Data Storage Roundtable

Steven Ludtke, Session Chair
Professor, Department of Biochemistry and Molecular Biology
Baylor College of Medicine, Houston

Grant Jensen

Professor, Department of Biology California Institute of Technology, Pasadena

David Mastronarde

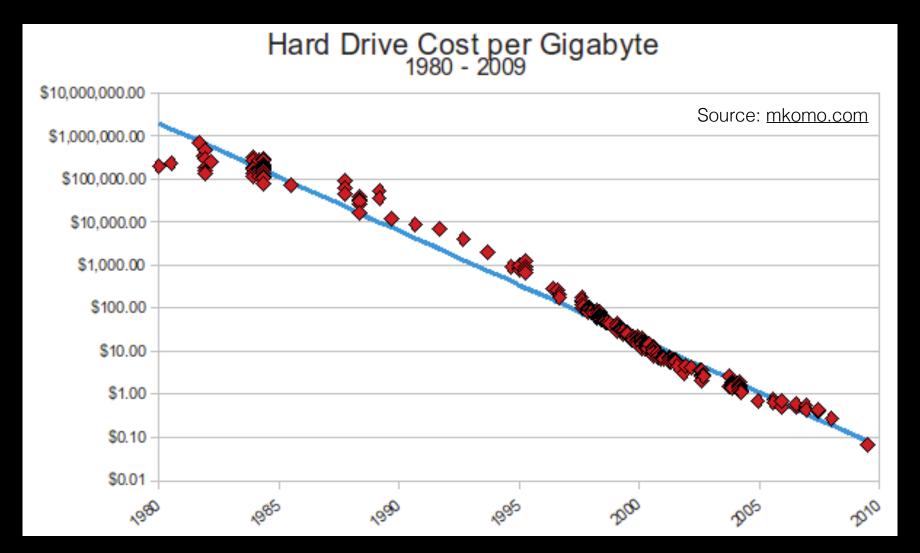
Associate Professor Department of MCD Biology University of Colorado, Boulder

Roberto Marabini

Escuela Superior Politécnica Superior Universidad Autónoma de Madrid, SPAIN

Ardan Patwardhan

Senior Scientific Officer, Protein Data Bank in Europe European Bioinformatics Institute, Cambridge, UK


Storage Issues

- Quantity of Data (10 TB 10 PB)
- Data Bandwidth
- Reliability/Redundancy
- Cost
- Tomography vs High Resolution Movies
- Central archives/databases

Quantity of Data

- 8x x 8k super-resolution counting movie, 30 frames
- 2 gigapixels/per movie
- typically only a few counts per pixel per frame
- 4 bits -> 1 GB movie (plus 256 MB periodically)
- 32 bits -> 8 GB movie
- Compression (slow, but saves even more space)
- Krios+K2 assume 0.5 1 TB/day

Cost Over Time

On average storage cost falls 2x every 14 months! Most enterprise drives have 5 year warranty

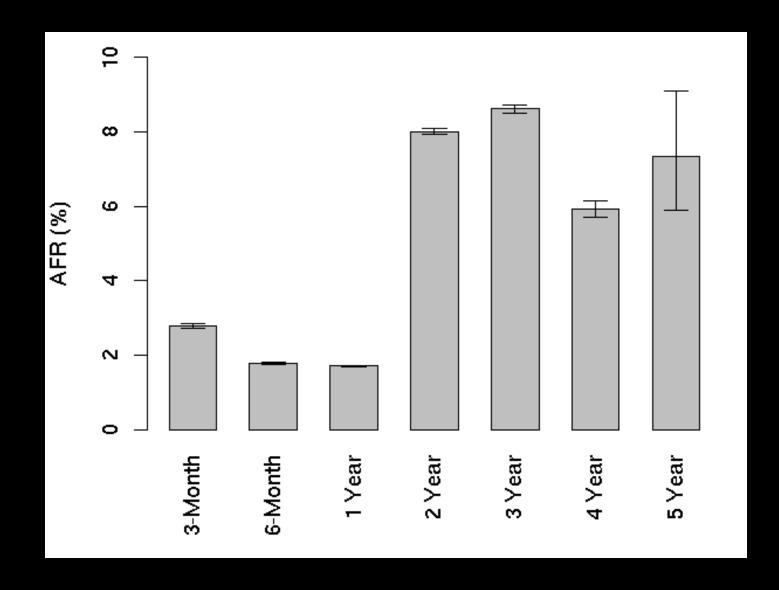
How Much Speed do You Need?

- Xeon E5-2697v2
 - ~500 GFlops
 - ~200 GOps
 - 100 GB/sec memory bandwidth

- @100 MB/sec:
 - 5000 Flops/byte
 - 2000 Ops/byte

If a job processes 10 GB of data and takes 1 hour to run, should you worry about I/O speed?

How about a job where processing 10 GB of data takes only 10 seconds?


Interface Data Bandwidth

	Speed (GB/sec)	Time to Transfer 4 TB
USB2	0.04	28 hours
Gigabit Network	0.1 (0.125)	11 hours
USB3	~0.3	3-4 hours
SATA	0.3, 0.6, 1.2	1-3 hours
10Gb Network	1.0 (1.25)	1 hour
Thunderbolt 2	2.0	30 min
Infiniband	1.0-4.0	15 min - 1 hour
PCIe 3.0	~1.0/channel ~16.0 max	~4 min

Drive Data Bandwidth

	Speed (GB/sec)	Max Size
2.5" Spinning Platter	0.06	2 TB
3.5" Spinning Platter	0.1-0.2	8 TB
2.5" SSD	0.3-0.6	2 TB (16 TB)
RAID (striping)	1.0-1.5 Typ 3.0+ Possible	~80 TB/Array
PCIe/m.2 SSD (\$\$\$)	~2.0 Typ 4.0-6.0 Possible	~1 TB

Annual Failure Rates

Backup Concepts

- Offsite!
 - In case of physical disaster (hurricane, flood,...)
 - Have to arrange for space in another facility
 - Bandwidth available ?
- Duplicate hardware with 2nd copy
 - "Batch" problems with hardware
 - Hackers (intentional destruction of data)
 - Double the cost
- "offline" storage
 - Drives on a shelf Human effort & "exercising"
 - Tape libraries Human effort or robot? 2.5 TB tape ~\$80

56 TB - an Example

Workstation with 8-bay chassis + PCIe RAID controller

Cost w 5/3 year warranty ~\$4000 —> \$1.20/TB-month (+comp) ~1.3 GB/sec, and is also a computer!

Workstation cost +~\$10,000 28 Cores, 2.6 Ghz, 128 GB RAM, GPU

(Note that this machine can be cheaper. This configuration permits up to 4 GPUs. Beware companies that sell or lease you 'threads' or 'virtual cores' as 'cores'. NOT the same!)

Advantages: Fast, movie processing! Disadvantages: Expandability

80 TB - an Example

12 Bay Synology - \$1300 12x 8TB He8 Drives - \$6000

RAID6 -> ~80TB
Cost w 5 year warranty:
 ~\$7300 —> \$1.52/TB-month

~0.1 GB/sec (network limited)

Advantages: Reliable, Easy, Quiet, Cheap

Disadvantages: Slow

540 TB - an Example

1x4U computer with 36x 8TB drives (\$24,000)+
1x4U 44x 8TB drives JBOD Chassis (\$26,000)
Configured as 6x RAID6 volumes —> 540 TB usable
~1.5 GB/sec I/O to the attached computer

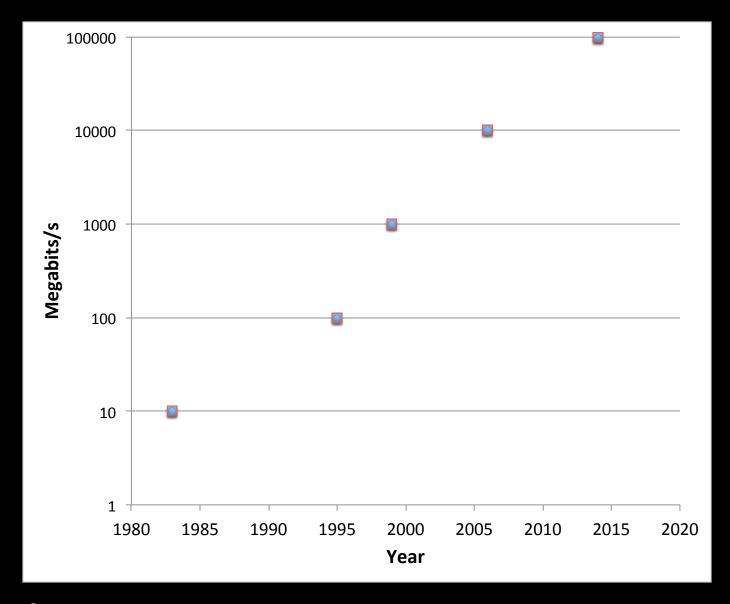
Cost w 3/5 year warranty ~\$50k —> \$1.54/TB-month x5 —> 2.7 PB/rack (usable)

Advantages: Inexpensive, Fast, Includes Computing Disadvantages: Management, Housing/Noise Ludtke, 4/2016

Cloud Storage?

Amazon (S3):

- Standard Storage: \$29.50/TB-month
- Infrequent Access: \$12.50/TB-month
- Glacier Storage (backup): \$7/TB-month


+

Download cost:

• \$50/TB

Advantages: Safe & Reliable, Access to EC2 Disadvantages: Slow Access, Expensive, Legal Issues

Network Bandwidth

On average network bandwidth doubles every 27 months Capacity doubles every 14 months!

Hidden Costs?

With second unit for backup —> \$100k (total)

Administration costs

- Sysadmin \$60-80k/year
- Amazon storage also needs to be locally managed!

Housing Costs (?)

- Depends on circumstances
- 1/5 Rack @coloc ~\$20k for 5 years

Fractional Usage

 If you buy all at once, but gradually fill over lifetime, effective cost goes up