CTF Correction, FFTs and Model Bias

4CAA

4CAA

4CAA

No CTF Corr (1 defocus)

No CTF Corr (1 defocus)

No CTF Corr (1 defocus)

Phase Flipped (1 defocus)

Phase Flipped (1 defocus)

Phase Flipped (mult defocus)

4CAA in 2D

No CTF

CTF Amp

Amp \& Pha

Fourier Transforms (FFT)

ANY function $f(x)$ can be represented exactly as a sum of $\sin ()$ functions with specific amplitudes and phases.

Fourier Representation

FFT

FFT of a Square Pulse

FFT of a Square Pulse

FFT Image demo

Real

FFT Amplitude

FFT Image demo

Real

FFT Phase

FFT Image demo

Real

Full FFT
(Phase in Color)

FFT Image demo

Real

Full FFT
(Phase in Color)

FFT Image demo

Real

Full FFT
(Phase in Color)

FFT Image demo

Real

Full FFT
(Phase in Color)

Resonance

- LC circuit (radio tuner)
- Musical instrument
- Harmonic oscillator

Single Slit Experiment

Single Slit Experiment

$$
e^{i k x}=e^{i 2 \llbracket x / \boxed{区}}
$$

Single Slit Experiment

$$
e^{i k x}=e^{i 2 \llbracket x / \boxed{区}}
$$

Single Slit Experiment

phase shift $=\frac{d}{E x}=\frac{y \sin \sqrt{x}}{\boxed{W}}$

Test Image

Image Filtration Gaussian Lowpass

Image Filtration Sharp Lowpass

Image Filtration Sharp Lowpass

Image Filtration Butterworth Lowpass

Image Filtration Gaussian Highpass

Deconvolution

Deconvolution

Deconvolution

From Discrete valued image

CTF Correction

$$
\begin{aligned}
& \text { Measured Image } \\
& \qquad \begin{aligned}
\bar{M}(s, \theta) & =\bar{F}(s, \theta) C(s) E(s)+\bar{N}(s, \theta) \\
C(s) & =\sqrt{1-Q^{2}} \sin \gamma+Q \cos \gamma \\
\gamma & =-\pi\left(\frac{1}{2} C_{s} \lambda^{3} s^{4}-\Delta Z \lambda s^{2}\right) \\
E(s) & =e^{-B s^{2}}
\end{aligned}
\end{aligned}
$$

CTF Correction

$$
\begin{aligned}
\bar{M}(s, \theta) & =\bar{F}(s, \theta) C(s) E(s)+\bar{N}(s, \theta) \\
C(s) & =\sqrt{1-Q^{2}} \sin \gamma+Q \cos \gamma \\
\gamma & =-\pi\left(\frac{1}{2} C_{s} \lambda^{3} s^{4}-\Delta Z \lambda s^{2}\right) \\
E(s) & =e^{-B_{s^{2}}}
\end{aligned}
$$

Spatial Freq. (1/A)

Spatial Freq. (1/A)

CTF Correction

$$
\begin{aligned}
M(s, \theta) & =\bar{F}(s, \theta) C(s) E(s)+N(s, \theta) \\
C(s) & =\sqrt{1-Q^{2}} \sin \gamma+Q \cos \gamma \\
\gamma & =-\pi\left(\frac{1}{2} C_{s} \lambda^{3} s^{4}-\Delta Z \lambda s^{2}\right) \\
E(s) & =e^{-B_{s}^{2}} \\
N(s)^{2} & =n_{1} e^{n_{s}+n_{s}+2 n_{4} \sqrt{s}} \\
M(s)^{2} & =F(s)^{2} C(s)^{2} E(s)^{2}+N(s)^{2}
\end{aligned}
$$

CTF Correction

- Maximize SNR of $T(s, \theta)$
- Minimize RMSD between T and F

$$
\sqrt{\sum_{x, v}(t(x, y)-f(x, y))^{2}}
$$

CTF Correction

Wiener
Filter

CTF
Correction

SNR
Weight

$$
\bar{T}(s, \theta)=\frac{F^{2}(s) R(s)}{1+F^{2}(s) R(s)} \sum_{i} \frac{1}{C_{i}(s) E_{i}(s)} \frac{R_{i}(s)}{R(s)} \bar{M}_{i}(s, \theta)
$$

$$
R_{i}(s)=\frac{C_{i}^{2}(s) E_{i}^{2}(s)}{N_{i}^{2}(s)}
$$

$$
R(s)=\sum_{i} \frac{C_{i}^{2}(s) E_{i}^{2}(s)}{N_{i}^{2}(s)}
$$

CTF Correction

$$
\left.\bar{T}(s, \theta)=\frac{F^{2}(s) R(s)}{1+F^{2}(s)(R(s))} \sum_{i}^{\text {Wiener }} \frac{\begin{array}{c}
\text { CTF } \\
\text { Correction }
\end{array}}{} \begin{array}{c}
\text { SNR } \\
C_{i}(s) E_{i}(s) \\
\text { Weight }
\end{array}\right) \frac{R_{i}(s)}{R(s)} \bar{M}_{i}(s, \theta)
$$

Note that this factor depends on ALL of the data and means you cannot 'precorrect' the data then do a reconstruction. You can phase-flip in preprocessing, but Wiener filtration and weighting depend on having all of the data at once.

Spatial Freq. (1/A)

Spatial Freq. (1/A)

Spatial Freq. (1/A)

CTF Correction

$$
\begin{aligned}
M(s, \theta) & =\bar{F}(s, \theta) C(s) E(s)+\bar{N}(s, \theta) \\
C(s) & =\sqrt{1-Q^{2}} \sin \gamma+Q \cos \gamma \\
\gamma & =-\pi\left(\frac{1}{2} C_{s} \lambda^{3} s^{4}-\Delta Z \lambda s^{2}\right) \\
E(s) & =e^{-B_{s}^{2}} \\
N(s)^{2} & =n_{1} e^{n_{s}+n_{3} s^{2}+n_{4} \sqrt{s}}
\end{aligned}
$$

$$
M(s)^{2}=F(s)^{2} C(s)^{2} E(s)^{2}+N(s)^{2}
$$

8 Parameters

$\Delta \mathrm{Z}$ - Defocus

Q - Amplitude Contrast
B - Gaussian Envelope Width k - Signal Amplitude
n_{1-4} - Noise Parameters

