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1 Introduction.
Electron microscopy (EM) is one of the key experimental techniques in modern structural
biology[4]. Three-dimensional structures of large macro-molecular complexes can be solved
by EM which otherwise would be impossible using X-ray crystallography or NMR. A common
reconstruction technique, from 2D EM images to 3D structure, assigns 2D images to 2D
projections of some initial 3D template[5, 1]. Due to high levels of noise and unknown
orientation of imaged particles, the quality of the reconstruction procedure relies on two
factors: an accurate alignment between a raw image and a template, and a scoring function
that should be able to assign a raw particle to a correct template projection.

Most of the methods for particle alignment apply a very efficient Fast Fourier Trans-
form to compute a superposition between two images. This approach implies that only a
normalized cross-correlation (NCC) function, or its variants, can be used as a similarity
measure between two images[5, 1]. One of the major problems in EM reconstruction is het-
erogeneous data. In such cases a single template model does not accurately account for the
heterogeneous data. Consequently, an application of the cross-correlation function produces
inaccurate alignments. Here we present an alignment method that is able to accommodate
various similarity scoring functions while efficiently sampling the 2D transformational space.
In our preliminary results we apply a scoring function based on Mutual Information of two
images. For a heterogeneous sample containing incomplete molecules it allows accurate align-
ment using a model of the complete structure. In our preliminary results, we successfully
tested our approach on a model data set containing a mixed population of 70S and 50S E.
coli Ribosomes.

2 Method.
The method is composed of five major stages:

1. Feature detection. This stage is done separately for each image. First, we detect
local extreme (maximum and minimum) values: E = {ei}. Then, we define local significant
values around each point ei ∈ E: N(ei) = {p : |value(p)− value(ei)| > 2σ(ei)}, where σ(ei)
is the standard deviation of gray values in the neighborhood of ei.

2. Construction of transformations. To define a 2D transformation that superim-
poses image A onto B we align two vectors, one from A and one from B. For each image
the vector set is defined by F = {(p, ei) : ei ∈ E, p ∈ N(ei)}. Therefore the set of 2D
transformations is defined as the product of all possible vector pairs: F (A)× F (B).

3. Pose-clustering. We utilize an assumption that high scoring alignments have a large
number of features with similar transformations. Therefore, the number of transformations
(generated at Stage 2) can be significantly reduced by a pose-clustering technique[3]. After
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the clustering only one thousand transformations, from the largest clusters, are evaluated
with the scoring function.

4. Scoring Function. Let pA(a) define a distribution of pixels with gray value a in im-
age A (the marginal probability) . Given two aligned images A and B let pAB(a, b) define a
distribution of aligned pixels with gray values a and b (the joint probability). Then, the mu-

tual information [2] of two aligned images is given by: MI(A, B) =
∑

a,b
pA,B log pAB(a,b)

pA(a)pB(b)
.

5. Re-scoring. Due to different gray level distributions, some images tend to receive
high scores even when aligned to an incorrect template. We apply an iterative rescoring that
selects alignments with the highest, but non-random scores.

3 Results.

Due to the problem of reconstructing heterogeneous data there are no available experimental
examples to validate our approach. Therefore, we selected the well studied structure of
the 70S ribosome and its 50S sub-complex. 70S ribosome was used as a template for the
alignment of both 70S and 50S projections. As expected, 70S projections were correctly
assigned to the template by our method as well as by the standard NCC based methods,
Imagic[5] and Spider[1]. However, NCC based methods give 100% errors in assigning 50S
projections to the 70S template even in the case of noise-free projections. Our method
correctly assigns more than 50% of the projections with the signal to noise ratio (SNR)
greater than one. The results are summarized in the Table 1. Our current work in progress
is to analyze whether the accuracy of our method is sufficient for the final 3D reconstruction.

Images are Pre-aligned Complete Alignment
num of errors after rescoring num of errors after rescoring

no noise 0 0 1 0
SNR=5 23 6 182 65
SNR=2 9 9 175 104
SNR=1 58 67 166 110

SNR=0.5 170 100 178 145

Table 1: Alignment of 50S ribosome projections against the template of 70S ribosome. There are
212 projections of each macromolecule. Noise is added to 50S projections to simulate real data.
The first column shows the number of 50S projections assigned to a wrong template. The second
column shows the same type of errors after applying the iterative re-scoring. In the first, easy, test
no transformation is applied (images are pre-aligned), this is to verify the scoring function. In the
second test the complete alignment is performed.
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[4] A. Šali, R. Glaeser, T. Earnest, and W. Baumeister. From words to literature in structural
proteomics. Nature, 422:216–225, 2003.

[5] M. van Heel, B. Gowen, R. Matadeen, E. V. Orlova, R. Finn, T. Pape, D. Cohen, H. Stark,
R. Schmidt, M. Schatz, and A. Patwardhan. Single-particle electron cryo-microscopy: towards
atomic resolution. Q Rev Biophys, 33:307–69, 2000.


