and volunteer reviewers were asked to examine the results. User submissions and

reviewer findings are detailed in a special issue of the Journal of Structural Biology.

The Map Challenge presented EMAN2 developers with an excellent opportunity to

critically evaluate our approach to SPA and compare to other available solutions. This

manuscript outlines new software tools for EMAN2 that were inspired by my findings as

a participant in the map challenge and that I helped develop and implement in the months

that followed. Working collaboratively with members of the Ludtke lab, I was able to make

several significant improvements that dramatically reduce human bias and produce better

structures with more visible side-chains at high-resolution.

First, we introduced new global and local filtration strategies. Second, we introduced

a new semi-automatic particle selection algorithm using convolutional neural networks

(CNNs), which has demonstrated better accuracy than reference-based pickers and is

comparable to a human even on challenging data sets. Finally, we introduced a new

metric for assessing the quality of individual particles in the context of a SPA and elimi-

nating bad particles without human input. We demonstrated quantitatively that eliminating

“bad” particles can improve both internal map resolution as well as agreement with the

“ground truth.” Together, these changes improved automation and dramatically enhanced

the appearance of side-chains in high-resolution structures.

113

https://www.sciencedirect.com/journal/journal-of-structural-biology/special-issue/108PXM64R4D


4.2 Local and global filtration of 3D maps

Prior to the map challenge, users observed that even when the measured resolution was

identical, near atomic resolution structures solved with Relion [194] would often appear

to have more detail than the same structures solved with EMAN2. Since both Relion and

EMAN2 use CTF amplitude correction combined with a Wiener filter during reconstruction,

the cause of this discrepancy remained a mystery for some time. During the challenge,

we realized that the Relion post-processing script was replacing the Wiener filter with a

tophat (sharp-cutoff) low pass filter, which has the effect of visually intensifying features

near the resolution cutoff at the expense of adding weak ringing artifacts to the structure,

under the justification that effectively the same strategy is used in X-ray crystallography.

In response, we added the option for a final tophat filter with B-factor sharpening [184] to

EMAN2.2 (Figure 4.1 A). This eliminated this perceptual difference, so when the resolution

was equivalent, the visual level of detail would also match (Figure 4.1 B and 4.1 C).

However, this equivalence really applies only to rigid structures with no significant

conformational variability at the resolution in question. For structures with significant local

variability, we observe that different software packages tend to produce somewhat different

results, even in cases where the overall resolution matches. It is impossible to define a single

correct structure in cases where the data is conformationally variable. When comparing

EMAN2, which uses a hybrid of real and Fourier space methods, to packages like Relion or

Frealign which operate almost entirely in Fourier space, we often observe that the Fourier

based algorithms provide somewhat better resolvability in the most self-consistent regions of

the structure, at the cost of more severe motion averaging in the regions undergoing motion.

EMAN2, on the other hand, seems to produce more consistent density across the structure,

including variable regions, at the cost of resolvability in the best regions. These differences

appear only when structurally variable data is forced to combine in a single map, or when
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Figure 4.1: B-factor Sharpening. A. Guinier plot of the spherically averaged Fourier

amplitude calculated using the canonical EMAN2 “structure factor” approach (blue) and our

latest “flattening” correction (green). B. TRPV1 (EMPIAR-5778) reconstruction obtained

using “structure factor” amplitude correction. C. TRPV1 reconstruction after iterative,

“flattening” amplitude correction with a tophat filter.
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“bad” data is included in a reconstruction.

EMAN2 has a number of different tools designed to take such populations and produce

multiple structures, thus reducing the variability issue [132]. However, this does not answer

the related question of how to produce a single structure with optimal resolution in the

self-consistent domains, and appropriate resolution in variable domains. To address this,

EMAN2.21 implements a local resolution measurement tool, based on FSC calculations

between the independent even/odd maps. In addition to assessing local resolution, this

tool also provides a locally filtered volume based on the local resolution estimate. Rather

than simply being applied as a post-processing filter, this method can be invoked as part

of the iterative alignment process, producing a demonstrably improved resolution in the

stable domains of the structure. Flexible domains are also filtered to the corresponding

resolution, making features resolvable only to the extent that they are self-consistent. At

2-4Å resolution, side-chains are seen to visibly improve in stable regions in the map using

this approach. This apparent improvement is logical from both a real-space perspective,

where fine alignments will be dominated by regions with finer features, as well as Fourier

space, where the high-resolution contributions of the variable domains in the map have

been removed by a low-pass filter, and only the rigid domains contribute to the alignment

reference. Iteratively, this focuses the fine alignments on the most self-consistent domains,

further strengthening their contributions to subsequent alignments.

The approach for computing local resolution is a straightforward FSC under a moving

Gaussian window, similar to other tools of this type [36]. While other local resolution

estimators exist, ResMap being the most widely used [119], we believe that our simple and

fast method meshes well with the existing refinement strategy and is sufficient to achieve the

desired result. The size of the moving window and the extent to which windows overlap is

adjustable by the user, though the built-in heuristics will produce acceptable results. While

the heuristics are complicated, and subject to change, in general, the minimum moving
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window size is 16 pixels with a target size of 32Å, with a Gaussian Full Width Half Max

(FWHM) of 1/3 the box size for the FSC. While the relatively small number of pixels in the

local FSC curves means there is some uncertainty in the resulting resolution numbers, they

are at least useful in judging relative levels of motion across the structure. The default overlap

typically produces one resolution sample for every 2–4 pixel spacings. A tophat lowpass

filter is applied within each sampling cube, then a weighted average of the overlapping

filtered subvolumes is computed, with the Gaussian weight smoothing out edge effects.

The local resolution method and tophat filter described above must be explicitly invoked

to be used iteratively for SPA. B-factor sharpening is the default for structures at resolutions

beyond 7Å, whereas EMAN’s original structure factor approach [239] is used by default

at lower resolutions. The defaults can be overridden by the user, and any of the new

methods can be optionally used at any resolution. Each of these features are available when

running refinements in EMAN2 from the GUI (e2projectmanager.py) or command line via

e2refine_easy.py.

4.3 Convolutional neural network for particle picking

The problem of accurately identifying individual particles within a micrograph is as old as

the field of cryoEM, and there are literally dozens of algorithms, [131, 195, 232, 245] to

name a few, which have been developed to tackle this problem. These include some neural

network-based methods [165, 228]. Nearly any of these algorithms will work with near

perfect accuracy on easy specimens, such as icosahedral viruses with a uniform distribution

in the ice. However, the vast majority of single particles do not fall in this category, and

the results of automatic particle selection can vary widely. In addition to problems of low

contrast, and picking accuracy variation with defocus, frequent false positives can also

be caused by ice and other contamination. There can also be difficulties with partially
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denatured particles, partially assembled complexes, and aggregates, which may or may not

be appropriate targets for particle selection depending on the goals of the experiment. In

one famous example from the particle picking challenge in 2004 [245] participants were

challenged to use the particle picker of their choice on a standardized data set consisting of

high contrast proteasome images. Two of the most widely varying results were the manual

picks by two different participants. One decided to avoid any particles with overlaps or

contact with other particles, and the other opted to include anything which could plausibly

be considered a particle. This demonstrates the difficulty in establishing the ground truth

for particle picking. In the end, the final arbiter of picking quality is the quality of the 3D

reconstruction produced from the selected particles, but the expense of the reconstruction

process often makes this a difficult metric to use in practice.

With the success of the CNN tomogram segmentation tool in EMAN2.2 [40] we decided

to adapt this method for particle picking, which is now available within e2boxer.py (Figure

4.2). The general structure of the CNN is similar to that used for tomogram segmentation,

with two primary changes: first, the number of neurons is reduced from 40 to 20 per layer.

Second, in tomogram annotation, the training target is a map identifying which pixels contain

the feature of interest. In particle picking, the training target is a single Gaussian centered in

the box whenever a centered particle is present in the input image, and zero when a particle is

not present. That is, the output of the final CNN will be pixel values related to the probability

that each pixel is at the center of a particle.

The overall process has also been modified to include two stages, each with a separate

CNN. The first stage CNN is trained to discriminate between particles and background noise.

The second stage CNN is designed to assess whether putative particles are particles or ice

contamination. In short, the first network is designed to distinguish between low contrast

background noise and particle shaped/sized objects, and the second stage is designed to

identify and eliminate identified high-contrast objects which are actually contamination.
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To train the two CNNs, the user must provide 3 sets of reference boxes, each requiring

only ∼20 representative images. The first set includes manually selected, centered and

isolated individual particles drawn from images at a range of defocuses in a range of different

particle orientations. The second set includes regions of background noise, again, drawn from

a variety of different micrographs. Finally, the third set contains high contrast micrograph

regions containing ice contamination or other non-particles. Sets 1 and 2 are used to train

the first stage CNN and sets 1 and 3 are used to train the second stage CNN. While ∼20

images in each set is generally sufficient, the user may opt to provide more training data if

they prefer. We have found that gains in CNN performance diminish for most specimens

beyond ∼20 references, as long as the 20 are carefully selected. If the micrographs contain

a particularly wide range of defocuses, or if the particles have widely varying appearance in

different orientations, a larger number of examples may be required for good results. The

thresholds for the CNNs can be adjusted interactively, so users can select values based on

the performance on a few micrographs before applying the CNNs to all images. The default

values, which are used in the example are 0.2 for CNN1 and -5.0 for CNN2. The rationale

for this choice is that, for single particle analysis, having false positives or bad particles can

damage the reconstruction results while missing a small fraction of particles in micrographs

is generally not a serious problem (Figure 4.2 C).

This methodology performed extremely well on all of the challenge data sets, including

the β-galactosidase data set, which includes significant levels of ice contamination with

similar dimensions to real particles. We also tested this on our published [64] and unpublished

IP3R data sets, which were sufficiently difficult targets that, for publication, 200,000+

particles had been manually selected. Even this challenging set was picked accurately using

the CNN strategy. While picking accuracy is difficult to quantify on a particle-by-particle

basis due to the lack of a reliable ground-truth, we performed 3D reconstructions using

particles selected by the CNN picker, and results were as good or better than those produced
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Figure 4.2: Automated Particle Picking. A. Workflow of CNN based particle picking. Top:
examples of background, good and bad particle references. Bottom: Input test micrograph
and output of the trained CNNs. B. A comparison of template matching to the CNN picker.
Left: Template matching based particle picking, using 24 class averages as references.
Right: Results of CNN based particle picking, with 20 manually selected raw references of
each type (good, background and bad). C. Left: Precision-recall curves of CNN1 on a test
set, with the threshold of CNN2 fixed at -5. Right: Precision-recall curves of CNN2 with
the threshold of CNN1 fixed at 0.2.

Illustration generated by Muyuan Chen.
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by manual selection.

We believe this particle picker may offer a practical and near-universal solution for

selecting isolated particles in ice. Filamentous objects can also be approached using similar

methods, but for this case, the tomogram annotation tool might be more appropriate. An

adaptation designed specifically to extract particles for Iterative Helical Real Space Recon-

struction (IHRSR) [60] does not exist but could be readily adapted from existing code.

4.4 Automated CTF correction

EMAN [133] and SPIDER [72, 73, 170] were the first software packages to support CTF

correction for general purpose SPA with full amplitude correction. Not only does the

historical EMAN approach determine CTF directly from particles, but it also uses a novel

masking strategy to estimate particle spectral signal to noise ratio directly from the particle

data. In addition to being used in the correction process, this provides an immediate measure

of whether the particles in a particular image have sufficient signal for a reliable 3D recon-

struction.

While this method has served EMAN well over the years, it has become clear that more

accurate defocus estimates can be made using the entire micrograph, particularly when

astigmatism correction is required. The whole micrograph approach also has disadvantages,

as some image features, such as the thick carbon film at the edge of holes or ice contamination

on the surface, may have a different mean defocus than the target particles.

In response to this, EMAN2.2 has now adopted a two-stage approach. First, the defocus,

and optionally astigmatism and phase shift, are determined from the micrographs as they

are imported into the project. These can be determined using EMAN’s automatic process,

which is quite fast, or metadata can be imported from other packages, such as CTFFIND

[181]. In the second stage defocus can be fine-tuned, and SSNR is estimated, along with the
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1-D structure factor, from the particle images themselves.

Unlike earlier versions of EMAN2, which required several manual steps, CTF processing

is fully automated whether running e2ctf_auto.py from the command line or the project

manager. The primary failure mode, in which the first zero is inaccurately placed coincident

with the second zero or a strong structure factor oscillation, is rare and can be readily detected

and corrected. A quick check of the closest and furthest from focus images after automatic

processing is generally sufficient to detect any outliers, and in most projects, there are none.

In addition to determining CTF and other image parameters, CTF auto-processing also

generates filtered and down-sampled particles in addition to CTF phase-flipped particles

at full resolution. These down-sampled particle stacks are provided as a convenience for

speed in the initial stages of processing where full resolution data is not required. Use of

the down-sampled stacks is entirely at the user’s discretion. Decisions about the amount

of down-sampling and filtration are based on the user’s specification of whether they plan

to target low, intermediate or high-resolution. Only the final high-resolution refinement

is normally performed with the unfiltered data at full sampling. While such filtered,

masked and resampled particles could be generated on-the-fly from the raw data, the down-

sampled datasets significantly decrease disk I/O during processing, and the filtration/masking

processes are sufficiently computationally intensive preprocessing is sensible.

The current version also includes initial support for the automatic and manual fitting

of Volta-style phase-plate data with a variable phase shift. Mathematically, phase shift and

amplitude contrast (within the weak phase approximation) are equivalent parameters. Phase

shift can be represented either as a −180 to 180-degree range, or it can be represented as

amplitude contrast in which case it is nonlinearly transformed to a −200% to +200% range,

matching the conventional %AC definition for small shifts. While the amplitude contrast

ranges make little intuitive sense when used in this way, this approach avoids adding a

redundant parameter, such as the approach used in CTFFIND4 [181].
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4.5 Identifying and removing “bad” particles

The core assumption at the heart of the entire SPA process is that each of the particles used

for the reconstruction represents a 2D projection of the same 3D volume in some random

orientation. There are numerous ways in which this assumption may be violated, any of

which will have an adverse effect on the final 3-D reconstruction. First, the 3D particles may

have localized compositional or conformational variability, second, the particles may be

partially denatured, third, some of the identified particles may not be particles at all but may

rather be some form of contamination. If our goal is a single self-consistent reconstruction

representing some state of the actual 3D molecule, then eliminating particles in any of these 3

classes would be the appropriate response. However, if our aim is to understand the complete

behavior of the particle in solution, then particles in the first class should be retained and

used to characterize not just a single structure, but also the local variability. Particles in the

other two classes, however, should always be eliminated if they can be accurately identified.

There have been a range of different methods attempted over the years to robustly identify

and eliminate “bad” particles [23, 27, 69, 90, 199, 233]. The early approaches, also supported

in EMAN, largely rely on assessing the similarity of individual particles to a preliminary 3D

structure or to a single class-average. The risk in this approach is producing a self-fulfilling

prophecy, particularly if some sort of external reference is used to exclude bad particles. Still,

such approaches may be reasonable for excluding significant outliers, which will generally

consist of ice contamination or other incorrectly identified particles.

Another approach, commonly used in Relion, involves classifying the particles into

several different populations via multi-model 3D classification, then manually identifying

which of the 3D structures are “good” and which are “bad”, keeping only the particles

associated with the “good” maps [193]. While particles which are highly self-consistent

should group together, there is no reason to expect that particles which are “bad” in random
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ways would also group with each other. It is logical that such particles would be randomly

distributed, and a significant fraction would also still associate (randomly) with the “good”

models, so this approach will clearly only be able to eliminate a fraction of the “bad” particles.

This process also introduces significant human bias into the reconstruction process, raising

questions of reliability and reproducibility. Nonetheless, as long as one states that the

goal is to produce one single map with the best possible resolution which is self-consistent

with some portion of the data, this approach may be reasonable. If the goal is to fully

characterize the particle population in solution, then clearly any excluded subsets must

also be carefully analyzed to identify whether the exclusion is due to compositional or

conformational variability or due to actual image quality issues.

One problem with current approaches using absolute model vs. particle similarity

metrics is that, due to the imaging properties of the microscope, particles far from focus have

improved low-resolution contrast, making them easier to orient, but generally at the cost

of high-resolution contrast. Therefore, absolute similarity metrics will tend to consider far-

from-focus particles better absolute matches to the reference than the closer to focus particles

which have the all-important high-resolution information we wish to recover. Such metrics

do eliminate truly bad particles, but when used aggressively they also tend to eliminate the

particles with the highest resolution data. The simplest correction, allowing the bad particle

threshold to vary with defocus, is marginally better, but still tends to prioritize particles with

high contrast at low-resolution over particles with good high-resolution contrast.

We now propose a composite metric that demonstrably identifies “bad” particles with

a high level of accuracy for most datasets, without being subject to defocus dependencies

(Figure 4.3). We define a “bad” particle to be non-particle images incorrectly picked, actual

particles with contrast too low to align reliably, and, possibly, partially denatured or otherwise

distorted particles (Figure 4.3 B). First, we compute the integrated Fourier Ring Correlation

(FRC) between each aligned particle and its corresponding best projection reference over
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four different resolution bands (100–30Å, 30–15Å, 15–8Å and 8–4Å, Figure 4.3 A). These

are computed twice: once for the final iteration in a single iterative refinement run, and again

for the second-to-final iteration to assess self-consistency. While the 8–4Å FRC remains

almost pure noise even for the best contrast high-resolution datasets, the first two bands

remain strong measures for all but the worst data sets. This is not to say that the particles are

not contributing to the structure at 8–4Å resolution or beyond, simply that the FRC from a

single particle in this band has too much uncertainty to use as a selection metric.

For all but the furthest from focus images, the lowest resolution band is primarily a

measure of overall particle contrast and is strongly impacted by defocus. The second band

is integrated over a broad enough range that defocus has a limited impact (Figure 4.3 C). If

two particles have roughly the same envelope function, then we would expect the second

FRC band to increase fairly monotonically, if not linearly, with the lowest resolution FRC.

If, however, a particular particle has weak signal at very high-resolution, this will also have

some influence on the intermediate resolution band where the FRC values are less noisy.

Indeed, we have found that, after testing on a dozen completely different data sets, there

tends to be a characteristic relationship among the first two or, for high-resolution data, three

FRC bands. Particles that deviate from this relationship are much more likely to be bad.

Furthermore, if we look at these FRC values from the final iteration vs. the same value in

the second to last iteration, an additional pattern emerges, with some particles clearly having

significant random variations between iterations and others which are largely self-consistent

from one iteration to the next (Figure 4.3 D).

This approach is available both from the project manager GUI aswell as the e2evalrefine.py

command. After computing the metric described above for the full particle population, k-

means segmentation is used to separate the particle set into 4 classes, only the worst of

which is excluded from the new particle set, meaning that each time this method is applied

up to ∼1/4 of particles may be excluded. The fraction of excluded particles will depend on
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Figure 4.3: Bad Particle Classification. A. Particle/projection FRCs integrated over 4 bands

and clustered via K-means algorithm with K = 4. The cluster with the lowest sum of

integrated FRC values are marked as “bad” while particles in the remaining 3 are labeled

“good.” B. Example β-galactosidase particles (EMPIAR 10012 and 10013) and projections

from bad (left) and good (right) clusters. C. Defocus vs. low-resolution integrated FRC. D.

Left. Iteration-to-iteration comparison of integrated particle/projection FRC values at low

(left) and intermediate (right) spatial frequencies.
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how well the particular data set clusters, and with what distribution. In extensive testing

using “good” and “bad” particle populations in various data sets, refinements from the

“good” population have consistently achieved better or at least equivalent resolution to the

refinement performed with all of the data, generally with improved feature quality in the map

(Figure 4.4). Refinement using the “bad” particles will often still produce a low-resolution

structure of the correct shape, but the quality and resolution are uniformly worse than either

the original refinement or the refinement from the “good” population (Figure 4.4 C). The

fact that this method produces improved resolution despite decreasing the particle count is a

strong argument for its performance.

4.6 Conclusions

In this time of rapid expansion in the cryoEM field, and the concomitant ease with which

extremely large data sets can be produced, it is important to remember the need to critically

analyze all of the resulting data and exclude data only when quantitative analysis indicates low

data quality. There is still considerable room for the development of new tools for enhancing

the rigor and reproducibility of cryoEM SPA results. Community validation efforts such as

the EMDatabank map challenge are important steps in ensuring that the results of our image

analysis are a function only of the data, and not of the analysis techniques applied to it, or at

least that when differences exist, the causes are understood.

In addition to the algorithm improvements described above, EMAN2.2 has transitioned

to use a newAnaconda-based distribution and packaging system which provides consistent

cross-platform installation tools, and properly supports 64-bit Windows computers. As part

of ongoing efforts to stabilize and modernize the platform we are beginning the process of

migrating from C++03 to C++14/17, Python 2 to Python 3, and Qt4 to Qt5. We have also

enabled and improved the existing unit-testing infrastructure, integrated with GitHub, to
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Figure 4.4: Resolution enhancements obtained from bad particle removal. A. β-galactosidase
map refined using all 19,829 particles, B. using only the “good” particle subset (15,211),

and C. using only the “bad” particle subset (4,618). D. Gold standard FSC curves for each

of the three maps in A-C. E. FSC between the maps in A-C and a 2.2Å PDB model (5A1A)

of β-galactosidase. Note that the “good” particle subset has a better resolution both by “gold
standard” FSC and by comparison to the ground-truth, indicating that the removed particles

had been actively degrading the map quality.

128



ensure that code changes do not introduce erroneous image processing results.

EMAN2 remains under active development. While the features and improvements

discussed in this manuscript are available in the 2.21 release, using the most up-to-date

version will provide access to the latest features and improvements.
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Chapter 5

Cellular tomography and subtomogram

averaging in EMAN2

This work by Muyuan Chen, Michael Bell, Xiaodong Shi, Stella Sun, Zhao Wang,

Steven Ludtke is archived at https://arxiv.org/abs/1902.03978.
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5.1 Introduction

CryoEM is rapidly becoming the standard tool for near atomic resolution structure determi-

nation of purified biomolecules over 50 kDa. However, for studies of molecules within cells

or purified molecules that exhibit significant conformational variability, electron cryoto-

mography (CryoET) is the preferred method [7]. In these experiments, the specimen is

tilted within the microscope providing 3D information about each molecule and permitting

overlapping densities, such as those found in the crowded cellular cytosol, to be separated.

While recent hardware advances have greatly boosted the throughput of CryoET data

collection, substantial human effort and computational resources are still required to process

recorded imaging data. Especially in cellular tomography projects, data processing has

become a major bottleneck in studying high-resolution protein structures. This chapter

describes a complete tomography workflow developed collaboratively with members of the

Ludtke lab, seeking to expedite cellular tomography data processing by integrating new and

existing tools within the EMAN2 environment for converting recorded tilt series data into

3D structures. My role in this research was to integrate numerous workflow components,

develop graphical user interfaces for processes requiring user-intervention, and arrange for

the consistent handling of metadata throughout the workflow.

While many of our tools are based on decades of development by many groups [6, 22,

70, 76, 99, 101, 116, 142], numerous innovations have been introduced to reduce human

intervention and improve the resolution of the final average. These include a fully automated

tilt-series alignment method not requiring fiducials, rapid 3D reconstruction using direct

Fourier methods with tiling, an optimization-based strategy for per-particle-per-tilt CTF

correction, robust initial model generation, and per-particle-per-tilt orientation refinement.

In addition to algorithm development, this protocol also includes a user-friendly graphical

interface and a specially designed book-keeping system for cellular tomography that allows
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users to study multiple features within one dataset, and to keep track of particles to correlate

structural findings with the location of proteins in the cellular environment.

Our integrated pipeline significantly increases the throughput of CryoET data processing

and is capable of achieving the state-of-the-art subtomogram averaging results on both

purified and in situ samples. We demonstrate subnanometer resolution from previously

published datasets [22, 111], and cellular tomography of whole E. coli over-expressing a

double-layer spanning membrane protein at 14Å resolution.

5.2 Methods

5.2 Tomogram reconstruction

To seed the iterative tilt-series alignment, a coarse alignment is first performed. First, the

unaligned tilt series is downsampled to 512 x 512 pixels, subject to a real-space ramp filter,

Fourier bandpass filter, and normalized to mean value of zero and standard deviation of

one. A coarse alignment is then performed under a soft Gaussian mask. The alignment

begins with the center tilt image (typically near untitled) and propagates sequentially in

both directions. After the coarse translational alignment, common lines are used to identify

the tilt axis direction. Only angles 0-180 degrees are permitted in this process to ensure

no handedness flips occur. Although the handedness is consistent throughout the dataset,

it is not necessarily correct due to the 180-degree ambiguity in the tilt axis direction. If

the correct orientation of the tilt axis in the images has already been determined for the

microscope, it can be specified instead of performing the common-lines search. Finally,

the tilt series is reconstructed to produce the preliminary tomogram. The 512 x 512 box

size is small enough, that direct Fourier inversion can be used without tiling. Since higher

tilt images include information outside the frame of the zero tilt image, higher tilts have

a proportional soft mask is applied at the edges of each image parallel to the tilt axis just
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before reconstruction.

After the initial tomogram reconstruction, an iterative alignment-reconstruction process

is performed beginning with 512 x 512 images gradually decreasing downsampling until

the fully sampled images are being used (typically 4k x 4k). Each iteration begins with

landmark selection in the tomogram from the previous iteration, followed by multiple rounds

of landmark location refinement and tilt parameter refinement as described above, and ends

with the final downsampled tomogram reconstruction along with the optimized alignment

parameters. By default, we perform 2 iterations at 512 x 512, and 1 iteration at 1024 x 1024

, 2048 x 2048 and 4096 x 4096. When the input tilt series is larger than 4096 x 4096, such

as DE-64 or K2 super-resolution images, we only perform alignments from 512x512 to

4096 x 4096. It is worth noting that in all iterations, reconstruction of the full tomogram

is always done using the pre-filtered 512 x 512 tilt series. These tomograms are only used

for selection of landmarks, whose locations are later refined in subtomograms using the

appropriate downsampling.

To select landmarks, the 512 x 512 x 256 tomogram is further binned by 4 by taking

the minimal value of each 4 x 4 x 4 cube and the result is highpass filtered. In this stage of

processing, it is important to note that higher densities have lower values in raw tomograms,

which is opposite from the normal EMAN2 convention. Voxel values in the tomogram are

sorted and the program picks voxels separated by a minimal distance as landmarks. By

default, 20 landmarks are selected and the distance threshold is 1/8 of the longest axis of the

tomogram.

Multiple rounds of landmark location refinement and tilt parameter refinement are

performed after landmark selection. In each round, we refine the 3D location of landmarks

and one of the alignment parameters, including translation, tilt axis rotation, tilt angle and

off-axis tilt. Because there is different uncertainty in the determination of each parameter,

we begin with refinements tilt image translation and global tilt axis rotation, then refine on
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and off-axis tilt angles.

In landmark location refinement, we first extract subtilt series of the landmarks from

the tilt series and reconstruct the landmarks at the current level of binning. By default, we

use box size of 32 for bin-by-8 and bin-by-4 tilt series, 1.5x box size for bin-by-2 and 2x

box size for unbinned iterations. We locate the center of landmarks by the coordinate of the

voxel with minimal value for bin-by-8 and bin-by-4 iterations and by the center of mass for

bin-by-2 and unbinned iterations. This use of center-of-mass rather than aligning features

within each landmark region might seem that it could reduce alignment accuracy. However,

a common problem with tomographic alignments is that it is possible to have self-consistent

alignments with an incorrect translation orthogonal to the tilt axis, producing distorted

features in reconstructions when viewed along the tilt axis. Using of center-of-mass for

alignment seems to largely avoid this problem, particularly when combined with exclusion

of landmarks which are outliers in the alignment process.

To refine the alignment parameters, we first project landmark coordinates to each tilt

using currently determined alignment, and extract 2D particles of the same box size at

current binning. The center of each 2D particle is determined in the same way that 3D

landmarks are centered, and the distance from the center of the 2D particle to the projection

of 3D coordinates is computed. For each tilt, the Powell optimizer from Scipy is used to

refine alignment parameters and minimize the averaged distance from all landmarks. By

default, 10% landmarks with the highest averaged distance in each tilt are ignored during

the optimization. The averaged error per tilt is also used in the following round of landmark

location refinement and tomogram reconstruction where 10% of tilt images with highest

error are excluded.

After all the refinement iterations are finished, the final tomogram is reconstructed.

When reconstructing the tomogram by tiling, we use a tile length of 1/4 the tomogram length

and pad the 3D cube by an extra 40% during reconstruction. The step size between the tiles
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is 1/8 tomogram length, and overlapping tiles are shifted by half tile in x and y. 2D tiles

are subjected to an edge decay mask along x-axis like the mask used in the full tomogram

reconstruction. After reconstruction of each tile, a mask with Gaussian falloff is applied to

subvolumes before they are inserted into the final reconstruction. The mask is described by

f(x, y) = 1 +
e−

(
x2+y2

)
0.1

− e−
(
|x|−0.5)2+(|y|−0.5)2

)
0.1

, (5.1)

where x and y are the coordinates of the voxel from the center of a tile, ranging from

-1 to 1. This specific mask shape is used in order for the summed weight in each voxel

in the tomogram to be 1. The soft, Gaussian falloff reduces the edge artifacts from the

reconstruction of each tile. After reconstruction, the tiles are clipped and added to the final

volume to produce the final tomogram. This entire process requires on the order of 10

minutes per tomogram (Table 5.1).

5.2 Initial model generation for subtomogram averaging

In the stochastic gradient descent based initial model generation process, we use a very small

batch size (12 particles per batch by default) and a learning rate of 0.1 to introduce enough

fluctuations into the system. The list of input particles is shuffled before grouping into

batches. Particles may be optionally downsampled and lowpass filtered before alignment.

Particles in the first batch are averaged in random orientations to produce a map which is

then filtered to 100Å and used as the initial alignment reference, which will have roughly the

correct radial density profile, but meaningless azimuthal information. In each subsequent

batch, particles are aligned to the reference and an average is generated. Any empty regions

remaining in Fourier space is filled with information from corresponding Fourier regions in

the current reference. We calculate the per voxel difference between the reference and the

new averaged map and update the reference toward the average by the learning rate. The
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program goes through only 10 batches in each iteration by default, except the number of

batches is doubled in the first iteration. The first iteration is longer because when symmetry

is specified, the program aligns the reference to the symmetry axis after each iteration, and

it is necessary to have a map with correct low resolution features to perform a symmetry

search stably.

5.2 Subtilt refinement

The first step of subtilt refinement is to compute the orientation of each subtilt using the

orientation of the subtomogram and the alignment of tilt images in the tomogram. The

refinement starts from 32 randomly distributed orientations centered around the previous

orientation. One of the initial positions is always the previously determined orientation so

the worst-case answer is no change. From these positions, an iterative search is performed

starting from Fourier box size 64 to full box size, similar to the subtomogram refinement.

During the refinement, the reference map is projected using Fourier space slicing with

Gaussian interpolation. The comparison between the projection and the 2D particle is scored

with CTF weighted Fourier ring correlation for comparison.

We refine even/odd particle sets independently in the subtilt refinement. By default,

the program uses all tilt images and removes the 50% of particles with the worst score,

generally correlating with tilt angles. There is also an option provided to explicitly exclude

high angle tilt images. We also remove subtilt particles with scores beyond 2-sigma around

the mean, because practically, particles with very high alignment scores often contain high

contrast objects such as gold fiducials, and low score particles are often at the edge of the

micrograph and has little signal. Before inserting the images to the 3D Fourier volume, we

normalize their scores to (0,1) and weight the particles by their scores when reconstructing

the 3D average. The 3D volume is padded by 2 to avoid edge artifacts, and reconstruction

is performed with Gaussian interpolation with variable width with respect of Fourier radii.
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The averaged map is filtered by the “gold-standard” FSC.

5.2 Processing of example data sets

We processed the 4 “mixedCTEM” from the EMPIAR-10064 purified ribosome dataset. The

tomograms were reconstructed from the tilt series automatically using default parameters.

3239 particles were selected via template matching followed by manual bad-particle removal.

Defocus values were calculated using default options and the resulting defocus values range

from 2.4 to 3.7 µm. CTF-corrected subtomograms were generated with a box size of 180.

An initial model was produced using all particles as input, with 3x downsampling and a

target resolution of 50Å. Next, 4 rounds of subtomogram refinement and 3 rounds of subtilt

refinement were performed to arrive at the final map, which was sharpened using a 1-D

structure factor calculated from EMD-5592, masked via EMAN2 auto-masking, and filtered

by the local gold-standard FSC. For timing information, see Table 5.1.

Tomograms of the AcrAB-TolC pump in E. coli cells were collected on a JEOL3200

equipped with a Gatan K2 camera. Tomogram reconstruction and CTF determination were

performed in EMAN2 using default parameters. The unbinned particle data had an Å/pix of

3.365, and a box size of 140 was used during particle extraction. 25 high SNR particles were

used for initial model generation. For structures with symmetry, applying the symmetry

before the initial model generation converges tends to trap the SGD in a local minimum and

not achieve the optimal result. So here a two-step approach was used to build the initial

model. First 5 iterations of our SGD routine were performed imposing C1 symmetry. After

aligning the result to the symmetry axis, we performed 5 more iterations with C3 symmetry.

Subtomogram averaging was then performed using 1321 particles from 9 tomograms while

applying C3 symmetry. To focus on the protein while preserving information from the

membrane for improved alignment, a mask with values ranging from 0.5-1 around the pump

and 0-0.5 covering a larger cylinder was applied to the map each iteration before alignment.
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Program Task description

e2import.py Raw data import

e2tomogram.py † Tomographic reconstruction

e2spt_tempmatch.py Reference-based particle picking

e2spt_tomoctf.py CTF correction

e2spt_extract.py † Subtomogram extraction

e2spt_sgd.py † Initial model generation

e2spt_refine.py † Subtomogram refinement

e2spt_tiltrefine.py † ∗ Subtilt refinement

Program Cores Walltime Iterations

e2import.py 1

e2tomogram.py † 12 9 2,1,1,1

e2spt_tempmatch.py 7

e2spt_tomoctf.py 2

e2spt_extract.py † 1 31

e2spt_sgd.py † 12 41 3

e2spt_refine.py † 12 181 3

e2spt_tiltrefine.py † ∗ 96 308 6

Table 5.1: CryoET workflow component runtimes. Symbols denote parallelism: * = MPI, †

= Thread. Note, e2spt_sgd.py is parallelized by batch, so running the program with a batch

size of 12 will use 12 threads.
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The final map was filtered by local FSC and sharpened using a 1D structure factor obtained

from a high-resolution single-particle structure of the purified AcrAB-TolC complex.

5.3 Results

5.3 Automated tilt series alignment and tomogram reconstruction

The first stage of the tomogram processing workflow is tilt-series alignment. Our method

uses an iterative landmark-based approach with progressive downsampling and outlier

elimination. It works well on a wide range of tomograms with or without fiducials and

without any human intervention.

The method begins with a coarse, cross-correlation based alignment of a downsampled

tilt series, and a rough estimate of the orientation of the tilt axis via common line methods.

The input tilt series are downsampled to 512x512 pixels irrespective of their original size

or sampling. Based on the coarse alignment, an initial tomogram is generated, despite the

likelihood of significant alignment errors, and 3D landmarks are selected from the resulting

volume to use in the next stage of alignment. These landmarks are simply the N darkest

voxels in the downsampled map, with a minimum distance constraint (Figure 5.1). When

fiducials are present in the data, they will tend to be selected as landmarks, as long as they

are sufficiently well-separated, but they are not explicitly identified as such.

Next, we begin the iterative alignment process. The alignment includes two steps:

refinement of landmark coordinates and optimization of the tilt images transforms. First, 3D

coordinates of the selected landmarks are projected back to the tilt series, and corresponding

2D patches are extracted from the tilt images. Local subtomograms are reconstructed from

the sub-tilt series of each landmark, to provide a more accurate center of mass for each.

Then, we re-extract 2D patches from the tilt images using the refined landmark positions,

and calculate the translational alignment that centers each landmark in each extracted 2D
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Figure 5.1: Results of iterative tomogram alignment and reconstruction. A. Cellular
tomogram of E. coli with gold fiducials. B. Selected landmark projections from A (left)
x-y plane; (mid) x-z plane after the first iteration of the iterative alignment; (right) x-z
plane after iterative alignment. C. Tomogram of purified apoferritin without fiducials
(EMPIAR-10171). D. selected landmark projections from C. E. Automatic tomogram planar
alignment. Left: (top) x-y slice (bot) x-z slice, both before alignment; right: after alignment.

Illustration generated by Muyuan Chen.
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patch. A global optimization algorithm is used to adjust the 3D tilt transforms such that

center of all landmarks in 2D patches match the projected coordinates of the landmarks to

the greatest possible extent. With these improved alignment parameters, a new tomogram

is generated with better alignment which is used during the next round of reprojection and

alignment. To improve convergence and increase the speed of alignment, we begin with

highly downsampled images and gradually increases sampling as alignment error decreases,

finishing with the unbinned tilt series in the final iteration. A specified fraction of the worst

matching landmarks is normally excluded in each iteration, and this is critical to obtaining

a self-consistent consensus alignment. In most tomograms it is convenient for slice-wise

visualization and annotation if the X-Y plane is parallel to the ice surface. We assume that

on average the landmarks will be coplanar with the ice, and rotate the tomogram to position

it flat using principal component analysis on the landmark coordinates (Figure 5.1 E).

Tomogram reconstruction is performed using direct Fourier inversion rather than real-

space methods such as filtered back projection [116] or SIRT [79]. Fourier methods have

gradually become the standard in single particle reconstruction, but due to the size of

tomographic volumes and concerns about edge effects and anisotropy, most tomography

software still uses real space methods [42, 142]. We have adopted a Fourier reconstruction

approach using overlapping tiles, which significantly reduces edge effects and memory

requirements, while still remaining computationally efficient. For convenience, the tile size

is defined by the reconstruction thickness, such that each tile is a cube. The overlapping

tiles are individually reconstructed, then averaged together using a weighted average with a

Gaussian falloff (Figure 5.2).

Although the tilt series alignment is performed using the original full-sized images, the

reconstructed tomograms are normally downsampled to provide sufficient resolution for

visual inspection, annotation, and particle selection, while dramatically improving interac-

tivity and decreasing system requirements. For subtomogram averaging, the particle data is
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Figure 5.2: Tiling strategy for tomogram reconstruction. (a) Reconstruction of individual
tiles. Each tile is padded to the size of the dashed box during the reconstruction, and clipped
to the size of the solid box. (b) Overlapping tiles to reduce edge effects. (c) Resulting by-tile
reconstruction.

Illustration generated by Muyuan Chen.
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automatically extracted from the original tilt images to take advantage of the full sampling

of the original data. The combined alignment and reconstruction algorithm is quite rapid,

typically requiring only ∼10 minutes on a 12-core workstation for full-resolution alignment

of a 60 image 4k x 4k tilt series with a 2k x 2k x 512 downsampled reconstruction. Since this

is comparable to the time required for tilt series acquisition, it would be feasible to include

this as an automated process during data collection.

As a test of this process, we reconstructed a cellular tomogram of e.coli over-expressing

tolc-acrAB.The improved alignment after this iterative process can be observed by comparing

the reconstructions of fiducials before and after the iterative process (Figure 5.1 A). Internal

cellular features are also clearly visible in the reconstruction. In fiducialless reconstructions,

the program usually chooses small pieces of ice contamination or other high-density objects

as landmarks (Figure 5.1 B). For fiducialless apoferritin data (EMPIAR-10171) [161], the

program produced high quality reconstructions where individual proteins were clearly visible

(Figure 5.1 B).

5.3 Multiple methods for particle localization

Earlier versions of EMAN2 included a graphical program for manually selecting 3D particles

using orthogonal slices [76]. In the latest version, this particle picking interface has been

reworked, enabling users to simultaneously select and visualize particles of multiple types

and different dimensions within each tomogram (Figure 5.3). Each type is then extracted

into a separate stack of 3D particles and accompanying 2D subtilt series, with the original

location metadata retained for later per-particle processing.

In addition to the manual 3D picking interface, two semi-automatic tools are provided for

annotation and selection. For purified macromolecules imaged by tomography, a template

matching algorithm can be used to rapidly locate particles. For more complex tomograms,

our convolutional-neural-network-based tomogram annotation tool [40] can be used to
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Figure 5.3: Particle extraction and initial model generation. A. Slice view of an E. coli
tomogram with particles of Tolc-AcrAB pump selected. B. Initial model generation
from Tolc-AcrAB pump particles. From the left to the right are density maps of
the initial seed, after 5 iterations with c1 symmetry, and after 5 iterations with c3
symmetry. C. A tomogram slice view of the flagellum of an anucleated Trypanosoma
brucei cell, with cyan circles selecting microtubule doublets, and pink circle selecting
ribosomes. (d) Initial model generated frommicrotubule (left) doubles and ribosomes (right).

Illustration generated by Muyuan Chen.
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identify features, followed by a second stage which converts annotations into subtomogram

coordinates. For globular particles like ribosomes, the program locates and centers isolated

annotations. For continuous structures like microtubules and protein arrays on membranes,

the program randomly samples coordinates within the set of annotated voxels, with a specified

minimum distance between boxes. The parameters of these semi-automatic tasks can then

be tuned by visualizing results in the manual particle picking tool.

5.3 Per-particle-per-tilt CTF correction

Accurate CTF measurement and correction is critical for obtaining high-resolution structures

through subtomogram averaging. The most commonly used method in tomographic CTF

correction is the simple tiled CTF correction of rectangular strips within each tilt series

[236]. This method is effective in getting past the first CTF zero-crossing when working

with thin layers of purified macromolecules; however, when working with cellular data or

other thicker specimens, the error in defocus due to the Z position of the particle within

the ice becomes significant and requires more accurate correction on a per-particle per-tilt

basis. In the new CTF estimation strategy, the entire tilt image is used to determine its

central defocus, by splitting the image into tiles and summing the information from the

entire image to estimate the defocus. To do this, we find the defocus value that maximizes∑
i(Si(pi, d+ xi sin(θ)), where xi is the x-position of the i

th tile (y is the tilt axis), θ is the

tilt angle, and Si(p,∆z) is the normalized dot product between a theoretical CTF curve with

defocus, ∆z and the coherent, background subtracted power spectrum, p, of the jth strip

of tiles parallel to the tilt axis. With this approach, the information in the full tilt image is

used to estimate one scalar value and achieve more robust defocus estimation in low SNR

conditions.

At high tilt, the SNR in an individual image is typically so low that even using all

information in the image is not sufficient to provide an unambiguous defocus estimation.
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Thus, for the higher tilts, only defocus values within three standard deviations around

the mean defocus of the low tilt images are considered. With this additional constraint,

reasonably accurate defocus values can be determined at high tilt.

After CTF determination, fully sampled CTF corrected subtomograms are generated

directly from the raw tilt series. Since we have the alignment parameters for each micrograph

in the tilt series and the coordinates of particles in the tomogram, we can extract per-particle

tilt series, which we henceforth refer to as a set of subtilts from 2D micrographs. The center

of each subtilt is determined by projecting the 3D coordinates of the particle using the

transform of the micrograph calculated from tilt series alignment, so each subtilt series can

be reconstructed to an unbinned 3D particle using the corresponding tilt image transforms.

From these defocus values at the center of each tilt, the defocus of each tilt for each particle

can be determined from the 3D location of the particle and the tilt-series geometry (Figure

5.4). After subtilt images are extracted from the tilt series, we flip the phase of each subtilt

according to its determined defocus before reconstructing the subtilt into CTF corrected 3D

subtomograms.

5.3 Initial model generation via stochastic gradient descent

In many cellular tomography projects, the identities of extracted particles are unknown

before subtomogram averaging. While it is possible to use catalogs of potential candidate

structures and exhaustively compare particles to each of these for purposes of identification

[25], there are many shortcomings to this approach, including the need for a complete

catalog, the problem of model bias, and the difficulty of handling complexes. An unbiased

approach would be to classify particles de-novo and generate independent initial models for

each class from the raw particles. Our previous subtomogram averaging method offered

several different strategies for handling this issue, as the failure rate was substantial. We

have now developed a stochastic gradient descent (SGD) based initial model generation
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Figure 5.4: Subtilt CTF determination. We measure CTF in each tilt image by tiling the tilt

images and calculating coherent power spectra along strips parallel to the tilt axis. These

power spectra and geometric information from the tilt angle and the 3D position of each

extracted particle are used to determine per-particle defoci, which are applied to particle

subtilt images for subsequent processing.
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protocol, which produces reliable initial models even from cell-derived particles.

SGD is an optimization technique widely used in the training of machine learning models,

which offers advantages in both speed and avoidance of local minima. We begin with an

effectively randomized map, produced by averaging a random subset of particles in random

orientations, lowpass filtered to 100Å. In each iteration, a batch of randomly selected

particles are aligned to the reference map, and a new map is generated. This new map is used

to update the reference using an adjustable learning rate. To avoid overfitting, the reference is

filtered to a specified resolution (usually 30-50Å) after each update. The alignment, average

and map update steps are repeated until the reference map converges to a consistent initial

model. As only a low-resolution initial model is needed, it is not critical that all particles be

used. The program can typically produce good initial models within 1 hour on a workstation.

In testing, this method has performed well for structures with very distinct shapes from

a variety of sources. This includes globular structures like ribosomes, linear structures such

as microtubules, and even double-membrane spanning proteins (Figure 5.3).

5.3 Subtomogram alignment and averaging

There are two stages in producing a final high-resolution subtomogram average: traditional

subtomogram alignment and averaging [77, 101] and per-particle per-tilt refinement. The

initial stage makes use of our existing subtomogram alignment and averaging algorithms

which automatically detect and compensate for the missing wedge [76]. The alignment

algorithm uses an extremely efficient hierarchical method, which scales well with particle

dimensions. The overall refinement process follows “gold-standard” procedures similar

to single particle analysis [98], in which even and odd numbered particles are processed

completely independently with unique, phase-randomized starting models, with a Fourier

shell correlation (FSC) used to filter the even and odd maps, assess resolution, and measure
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iteration-to-iteration convergence. In the second stage, rather than working with subto-

mograms, we work instead with subtilt series. When full frame tilt series are aligned, we

assume that each tilt is a projection of a single rigid body volume. With beam-induced

motion, charging and radiation damage affects the assumption that the specimen remains

globally rigid across a 1µm span with the largest acceptable motion below 10Å is an

extremely stringent requirement. Local deviations are common and can produce significant

misalignments of individual objects in individual tilts. To compensate for this resolution-

limiting effect, we have developed a strategy for refinement on a per-particle-per-tilt basis,

where the alignment and quality assessment of each tilt of each particle are individually

refined. Effectively this is a hybridization of subtomogram averaging approaches with

traditional single particle analysis. Some of these techniques are similar to those recently

implemented in EMClarity [99].

Our subtilt refinement procedure starts from an existing 3D subtomogram refinement,

preferably with a resolution of 25Å or better. Subtilt series for each particle were already

extracted as part of the CTF correction process above. The iterative refinement process is a

straightforward orientation optimization for each tilt image of each particle. All 5 orientation

parameters are refined independently per-particle-per-tilt. It is quite common for some

images in a tilt series to be bad, either due to excessive motion or charging. To compensate

for this, the quality of each tilt for each particle is assessed, and weighted correspondingly,

with the very worst excluded entirely. All of the realigned particles are used to compute a

new weighted average 3D map, which is then used for the next iteration of the refinement.

The subtilt refinement protocol significantly improves map quality and resolution for

purified samples in thin ice, where relatively little density is present above and below

each particle. In the EMPIAR-10064 dataset (purified ribosomes) [111], without subtilt

refinement, subtomogram averaging achieved 13Å “gold-standard” resolution (FSC>0.143)

using 3000 particles from 4 tomograms. With subtilt refinement, the resolution improved
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dramatically, to 8.5Å (Figure 5.5). In the averaged map, the pitch of RNA helices is clearly

visible and long α-helices are separated. We did not expect subtilt refinement to work well

in a cellular context, due to the presence of so much confounding cellular mass present in

each subtilt image. Surprisingly, we found that an in situ dataset of the double-membrane

spanning TolC-AcrAB complex in E. coli [57], reached 19Å in initial averaging, which

improved to 14Å resolution after subtilt alignment. We do not yet have sufficient test cases

to set expectations for how well subtilt refinement will work in any given cellular system,

but based on our preliminary studies, it may provide a significant improvement in a wide

range of experimental situations.

5.4 Discussion

The entire protocol outlined above has been integrated into the graphical workflow in

EMAN2.22 (e2projectmanager.py). This presents the process as a sequence of steps (Figure

5.6), and an online tutorial can be found at http://eman2.org/Tutorials. Graphical tools are

also provided for evaluating tomogram reconstructions and subtomogram refinements, which

are useful for managing projects involving a large amount of data. Unlike single particle

analysis where it is possible to transition data from other tools into EMAN2 at virtually

any stage of processing, the stringent requirements for all of the metadata generated at each

stage of processing make it challenging to, for example, import a reconstructed tomogram

from other software, then proceed. While some tools will be usable on imported data, such

as the Deep Learning-based annotation and simple subtomogram alignment and averaging,

the new approaches, such as subtilt refinement, are simply not possible unless the complete

EMAN2 pipeline is followed.

With per particle CTF correction and subtilt refinement, it is now relatively straight-

forward to achieve ∼10Å resolution using 1000-2000 particles from a few good tilt series.
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Figure 5.5: Subtomogram refinement. A. Subtomogram averaging of ribosome (EMPIAR-
10064) before subtilt refinement. B. Subtomogram averaging after subtilt refinement. C
Zoomed-in view of B with yellow arrows pointing to RNA helices and cyan arrows pointing
to α-helices. D. Gold-standard FSC curves of the ribosome subtomogram averaging before
(red) and after (blue) subtilt refinement. E. Subtomogram averaging of the tolc-acrAB drug
pump. F. Location and orientation of the drug pump particles mapped back to a tomogram.

This illustration was generated by Muyuan Chen. Rendering of density maps is performed with

UCSF ChimeraX.
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Figure 5.6: CryoET Workflow. A. Main workflow diagram. B. Workflow of tomogram

reconstruction. C. Workflow of subtomogram refinement and subtilt refinement.
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This method can also be used with phase-plate data, though the difficulty of collecting Volta

phase plate tilt series and determining per-tilt CTF parameters with continuously varying

phase shift is significant. While we do optimize both the defocus and phase shift, particularly

at high tilt, there is insufficient information available for simultaneous determination of both

parameters. Our suggested approach is to target 0.5-1µm underfocus with such tilt series,

to put the first zero in a range where correcting beyond the second zero is not necessary to

achieve slightly better than 10Å resolution. In this way locating the first zero accurately is

sufficient for subnanometer resolution.

One difficulty in subtomogram averaging in situ is masking and filtration of the averaged

map after each iteration of refinement. In the cellular environment, proteins of interest are

often surrounded by other strong densities and masking can have a strong impact on the

final achieved resolution. To address this issue, we introduce the option of masking the

averaged map with a large soft mask and filter it using the local resolution determined from

even and odd sub-maps. This allows us to keep high-resolution information of the protein of

interest for the next round of refinement and reduces misalignment caused by other densities

surrounding the protein.

The algorithmic improvements we have discussedmake it possible to perform data-driven

cellular-structural biology research with CryoET. Researchers can take tomograms of cells

or purified organelles, manually select a few features of unknown identity, and automatically

annotate similar features in the whole dataset. Reliable, de novo initial models of the features

of interest can be generated from raw particles without prior knowledge of the proteins. With

per particle CTF correction and subtilt refinement, averaged maps at 10-15Å resolutions

can be achieved in a matter of days (Table 5.1) with a few thousand subtomogram particles,

so one can make reasonable hypotheses of the identity and composition of the proteins

based solely on their structural features, and validate these hypotheses with biochemical

experiments. Furthermore, the position and orientation of each protein particle can be
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mapped back to the tomogram to study the organization of proteins in cells.
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Chapter 6

Future perspectives
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6.1 Introduction

In a famous talk given by Richard Feynman, the physicist mentioned, “It is very easy to

answer many of these fundamental biological questions; you just look at the thing!” [67].

This statement summarizes the core motive of the field of structural biology and particularly

cryoEM studies that examine the smallest components of biological systems and how they

work together to produce the incredible diversity and complexity underpinning life from

individual cells to multicellular organisms.

When Richard Feynman made this statement, electron microscopes were capable of

resolving features around 10Å in size. He proposed that problems in biology would be

significantly easier if electron microscope optics were improved 100 fold; however, this was

prior to the explosion in computing technology that took place in the 1970s, coinciding with

the dawn of cryoEM image processing.

With combined improvements in electronmicroscopes and computational image processing

over the past half-century, today’s high-end electron microscopes and state-of-the-art image

processing techniques make it possible to examine certain biological macromolecular

complexes at resolutions of 3Å and better [45]. Indeed, the field of cryoEM has come a long

way in a relatively short span of time, and the associated improvements have benefited the

field of biology across a breadth of subjects and scales.

In the 1950s, whole cells were examined [167]. In the 1970s, it became possible to

resolve repeating densities in the cell membrane [96]. In 2019, it is possible to resolve

side-chains within proteins that make up the repeats that can observed in cell membranes

[44]. We have reached and in many ways surpassed the predictions of Feynman and continue

to push the limits of what is possible with numerous exciting opportunities ahead.

Besides significant advances in technology, one of the greatest boons for the rapid

advancement of cryoEM methods and outcomes is the development of user-friendly and
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computationally efficient software that turns data into 3D electron density maps. Automated

pipelines have streamlined the reconstruction process to minimize user input and other time-

consuming bottlenecks in the process that limit the rate at which datasets can be analyzed

and processed to produce new biological insights.

My work has been heavily focused on ways to further automate and expedite workflows

in cryoEM to improve the quality of results and the rate at which results are obtained.

Specifically, I have worked on projects spanning all aspects of cryoEM data processing from

the drift correction of recorded frames to improving single particle analysis and subtomogram

averaging workflows. Below I summarize these contributions and discuss future directions

that I anticipate will enable end-users to study protein structures and interactions more

efficiently and effectively.

6.2 Motion correction

In chapter 2, I examined differences among trajectories calculated using global motion

correction algorithms. My examinations revealed that while local motion has its limits, it

yields results with higher resolution than traditional global approaches. I also examined

whether disagreement among local trajectories might correspond to a metric by which bad

micrographs and particles could be removed with a positive outcome that facilitated the

preservation of SSNR over a random baseline as particles were removed.

Nonetheless, much remains to be done in this area. The data I examined contained

fewer than 20,000 particles, so further research is necessary to determine whether removing

micrographs and particles according to this metric will ultimately influence the resolution

of cryoEM density maps. We have shown that closer examinations of trajectory data can

produce measurable differences and may improve map quality when tested on a larger

dataset. Likewise, with more particle data, it may be worth examining particles within
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various regions. Doing this may enable more precise removal of particles that negatively

contribute to the quality of reconstructions due to motion differences compared to adjacent

particles.

While my research tells us that algorithms can bias results depending on their parameters,

it does not indicate the physical causes of observed specimen motion nor suggest means

for correcting complex motions. Existing motion correction algorithms are capable of

compensating for specimen translation, but none currently account for observed out-of-plane

rotations or translations. In part, this is because such motions remain poorly understood

as we lack a complete understanding of the physical processes causing specimens to move

when exposed to the electron beam. One proposed hypothesis is that radiative-charging

of the specimen induces drum-like deformations of the vitreous ice layer [32]; however,

obtaining direct measurements of proposed ice-layer deformation is challenging, so this

hypothesis remains untested.

Because ice-layer deformations are believed to occur along the imaging axis, one hypoth-

esized means of measuring deformations is to measure defocus differences in early movie

frames. However, the expected magnitude of these shifts and the low SNR of each individual

movie frame present considerable challenges. Another possible approach is to measure

the deflection of the ice layer, which involves imaging 2D crystals and examining charac-

teristic shifts in the high-intensity spots visible in their Fourier transforms. Using a camera

with a sufficiently high frame rate, it may be possible to model the precise ice layer defor-

mation. These and other tests to better understand the physics of specimen motion during

image acquisition will benefit greatly from improved detector technology currently under

development.

In contrast to modeling specimen motion, research has been performed to identify

motion-reducing substrates for cryoEM [169, 189]. While amorphous carbon remains the

most common substrate material, gold substrates have been shown to dramatically reduce
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specimen motion [190]. Nevertheless, these substrates are dense and appear opaque between

grid holes. This presents a number of challenges for manual and automated data collection,

which commonly take advantage of the translucent properties of thin, carbon substrates and

grid hole edges to measure defocus. Besides gold substrates, a number of other materials

have been examined with varying degrees of success [205]. Moving forward, the relative

cost and ease of use of these substrate solutions will likely determine their adoption. In

the age of high-throughput cryoEM, technologies that facilitate rapid, inexpensive grid

production will likely outcompete more expensive grid technologies that naturally reduce

specimen motion. Computationally correcting for observed motion will likely remain the

most efficient, cost-effective means for maximizing data quality.

6.3 Single particle analysis

Single particle analysis (SPA) has become widespread in past decade; however, there still

remains room for improvement in the areas of automation and validation. In chapters 3 and

4, I discussed the single particle workflow in EMAN2 and some of the recent improvements

we have made that facilitate high-resolution structure determination. These improvements

are among many produced by developers in the cryoEM community in recent years. New

packages such as cryoSPARC [176] are under rapid development and making use of web-

based interfaces and distributed computing resources. Simultaneously, established packages

like RELION [112, 246] are receiving considerable attention. Figure 6.1 A depicts the

distribution of SPA software packages used to generate published maps over time.

In addition to image processing tools, automated data acquisition has become part of the

standard pipeline to obtaining structures with cryoEM [43, 115, 141]. Programs that control

microscopes from a local workstation and facilitate remote data collection are enabling more

images to be collected faster than ever before. Now it is possible to record images constantly,
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stopping only to transfer specimens.

Automated data collection tends to yield a percentage of bad micrographs, and users are

tasked with discarding these images prior to processing. To reduce the waste of microscope

and human time as well as the associated capital resources, future iterations of microscopy

automation tools would greatly benefit from more intelligent algorithms that determine

whether an exposure will provide sufficient detail and perhaps even contain a certain concen-

tration of samples.

Beyond software-side trends, examination of the hardware used to perform SPA reported

in the EMDatabank and EMPIAR, there is currently a strong bias toward FEI Titan Krios

instruments and Gatan K2 detectors (6.1 B-C); however, recently developed technologies

may disrupt this trend. For example, the recently developed JEOL Cryo-ARM 200 and

Falcon III integrating detectors are being used with increasing frequency. In the coming

months, the Gatan K3 camera will also enter the market and likely outcompete the Falcon

III with counting-mode and super-resolution detection and the highest frame rate available

to date. While it is currently necessary to choose between cameras with a large field of view

(such as the DE-64) or super-resolution electron detection (currently offered by the K2), it is

likely that subsequent generations of detectors will converge on solutions that offer high

frame rates with wide fields of view.

A continual concern among the cryoEM community is the lack of techniques to validate

published structures. Presently, the field relies heavily on a “gold standard” criterion in which

datasets are divided into two half sets and reconstructed independently [98]. Resolution

is then defined as the spatial frequency at which maps begin to deviate significantly from

one another, using a cutoff of FSC=0.143. While “gold-standard” methods reduce model

bias to a level sufficient for determining high-resolution structures, additional criteria are

being examined [231]. One recommended approach to validate maps while simultaneously

analyzing for protein heterogeneity is to bootstrap many reconstructions from subsets of the
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Figure 6.1: Trends in EMDatabank depositions∗. A. Software packages used to determine
structures deposited in the Electron Microscopy Databank (EMDatabank). Inset shows
the distribution of packages used from 2010 to 2018. B. Trends in electron microscope
brands used to determine structures deposited in the EMDatabank. Historically, FEI
and JEOL have been the primary manufacturers of electron microscopes used for
cryoEM. C. Trends in direct detection devices (DDD) used from 2013-2018, where the y
axis represents the number of deposited structures determined from a particular DDD camera.

∗These data from the EMDatabank were curated by the European Bioinformatics Institute (EBI,

https://www.ebi.ac.uk/pdbe/emdb/statistics_main.html).
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particle data [242]. This approach facilitates assigning confidence intervals to points along

an FSC curve; however, it requires considerably more time and computational resources.

Alternative techniques that use protein models to assign validation scores to maps show great

promise [160]; however, such techniques do not apply to intermediate and low-resolution

maps. The development of additional validation techniques will serve to enhance findings

across a wide range of resolutions.

6.4 CryoET and subtomogram averaging

In chapter 5, I described recent software development in the area of electron cryotomography

and subtomogram averaging. The latest EMAN2 workflow for cryoET spans the entire

process from aligning tilt series images to the final process of CTF corrected subtomogram

averaging. A single project may incorporate many tilt-series and tomograms, and all data

at each step of the process is organized using standard naming conventions so data and

metadata are preserved. While we provide a complete pipeline, data may be injected into

the process at any stage. For example, reconstructed tomograms may be imported instead of

tilt-series, but doing this may limit some processing options later in the pipeline. This new

pipeline increases not only the speed of tomogram analysis but also improves the quality and

resolution of the resulting 3D structures, permitting more effective studies of the increasing

numbers of cellular CryoET tilt series emerging from current generation instruments.

Whereas SPA is generally applied to studies involving purified samples, cryoET and

subtomogram averaging facilitate the extraction of 3D information about individual proteins

functioning within cells. One reason why cryoEM has become so popular in recent years is

because it facilitates near-native determination of protein structures. Trends in cryoET carry

this a step further by enabling protein visualization in conformations that are necessarily

related to their function within the context of the cell. CryoET is now on track to provide
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novel insights through state-specific localization of proteins throughout the cell.In the coming

years, there are exciting opportunities to incorporate the latest machine learning technologies

to extract more knowledge from cellular tomograms than ever before [40].

While the majority of cryoET data has been recorded using 4k x 4k CCD and DDD

cameras, a recently developed detector called the DE-64 by Direct Electron enables the

acquisition of 8k x 8k data without sub-pixel detection [148]. This presents microscopists

with a tremendous opportunity to image larger fields of view, and such large-array cameras

will be instrumental in deriving key functional insights from cellular tomograms. A larger

field of view facilitates the collection of more protein views per exposure, benefitting single

particle studies. Additionally, larger cellular regions can be studied, enabling insights to

be gleaned from individual cells that might be overlooked when using smaller detectors or

damaged when montaging tiltseries from adjacent regions.

One of the major hurdles remaining in cryoEM in general and particularly in the area of

in situ subtomogram averaging is sample thickness. In cases where samples are sufficiently

thin, there are a number of software options for converting subtomograms into 3D structures

[23, 39, 99]; however, it is increasingly common to study thicker specimens such as whole

cells. As thickness increases, fewer electrons are able to penetrate the sample and reach the

detector, causing projection images to appear darkest where the beam traverses the most

material and resulting in a significant amount of uninterpretable content within recorded

images.

Certain sample preparation optimizations that increase substrate hydrophilicity can

reduce sample thickness to a limited extent.[221]. Moreover, cells present a unique challenge

since thinning can introduce artifacts that counter their natural biological state. Prior studies

have lysed cells prior to imaging, but this strategy significantly disrupts the appearance

and behavior of the cell and its contents [74]. Another approach that has been used to

mechanically thin samples through cryo-sectioning during which a thin lamella is sliced
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away from a vitrified sample and imaged [5]. This is a challenging technique to master,

and it is prone to introducing compression artifacts along the direction the lamella is cut

[4], making it a suboptimal choice as we push toward increased automation. More recently,

however, cryogenic focused ion beam (cryoFIB) technology has been applied to cryogenic

samples with great success [240]. CryoFIB techniques reduce artifacts from cryosectioning

but are capable of producing thin lamella for imaging. While this reduces freezing and

compression artifacts, it erases portions of the cell above and below the lamella, limiting

what can be inferred from these data about intracellular interactions. Nevertheless, this

technology is currently the most effective and least artifactual solution available for thinning

specimens prior to imaging.

Since an increasing number of specimens fall into an intermediate-thickness regime,

the development of a compensatory algorithm would greatly enhance the interpretability

of tomograms and therefore the ability to glean more from new and existing datasets. One

strategy is to simulate the interaction of the electron beam and sample, treating the specimen

as a dispersive medium. However, such an approach would be highly sensitive to detector

noise and computationally very expensive, involving iterative wave propagation simulations

through large tomographic volumes. An alternative approach is to think of ideal TEM images

as precise, linear projections through the sample. Under this assumption, the theoretical

outcome of a 3D reconstruction should be directly proportional to the scattering potential of

the specimen. Then, any deviations from this proportionality would be due to amplitude loss

and could be computationally subtracted from the structure. If iterated, this approach could

technically enhance specimen contrast, but it would be limited in cases where the specimen

is so thick that multiple-scattering becomes a dominant effect.
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6.5 Conclusions

As structure determination by cryoEM becomes easier through procedural optimization, the

time required to obtain high-resolution insights into key biological structures will continue

to fall. In addition to continued improvements in sample preparation, imaging, and data

processing in the coming years [82], tools to automate the reconstruction of data directly off

the microscope will be developed. Certain software packages are already on a trajectory

toward this end [87, 121, 182]. However, whereas these programs run a set series of processes

on images as they are acquired, the optimal approach would be capable of making important

decisions throughout the data processing pipeline without human intervention.

Automation in cryoEM image processing has largely followed trends in machine learning

algorithms and its application in a wide variety of fields. These algorithms often outperform

humans at simple tasks and can be combined in sequence to perform more complex tasks in

which a series of decisions must be made [35, 117, 123, 178, 210, 214]. Taking advantage of

this, the next frontier in cryoEM is likely the development of complete processing pipelines

for data coming directly off the microscope.

This process is currently occurring within the SerialEM microscope control and data

acquisition platform, which facilitates automated motion correction as part of image acqui-

sition. However, many more tasks could be automated in this way and serialized, forming a

complete pipeline. Eventually, users might only need to select a small set of features from a

few recorded micrographs, and algorithms would work in sequence to locate, process, and

average together similar features identified throughout an entire dataset into one or more

structures. Moreover, it may be possible to use algorithms to identify features in electron

micrographs in an unsupervised way to further reduce human intervention. Such an approach

would be particularly useful in the area of cryoET, where we cannot possibly know the

breadth of features we might observe in any given cell.
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As such approaches develop alongside existing algorithms and workflows, we will

require even more computational resources. The field is already resource-intensive, requiring

hundreds of CPU/GPU hours to determine individual high-resolution structures. The avail-

ability of computing resources is growing rapidly and cloud-based computing resources such

as those provided by Amazon Web Services (AWS) are becoming increasingly affordable.

This shift in resources towards cloud-based computing has inspired development of new

tools that facilitate remote data processing without requiring labs to maintain independent

computing facilities [48, 49]. Over time, the field will increasingly rely on such resources,

though slower network transfer times would require solutions akin to Aspera, which is used

by EMPIAR [105].

In addition to the bottlenecks presented by certain computationally expensive steps,

sample preparation presents yet another bottleneck that ultimately determines the viability of

a cryoEM study. Research has been performed to characterize cryoEM grids using various

sample preparation strategies [84, 161, 162]; however, further research in this area would

greatly benefit the field. In particular, trying to understand the complex chemical and physical

interactions at play between various buffers and samples that govern behavior when vitrified

in liquid ethane would help biologists choose optimal buffers for their samples. Likewise,

the development of more effective grid and sample preparatory technologies that reduces

specimen thickness and minimizes specimen drift would bring more structural projects to

fruition.

Ultimately, increased automation is reducing the perceived complexity of a number

of tedious and challenging tasks required to turn cryoEM data into structural insights. As

the community grows, there will be an increased need for user-friendly software to turn

raw data into structures. Toward this end, the body of research outlined in this thesis has

focused heavily on improvements for cryoEM image processing and the streamlining and

automation of computational workflows. Contributing to the EMAN2 software suite during
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what has come to be known as the “resolution revolution” in cryoEM [120] has been exciting

and has taught me an incredible amount about the biological sciences and open-source

software development through the process. I encourage those new to the field to learn

programming skills alongside cryoEM imaging techniques to help the field progress toward

full automation.
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Appendix A

Nascent high-density lipoprotein

structure and variability

The research outlined in this chapter is unpublished.

168



A.1 Introduction

Cardiovascular disease (CVD) remains a leading cause of mortality worldwide [21]. Current

pathophysiological models suggest that CVD is largely due to arterial plaque formation

resulting from a physiological imbalance between plasma low-density lipoproteins (LDL)

and high-density lipoproteins (HDL). Since HDL and its precursors, apolipoprotein A-I

(apoA-I) and nascent HDL, are known to remove excess cholesterol from arterial walls

via Reverse Cholesterol Transport (RCT), these subjects represent a logical target for the

development of disease biomarkers and pharmaceuticals [156].

Based on the biological role of HDL and the inverse correlation between naturally

occurring HDL levels and CVD, it was speculated that raising HDL levels would reduce

CVD risk [88, 137]. A number of drugs have been developed to modify various stages of

the RCT pathway; however, therapeutic modification of RCT has shown little to no effect,

particularly in the context of statin co-therapy [109]. On the other hand, recent studies have

identified inverse correlations between the cholesterol efflux capacity of patient-derived

HDL and their CVD risk [24, 110, 180], suggesting that HDL function may be a stronger

predictor of CVD than measured HDL cholesterol levels [159]. Growing evidence suggests

that structural differences among HDL subfractions are related to the metabolic function of

HDL [78, 85, 135, 183, 226].

Since the early 1970s, the structure of HDL has been examined using biophysical methods

ranging from circular dichroism (CD) [102], fluorescence resonance energy transfer (FRET)

[124–126, 139, 223], X-ray crystallography [28], small angle x-ray scattering (SAXS)

[211], molecular dynamics (MD) simulations [107, 114, 203, 207, 234], and numerous other

biochemical and biophysical experiments [30, 47, 52, 68, 80, 168, 204, 209, 219]. Most prior

analyses have focused on deriving a singular, static structure of HDL, resulting in models

such as the “double-belt” [200, 201, 230], “twisted-belt” [211], and “solar-flares” [235]
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conformations. Each of these models generally describes HDL as a cholesterol-enriched

lipid bilayer that is circumscribed by anti-parallel dimers of apolipoprotein A-I (apoA-I,

Figure A.1 A) [33, 46, 53, 86, 114, 202, 220]. As the diameter of HDL increases, it is known

to recruit more apoA-I [140]. The number of apoA-I dimers present in a given particle is

related to its circumference by NapoA−I = πDHDL/lapoA−I , where DHDL is the diameter of

the HDL particle, and lapoA−I is the length of ApoA-I [157]. Hence, large HDL particles can

accommodate proportionately more apoA-I dimers than smaller particles (Figure A.1 B).

Single particle electron cryomicroscopy (cryoEM) experiments performed on large,

reconstituted HDL have shown that at least one class of HDL particles possess a purely

circular cross-section in agreement with the “double-belt” model [157] (Figure A.1 C). The

structure of naturally-occurring nascent HDL (nHDL) is thought to resemble reconstituted

HDL (rHDL) particles in shape, but size-exclusion chromatography (SEC) data show that

the size of such particles is relatively smaller [136].

In this appendix, I examine 2D projection images of individual HDL particles in solution

and measure their size and shape distributions. I also determine a low-resolution structure

of nHDL using the 3D subtomogram averaging workflow outlined in chapter 5 and compare

my results with the 2016 structure of rHDL solved by Murray, et al. Overall, my findings

enhance our understanding of the structural similarities between nHDL and rHDL. These

data also display the morphological diversity of protein-lipid nanodiscs formed using

apoA-I membrane scaffolds, which have become an important tool for membrane protein

research. Ultimately, these insights may guide future experiments that examine how structural

differences among nHDL relate to its cardioprotective role.
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Figure A.1: High-density lipoprotein structure. A. HDL consists of two belts of

apolipoprotein A-I (apoA-I) surrounding a central lipid bilayer with cholesterol molecules.

Based on the length of apoA-I, a particle containing two stacked apoA-I would have a

diameter of∼9.6nm and a thickness of∼4.5nm, corresponding to the thickness of a biological
membrane. B. Multiple sizes of HDL have been observed. C. Prior cryoEM studies have

determined the structure of large-diameter reconstituted HDL particles. These particles have

the expected thickness of ∼4.5nm and a diameter of ∼36nm.
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A.2 Methods and analysis

A.2 Sample preparation and imaging

Nascent HDLwas obtained following a published protocol [136]. BHK cells over-expressing

ATP binding cassette transporter A-I (ABCA1) were incubated with 2.5mM cholesterol-

loadedmethyl-β-cyclodextrin (CDX) for 2 hours. Assays for total cell protein, free cholesterol

(FC), and total cholesterol (TC) showed an increase in cellular FC content from 29± 2 to

42± 6 µg FC/mg cell protein [237]. nHDL was purified from BHK-ABCA1 cell media, and

Native PAGE gel electrophoresis and analytical SEC over a Superose 6 column were used

to determine the molecular weight of the purified constructs at ∼500kDa. SEC was also

used to separate nHDL sub-fractions, and two adjacent aliquots of large-diameter nHDL

were pooled and combined for cryoEM imaging and analysis (Figure A.2 A).

Purified nHDL was prepared for imaging on Quantifoil holey carbon-film 200 mesh

copper TEM grids (R1.2/1.3µm). Grids were glow discharged for 40s before application of

3µL of nHDL. The samples were brought to ∼ 27◦C before being plunge-frozen in liquid

ethane at using a Leica EMGP. Prior to freezing, the specimen chamber was brought to 99%

relative humidity, and grids were blotted with filter paper on the specimen-side for 1s prior

to vitrification.

Electron micrographs were collected at 77K on a JEOL JEM2100 at 40k magnification

(2.8Å/pixel) using a 70µm condenser aperture, a spot size of two, 60µm objective lens

aperture. Images were recorded using a Gatan US4000 4k x 4k CCD detector (Figure A.2

B). Tilt series were also manually recorded from −50◦ to 50◦ in 5◦ increments using the

same imaging conditions. Cumulative electron dose for these manual tilt series totaled

∼ 180e−/Å
2
.
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Figure A.2: Nascent high-density lipoprotein purification, imaging, and measurement. A.

nHDL was analyzed via size-exclusion chromatography over a Superose-6 column (blue).

A high-concentration aliquot containing large diameter particles was pulled for analysis

and imaging (orange). B. A representative electron micrograph of nHDL showing discoidal

features in a variety of orientations. Side and top views are shown at the bottom. C. (top)

Scatter plot showing measured major and minor axis lengths of ellipses fit to nHDL particles.

Images at top right depict my shape fitting approach. Histograms describe the marginal

distributions of major (lower left) and minor (lower right) axis lengths.
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A.2 Measuring HDL size and shape distributions

Individual particle dimensions were measured by fitting an ellipse to disc-like objects

in micrographs. I hypothesized that HDL exhibits measurable structural differences in

solution, and this approach allowed us to measure morphological properties of individual

particles without averaging potentially dissimilar structures. To distinguish between major

and minor axis measures, I assigned the major axis label to the longest measured axis length,

i.e. xmajor = max(x1, x2), implying xminor = min(x1, x2). Ellipse axis measurements were

plotted for analysis (Figure A.2 C), and themean and standard deviation of axis measurements

were calculated to quantify the variability of particle size and shape.

The mean major axis length of nHDL projections was 19±4nm, though there is a slight

skew toward higher major axis lengths. There is also a clear correlation between major

axis length and minor axis variability. While this does not tell us that particles are precisely

round, it does indicate a discoidal geometry. Beyond this, it is possible to obtain information

about bilayer thickness from the minimum values measured for the minor axis. Using the

average of the smallest 5% of minor axis measurements for nHDL and rHDL to robustly

approximate membrane thickness, I find that nHDL and rHDL particles are 4.5nm thick,

which is consistent with the thickness of many natural bilayer membranes and that of rHDL

determined in the analysis by Murray, et al.

Additionally, from the maxima of the major axis distributions, we can infer details about

the largest particle sizes present in solution. Again taking the top 5% of measured major

axis measurements, I found that the largest nHDL particles are 29.5± 1.8nm. Comparing

my SEC data against that from the Murray study, one would expect these nHDL particles to

be approximately 14.5nm, which is closer to the mean value of my measurements than the

maximum. This inconsistency suggests the presence of a variety of particle diameters that

are expected when using a technique like SEC for purification. However, from these data, it
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is not clear whether particle size differences are continuous or discrete.

The broad variation observed in both major axis distributions likely stem from a combi-

nation of multiple particle sizes, geometric differences between particle projections and

the ellipse used to fit particle intensity, and measurement errors when fitting an ellipse

to each particle. Major and minor axis measurements couple together a complex set of

particle parameters including orientation (Az, Alt, and Phi), thickness (τbilayer), and the

actual major and minor axes of each particle. Decoupling these features requires additional

3D information.

A.2 3D analysis via cryoET

To obtain 3D information about HDL particles, I also collected cryoET data, which produces

(incomplete) 3D information for each HDL particle by computationally combining tilted

views of each individual particle. For these experiments, nHDL was examined following

the purification steps described above. At the time of image acquisition, automated tiltseries

acquisition software had not been installed, so all recorded tilt images were obtained via

manual stage tilting and alignment using a minimal dose strategy (MDS). The coarse 5◦ tilt

increment used for these experiments was too large for high-resolution analysis, but it is

sufficient for analyzing low-resolution structural features.

Initial tomographic reconstructions were performed using IMOD; however, I obtained

significantly better alignments using the latest tomographic reconstruction techniques in

EMAN2 (see chapter 5). Figure A.3 A shows representative aligned tilt images produced

when running e2tomogram.py using the default refinement parameters and a tilt step of

5◦. From the resulting tomograms, I was able to extract HDL particles (Figure A.3 B-C)

and obtain geometric insights from the average cryoEM density map of the corresponding

subtomograms.

Seeking a 3D subtomogram average consistent with at least a subset of the particles
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extracted, I boxed over 500 discoidal features from two reconstructed tomograms with

thickness consistent with that of a lipid bilayer. I applied CTF correction to these particles

using the depth-aware procedure described in chapter 5. Because these discs possess little

high-resolution detail, I manually generated a discoidal initial model with dimensions similar

to those observed in the raw cryoET data. This model was low-pass filtered to 100Å and

used as a starting reference for 3 iterations of subtomogram alignment and averaging using

the default parameters in EMAN2.

This processing yielded a low-resolution, disc-like map with small densities protruding

around the edge of the disc at ∼ 58Å resolution (Figure A.3 D). Examination of the map

at low isosurface threshold and the individual particles contributing to this subtomogram

average led us to test whether the protruding densities might be due to tiltseries misalignment.

To address this possibility, I performed 5 iterations of subtilt refinements using the procedure

described in chapter 5 (Figure A.3 E). In the final map, I retained only 20% of particles based

on their self-consistency. While this reduced signal, it improved map quality by excluding

particles with inconsistent size and shape. My final reconstruction resulted in a disc-like

structure with a diameter of ∼20nm and a thickness of ∼5nm. This cryoEM density map

shows a similar protruding density to that obtained using standard subtomogram averaging;

however, because of the low resolution of ∼55Å I obtained, interpretation of this density

would be speculative. During this processing, I examined the effect of using my final subtilt

structure as a refined initial model for another round of standard subtomogram alignment

and averaging, but the resulting map did not change in response to this perturbation.

A.3 Discussion

In the single particle study by Murray et. al, over 4000 particles were averaged in the final

map. Analysis of these particles revealed the presence of a range of particle sizes, which
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Figure A.3: CryoET of nascent high-density lipoprotein. A. Representative images from

aligned tilt series. B. nHDL subtomogram boxing. C. 2D projections of a subset of extracted

subtomograms. D. nHDL structure computed from the most self-consistent 20% of particles

via standard subtomogram averaging E. nHDL structure refined using subtilt methods and

reconstructed using the most self-consistent 20% of particle data.
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is consistent with the application of SEC for particle purification. Rather than averaging

potentially dissimilar particles through single particle analysis procedures, I analyzed the

morphologies of individual HDL particles, seeking a more effective measure of the dynamic,

heterogeneous nature of HDL particles in solution. These measurements revealed details

about the mean and maximum particle diameters as well as the thickness of nHDL, which

were similar to those observed in previous cryoEM studies of rHDL.

Calculations revealed that the 36nm discs studied by Murray et al. contained 8 apoA-I

monomers per disc, each covering 25% (30nm) of the circumference (113nm), consistent

with previous reports [204]. The thickness of their structure was roughly 4.5nm, consistent

with that of synthetic bilayer membranes [14]. In comparison, my 20nm discs are roughly

half the size of Murray et al.’s rHDL with a circumference of 62nm, which can accomodate 4

apoA-I. The measured particle thickness of 5nm is slightly higher than their measurement of

4.5nm; however, the lipid species present in the nHDL examined in the current study were

varied and did not consist of synthetic lipids such as DMPC. Given this, the differences in

my measurements are generally consistent with the known difference between the thickness

of natural bilayer membranes [118].

In addition tomakingmeasurements of individual particles, I also performed 3D tomographic

analysis of nHDL in solution in an attempt to extract 3D structural insight without averaging

large numbers of dissimilar particles. The structure I obtained reveals the consistency

between nHDL and rHDL particles and exhibits undulating densities, possibly related to

properties and dynamics of the lipid bilayer; however, higher resolution details are required

to properly model this observation.

Structural resolutions when studying lipid-protein HDL systems tend to be limited by

variations in the material at the core of the particles, making a high-resolution structure

improbable, since this is the bulk of the mass. In addition to this confounding factor, the

low particle count used in my 3D reconstruction experiments, as well as the lack of a
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range of defocus values for each tiltseries, contribute to the lower resolutions achieved here.

Nevertheless, my structural findings constrain the dimensions of this set of nHDL particles,

revealing a membrane thickness and overall morphology that is consistent with that of rHDL.

A.4 Conclusions

Taking advantage of the latest tomography software, my work has sought to identify the

population-wide variability of HDL size and shape by assessing individual instances and

comparing them to bulk observations. Furthermore, I have examined nHDL via cryoET and

subtomogram averaging, providing additional evidence for the 3D morphology of nHDL

by averaging a small number of particles that are highly similar in size and shape. These

structural findings reveal the similarity of nHDL particles with rHDL, their synthetic analogs.

Broadly, my findings enhance our understanding of how amphipathic helices interact

with biological membranes. Since particle geometry is governed primarily by protein-lipid

interactions, my measurements relate directly to energetic barriers governing the system.

Future research in this area will enhance our understanding of how amphipathic helices

interact with biological membranes, which will break new ground in our understanding of

HDL in vivo, the interactions of amphipathic peptides with lipid bilayers, and the engineering

of repurposed nanodiscs for a variety of biological relevant purposes.

Nanodiscs have been shown to solubilize membrane proteins and exchange cargo with

biological membranes. Such particles are now widely used in basic science research,

facilitating analysis of never-before-studied membrane proteins and membrane protein

complexes [19]. Whereas detergent-solubilized proteins may no longer conform to their

natural, biologically-relevant structures, proteins extracted entirely within their native lipidic

environment are often able to retain much of their in vivo function [54]. Understanding the

influence of lipid composition and scaffold protein makeup on individual particle structure
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would facilitate greater control over membrane proteins studied using nanodisc technology.

In relation to this topic, my characterization of HDL particle morphology provides evidence

that structural studies relying on nanodiscs might benefit from more stable membrane

scaffolds that accommodate less variable lipid and protein content than wild-type apoA-I.

My experiments offer a unique structural perspective on nHDL. My hope is that this

analysis directs the conversation about HDL structure away from consensus models and

toward a broader view of the highly variable biophysical system. Knowing this, future

research should be performed to garner insights about how this variability influences the

in vivo function of HDL and its cardio-protective role in RCT. If theHDL-function hypothesis

remains supported by evidence from pharmaceutical trials, then biomarkers to quantify

dysfunctional HDL will be in high demand [91]. Toward this end, taking a more dynamical

perspective on HDL structure may improve the rational design of CVD treatments and help

guide the selection of the next generation of biomarkers and preventative measures for CVD.
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