## Revisiting the description of Protein-Protein interfaces.



F. Cazals, INRIA Sophia-Antipolis
J. Janin, CNRS / Univ. Orsay; Applications
F. Proust, INRIA Sophia-Antipolis; Visualization

### Modeling interfaces and Non-Covalent contacts

- Crystals and interfaces
  - ⇒ specific vs (non) specific (crystals) contacts Monomeric/Multimeric (homo, hetero) status
  - ⇒ Permanent vs Transient [e.g. Enz. Inh. vs Enz. Subs.]
  - ⇒ Evolution (conserved residues, hot spots)
- ▶ Interfaces: General principles?

What is necessary to build a stable protein interface? What part of a protein may form an interface?

Analytical view

Calibrating statistical potentials

Docking / Folding (Flexibility, (De)-Solvation,...)

Defining patches for docking

Protein engineering

Deriving structures

(NMR, Crystallography, Homology modeling)

#### Previous work

▶ Parameters (J. Janin, J. Thornton, S. Wodak, ...):

Buried SAS area BSACounts: #atoms, #residues, #pairs Planarity, Geometry of the core/rim Packing properties (buried atoms!!!) Patches: number, geometry

Chemical composition (atoms / residues)

▶ Interface and accessibility

Interface: atoms loosing accessibility in  $A \cup B$ Buried Surf. Area:  $BSA = SAS(A) + SAS(B) - SAS(A \cup B)$ 

Interface and contacts pairs of atoms within a threshold

Methodological contributions

R. Wade (96) Herbert E. (04)

Contributions:

Reconciling all these notions using a single DS Providing new (local/global insights)

#### Interfaces: coherent description?

- atoms loosing SAS vs atoms' pairs?
- connected or not? simply connected?
- ▶ flat or curvy?
- ▶ role of structural water?

#### Partial answers from the $\alpha$ -complex!

```
Voronoi Geometry/Topology of interfaces
```

```
\triangleright Key illustrations 96 complexes, 30 at res. < 2 \mbox{\ensuremath{\mbox{\i}A}} 5 groups:
```

```
Proteases - Inhibitor (PI)
Enzyme - substrate / Inhibitor (ESI)
Antibody - Antigen (AA)
Signal Transduction & Cell cycle (ST)
Misc. (M)
```

Demo.

### Application: Not covered

- Specific vs non specific contacts
- Statistical potentials
- **>** . . .

### Interfaces, Structural Water (res. $< 2\mathring{A}$ )





Complex 1vfb (a)Chains: Lysozyme (Grey), antibody Fv fragments (Blue, Red) (b)Interface atoms of the Lysozyme



Complex 1vfb (a)Creeks at the interface filled by water molecules (b)Facets of the AW-BW interface shown in purple (c)The interface without water molecules

# Hydration patterns (Cooperative Hydrophobic effect)



(a)IS: 1vfb (b)P: 1ppe (c)ST:1tx4

#### Planarity / Curvature





Complex 2trc (a) Chains: Transducin (Blue, Red), Phosducin (Grey) (b) Interface with a bend





Complex 1ppe (a)Chains: beta-trypsin (Red), Trypsin inhibitor (Colored by residue) (b)Interface with a deep pocket

#### Multi-patch structure







Complex 1tco (a)Chains: Calcineurin A (Cyan), Calcineurin B (Red), FKBP12 (Green), Immuno-suppressant drug FK506 (Van der Waals) (b,c)The AB interface has 5 significant cc, but water molecules bridge them into a single cc

### Hilights without water (all complexes)

- 13% of interface atoms DO NOT LOOSE solvent accessibility. Mainly main chain atoms. Missed by previous studies.
- Protease-Inhibitor complexes have larger curvature than other families of complexes, a signature of their active site.
- ullet In the AB model, the number of connected components varies in the range 1..6 with an average of 1.9 by complex.

### Hilights with Water (res. $< 2\mathring{A}$ )

- On average:nb. of interf. atoms increases of 45% ratio of buried atom increases of 67%
- ullet The relative numbers of scc in the AB and ABW models identifies the size and shape of packing defects
- ullet In the Hydophobic / Polar model: distribution of interface pairs  $\sim random$

## Weighted Delaunay / Voronoi $\alpha$ -complex

- $\triangleright$  Ball restricted to Voronoi region  $R_i = B_i \cap V_i$
- $\triangleright$  For a collection  $R \subset \mathcal{R} = \{R_1, \dots, R_n\}$  of restricted regions, define  $\mathcal{K}$ :

$$\Delta(R) \in \mathcal{K} \text{ iff } \bigcap_{R_i \in R} R_i \neq \emptyset.$$



(a) $\alpha$ -complex,  $\alpha = 0$ 



(b) $\alpha$ -shape,  $\alpha = 0$ 

- $\triangleright \alpha$ -complex:  $\mathcal{K}(\alpha)$  for  $\alpha$ -expanded balls
- $\triangleright$  Classification of simplices in the  $\alpha$ -complex: singular, regular, interior
- $\triangleright$  Surfaces (VdW, SAS): directly from  $\alpha\text{-complex}$  for  $\alpha=0$
- ▶ Performances using CGAL: 10<sup>6</sup> pts / minute (2GHz)

#### Balls and interface neighbors (I)



Intersecting balls. Del.edge, no interface edge:  $S_1$  and  $S_4$ 

**Definition. 1** • An AB interface edge is an edge of type AB in the  $\alpha$ -complex of the balls  $B_i(a_i, r_i + r_w)$ , with  $\alpha = 0$ .

- The interface neighbors of a sphere  $S_i$ : atomes connected through an interface edge.
- The AB interface: Voronoi facets dual of the AB interface edges.

### Interface neighborsand SAS

**Observation. 1** Any atom loosing accessibility is an interface atom.

Converse is false (cf 13%): interf. atoms may even be buried



### Topology of the interface Interface connectivity



Three main connected ccs (1dan.pdb, AB model)



intuition: RBRB...





#### Topology of the interface (I)

**Definition. 2** Two Voronoi facets are called edgeconnected if they share a Voronoi edge. An edgeconnected component of the interface is a collection of edge-connected Voronoi facets.



3 cc, 4 boundary loops

**Observation. 2** Topology of a bicolor interface:

- Vor. edges of a bicolor interface are manifold.
- The neighborhood of every Voronoi vertex is either a topological disk, a half-topological disk, or two half-topological disks pinched. together at the Voronoi vertex.

#### **Algorithms**

- ▶ From the Delaunay triangulation:
  - exploring a connected component
  - reporting the boundaries

reduces to testing whether a given edge

- is bicolor
- is in the  $\alpha$ -complex  $\text{Interface facet } f_1 \Leftrightarrow \text{Del. Edge } e_1$  Facet  $f_2 \cap f_1 \neq \emptyset \Leftrightarrow f_2$  dual of  $e_2$  with  $e_1, e_1 \in \text{Del. triangle}$

# Weighted Delaunay / Voronoi (III) Orthogonal spheres

- sphere:  $S_i(a_i, w_i = r_i^2)$
- power of a point wrt sphere:  $\pi(p, S_i) = a_i p^2 w_i$
- power distance:  $\pi(S_i, S_i) = a_i a_j^2 w_i w_j$
- orthogonal spheres:  $\pi(S_i, S_j) = 0$
- Voronoi region

$$V_i = \{ p \in \mathbb{R}^3 : \forall j \in \mathcal{S} \quad \pi(p, S_i) \leq \pi(p, S_j) \}.$$



Power of a point

Angle between spheres

### Geometry of the CCs: Surface Area

#### Surface Area



> Filtering criterion

 $\overline{\mu}/(min(w_i, w_j)) \ge M$ . Practically: M = 25.

- $\triangleright$  Filtering from the  $\alpha$ -complex:
  - ullet largest ortho. sphere:  $\overline{\mu}$  value (edge interior)
- ▷ Illustration —Geometry/Topology: 1ydr, 1tbq, 1cgi

### Geometry of the CCs: Discrete Mean Curvature

▶ Local measure (Back to Steiner/Santalo/...)

$$h(e) = \beta(e) length(e)$$



(a)Convex angle (b)Side view

- $\triangleright$  Global measure  $s_H = \sum_{e \text{interior Voronoi edge}} |h(e)|$
- ho Rmk: dihedral angle  $\sim$  triangle  $\sim$  3-1 d.o.f.

# Interacting pairs vs interacting tuples Buried | interaction surfaces



 $\triangleright$  Weighting the interface facets with coeffs.  $F_{ij}$ :

$$\sum_{(i,j)\in IE} F_{i,j}(BS) = \sum_{j=1}^4 BSA(M_j,\mathcal{C}) = BSA$$

or

$$\sum_{(i,j)\in IE} F_{i,j}(IS) = \sum_{i=1}^{4} ISA(S_i, C) = ISA$$

#### Tricolor interfaces





Top/bottom contacts: ok/ko  $\partial$  ABW is not a one-manifold

**Definition. 3** An interface water: connected to A and B in the  $\alpha$ -complex. An AW (or BW) interface edge is an edge of type of type AW (or BW), with W an interface water molecule.

**Definition. 4** More interfaces:

- -AW BW: facets dual of edges AW or BW
- -ABW: union of AB and AW BW interfaces

**Observation. 3** Interfaces AB and AW - BW have the same topology.

- > Algorithm:
- —compute the AB and ABW interfaces independently
- -merge the ccs and the  $\partial$  by Union-Find

#### Key features

- coherence between interface / atoms loosing accessibility
- topology and geometry of interfaces
- interface weights and SASA
- accommodation of water molecules
- $\triangleright$  efficient  $O(n \log n)$  algorithms
- possibility to encode finer properties (higher-order Voronoi)
- software / VMD plugin

#### References

- Revisiting the description of Protein-Protein interfaces. Part I: Algorithms, F. Cazals, F. Proust.
- Revisiting the description of Protein-Protein interfaces. Part II: Applications, F. Cazals, J. Janin, F. Proust.
- http://bombyx.inria.fr/Intervor/intervor.html
- http://www-sop.inria.fr/geometrica/team/Frederic.Cazals/intervor