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Abstract

Molecular surface computations are basic molecular modeling operations that are necessary

to deal with in order to perform synthetic drug design. Computing and updating exact boundary

representations of such molecular surfaces are critical steps that introduce for molecules the same

geometric data structure used in the solid modeling community. This allows us to gain immediate

access to a wide range of modeling operations/techniques that allow us to use a general solid

modeling system as a molecular modeling interface: one could for example replace single atoms or

entire protein bases. In this paper we introduce e�cient techniques for computing NURBS (non-

uniform rational B-splines) boundary representations of molecular surfaces, providing also the

option of trading accuracy of the representation for the e�ciency of the computation, especially

in a dynamic setting. In particular we discuss two main classes of updates: one that keeps the

topology of the molecular con�guration �xed, and the more complicated case where the topology

may be updated continuously. In general the output generated is in a representation format

that can be loaded into a standard solid modeling system. It can also be directly triangulated

or rendered, possibly at di�erent levels of resolution, by a standard graphics library such as

OpenGL without any additional e�ort.
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1 Introduction

The high combinatorial complexity of macromolecules makes it challenging to compute and update

their structures and properties in real time. Several di�erent approaches have been developed

to achieve this e�ciency for molecular surface computations [12, 13, 38{40, 42, 43]. Other work on

surface representations features the use of metaballs, molecular surfaces, and blobby models [1,8,17,

26,27,29,33{35,45{48]. In this paper we extend this work by describing algorithms that dynamically

update and render exact smooth trimmed NURBS (non-uniform rational B-splines) representations

for moving or growing the molecular surfaces. Trimmed NURBS are an industry-wide CAD/CAGD

standard and fast becoming optimized for graphics rendering software (OpenGL)/hardware [32,41].

In [5] we present an exact trimmed NURBS boundary representation of the Lee-Richards solvent

contact molecular surface [14]. We show in this paper how this trimmed NURBS representation

can be e�ciently maintained to animate both the solvent accessible surface and the Lee-Richards

solvent contact surface of a molecule.

In our approach we combine the use of e�cient data structures [21] that have already been shown

useful for molecular modeling [24] with the use of standard graphics libraries such as OpenGL and

OpenInventor [44]. The basic idea is to dynamically maintain the primary structures and exactly

compute and update representations (tensor product rational B-splines, trimmed NURBS) of the

molecular surface which are directly displayed by optimized trimmed NURBS rendering functions

of OpenGL. In particular we focus on the special case of dynamic, continuous modi�cation of the

solvent radius.

We analyze the complexity of two main classes of updates that yield a family of all the molecular

surfaces obtained for di�erent solvent radii: (1) updates that keep the Power Diagram [3] �xed

(quadratic growing of the radius of the solvent ball); (2) updates that modify the Power Diagram

(linear growing of the radius of the solvent ball).

In both cases e�ciency is achieved trough the introduction of a novel geometric construction.

In case (1) we use a new constructive approach to duality that generalizes the standard \lifting"

scheme [21], showing that the Power Diagram of a molecule (3D union of balls) constitutes a

compact representation of the collection of all the Power Diagrams of the trimming circles of all

the patches in a molecular surface. In particular the convex cell of the 3D Power Diagram relative

to the ball B is the dual of the 2D Power Diagram of the trimming circles of B. As a �rst

approximation (with the bonus of being simpler and more e�cient) we consider the molecular
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surfaces obtained by disproportionally increasing the solvent radius so that the associated Power

Diagram remains unchanged. We show how we can keep track of the topological changes that

occur in the trimming curves of the patches that form the molecular surface so that its boundary

representation can be updated e�ciently. Furthermore, we compute and dynamically update an

exact boundary representation of the molecular surface so that the same dynamic data-structure is

also suitable for molecular modeling operations such as those supporting synthetic drug design [31].

In previous work on dynamic triangulations the focus has been mostly on the simpler Delau-

nay/Voronoi structures (unweighted case) [2,4,11,25,28,30,36,37]. Little has been done on the more

general case of dynamic Regular Triangulation/Power Diagrams and for dimensions greater than

two. Moreover, the kinds of dynamic operations developed are usually just the insertion/deletion

of a single point. Such local operations become ine�cient when we need to perform even a simple

but global modi�cation. Here we adopt an approach for global modi�cations where after a prepro-

cessing each patch in the molecular surface is treated independently. By the \dividi et impera"

paradigm we increase e�ciency by solving several small problems in place of a single large one.

In the case (2) setting, where the 3D Power Diagram is subject to 
ips, we use the same

construction as in [24] based on the de�nition of a 4D complex of convex polytopes C whose

\horizontal" slices are all the possible 3D Power Diagrams of the growing balls for any growth

factor r. Hence we apply a simple hyperplane sweep algorithm to optimally maintain the dynamic

Power Diagram of the linearly growing balls. Thus in this case we compute exactly the o�set of the

union of balls (so that its topology can be precisely determined), even when it requires a change

in the nearest neighbor (under power distance) relations among the atoms corresponding to 
ips

in the associated Regular Triangulation. More generally, for a set of balls in d-dimensional space

this requires the construction of a complex of convex polytopes in (d+1)-dimensional space whose

\horizontal" slices are all the possible Power Diagrams.

In either case we prove and also demonstrate via our implementation that: (a) for small solvent

radius changes the global topological structure of the molecular surface remains unaltered, requiring

scaling and a dynamic maintenance of the arrangement of domain B-spline trimming curves, and

(b) for large solvent radius changes, the regions in which the eventual updates of the topological

structure is required is also localized. Both of the constructions are de�ned in general for unions

of growing balls in any �xed dimension.

Our techniques are shown to be general enough to also deal with new smooth molecular sur-

faces [20] proposed to avoid the singularities that may arise in the Richard's rolling ball surface.
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2 Dynamic Regular Triangulation and Power Diagram

(a) (b)

Figure 1: The HIV-2 PROTEASE (a) and one solvent accessible surface (b) for the same molecule.

One of our goals in developing algorithms for automatically maintaining dynamic molecular

surfaces is to provide means for immediate display with a standard graphics library like OpenGL

without making the additional e�ort of triangulating the surface as in [1]. At this end we have

developed [5] a boundary representation scheme where patches are standard trimmed NURBS. We

show in this paper how this data structure can be e�ciently maintained to animate the solvent

accessible surface (see �gure 1) and the solvent contact surface (see �gure 2) of a molecule. In

particular we focus on the special case of dynamic, continuous modi�cation of the solvent radius1.

2.1 Balls in <d and Halfspaces in <d+1

In this section we introduce the fundamental equations that form the basis of the presented approach

for molecular modeling. For a more extensive discussion of the conditions under which the present

approach can be extended to a more general case unifying geometries other than spheres, the

interested reader is referred to [7].

Consider in <d+1 the implicit equation of the unit ball:

�21 + �22 + � � �+ �2d + �2d+1 � 1 � 0 : (1)

1
See the animation in http://www.cs.purdue.edu/research/shastra/projects/molecular

/Nutrasweet ConnollySurface/gramicidin.mpg
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(a) (b) (c)

Figure 2: The Fullerene molecule (a) and two solvent contact surfaces (b),(c) corresponding to two

di�erent solvent radii.

Its boundary has parametric equations which are:

�i =
2xi

x21 + � � �+ x2d + 1
; i = 1; : : : ; d

�d+1 =
x21 + � � �+ x2d � 1

x21 + � � �+ x2d + 1
: (2)

The boundary of the ball (1) is the closure of the image of <d in <d+1 under the mapping (2).

The inverse map of (2) is given by

xi =
�i

1� �d+1
; i = 1; : : : ; d (3)

for (�1; �2; : : : ; �d; �d+1) on the unit sphere �21 + � � �+ �2d+1 = 1. The point (0; : : : ; 0; 1) in <d+1 is the

image of the point at in�nity of <d.

Consider the linear halfspace:

h : a0 + a1�1 + � � �+ ad�d + ad+1�d+1 � 0 ; (4)

where not all of fa1; : : : ; ad+1g are zero. Its pre-image in <d, given by the mapping (2), is

b : a0(x
2
1 + � � � + x2d + 1) + a1 2x1 + � � �+ ad 2xd + ad+1(x

2
1 + � � �+ x2d � 1) � 0 : (5)

If a21+ � � �+a2d+1�a20 � 0 and a0+ad+1 > 0, this is the ball of center �(a1; : : : ; ad)=(a0+ad+1) and

radius (a21 + � � �+ a2d+1 � a20)
1=2=(a0+ad+1). If a

2
1+ � � �+a2d+1�a20 � 0 and a0+ad+1 < 0, this is the

union of the sphere of center �(a1; : : : ; ad)=(a0+ad+1) and radius (a20�a21�� � ��a2d+1)=(�a0�ad+1)
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and its exterior. When a0 + ad+1 = 0, this is a halfspace, and when a21 + � � � + a2d+1 � a20 < 0 and

a0 + ad+1 6= 0, this is a ball of imaginary radius, and contains no real points.

We now examine in detail the relationship between hyperplanes in <d+1 and balls in <d. We

will denote as b a ball in <d and B the unit ball in <d+1. Also, @h will denote the boundary

hyperplane of the halfspace h. We rewrite inequality (5) as:

b : (a0 + ad+1)(x
2
1 + � � �+ x2d) + 2(a1x1 + � � �+ adxd) + (a0 � ad+1) � 0 : (6)

This is the ball corresponding to the halfspace:

h : a0 + a1�1 + � � � + ad�d + ad+1�d+1 � 0 :

The correspondence is given by the parametric equations (2) for the unit sphere (in <d+1):

@B : �21 + �22 + � � �+ �2d + �2d+1 � 1 = 0 : (7)

When (6) represents a real ball, that is when a21 + � � � + a2d+1 � a20 � 0 and a0 + ad+1 > 0, the

ball b has center �(a1; : : : ; ad)=(a0 + ad+1) and radius (a21 + � � �+ a2d+1 � a20)
1=2=(a0 + ad+1). When

a0+ad+1 = 0, b has in�nite radius and center at in�nity. In this case the inequality (6) degenerates

into a halfspace. With respect to the positions of h and B we have that @h contains the point

(0; 0; : : : ; 0; 1) of B, the base point of the parameterization (2). Since we represent a ball b with

d+ 2 parameters (those of inequality (6)) instead of just d+ 1 (center coordinates and radius) we

can represent balls of any radius (even in�nity or imaginary) and center in any position (�nite or at

in�nity). This may be regarded as representing the ball in homogeneous coordinates of projective

space. Explicitly, we represent the ball with center (x1; : : : ; xd) and radius r by

a0 = 1 + x21 + � � �+ x2d � r2

ai = �2xi ; i = 1; : : : ; d

ad+1 = 1� x21 � � � � � x2d + r2 :

If a21 + � � � + a2d+1 � a20 = 0 and a0 + ad+1 6= 0, then b is a point and @h is tangent to B at the

point (�a1=a0; : : : ;�ad+1=a0). If a21 + � � � + a2d+1 � a20 < 0 and a0 + ad+1 6= 0, then @h does not

intersect B. This corresponds to b having imaginary radius (in terms of weighted triangulations

it is a point with negative weight). If a21 + � � � + a2d+1 � a20 > 0 and a0 + ad+1 6= 0, then b has a

positive radius, and @h intersects B in a d-disk with positive radius. If a0+ad+1 = 0 and not all of

fa1; : : : ; adg are zero, then b is a halfspace, and @h intersects B at (0; : : : ; 0; 1) and is not tangent

6



to B there. Finally, if a0�ad+1 = 0 and a1 = � � � = ad = 0, then b is either all of <d or ; depending

on whether a0 + ad+1 < 0 or a0 + ad+1 > 0, respectively, and @h is tangent to B at (0; : : : ; 0; 1).

There are many interesting relationships between spheres in <d and hyperplanes in <d+1. One

note which should be observed is that since the mapping (2) yields only points on the unit ball in

<d+1, individual points in <d are always mapped to points satisfying (7). Thus when we speak of a

mapping between a ball in <d and a hyperplane in <d+1, this can also be interpreted as a mapping

between a ball in <d and the intersection of the corresponding hyperplane with the unit sphere in

<d+1. These intersections (when they are not empty or a single point) are spheres of one lower

dimension, embedded in <d.

A fundamental relationship is that spheres that contain a point (c1; : : : ; cd) in <
d map to hy-

perplanes that pass through the point (2c1; : : : ; 2cd; c
2
1 + � � � + c2d � 1)=(c21 + � � � + c2d + 1) in <d+1.

This is a result of the relation

(c21 + � � �+ c2d + 1)a0 + 2(c1a1 + � � �+ cdad) + (c21 + � � �+ c2d � 1)ad+1 = 0 :

A consequence of this relationship is that a set of spheres passing through two distinct points in

<d correspond to a set of hyperplanes in <d+1 that contain a certain line. Since the actual points

of intersection in <d are mapped to points on B, the line in <d+1 must intersect B in two points.

A set of spheres in <d which intersect at one point are mapped to into hyperplanes whose line of

intersection is tangent to B. A set of spheres whose combined intersection is empty are mapped to

hyperplanes whose line of intersection, if any, does not intersect B. This situation is illustrated for

d = 2 in Figure 3. Let l be the line of intersection of the boundaries @h0 \ @h00 corresponding to

two distinct intersecting balls b0 and b00. We have that @b0 intersects @b00 if and only if l intersects

B, that is, if the distance from l to the origin O is smaller than 1:

@b0 \ @b00 = 1 or 2 points () l \B 6= ; () dist(l; O) � 1 :

dim (b0 \ b00) = 0 () l \B = 1 point () dist(l; O) = 1 :

Similarly we can consider three distinct disks b0, b00, and b000. If their intersection is a region

bounded by three circular arcs, one from each disk, then the three boundary circles correspond to

three planes @h0, @h00, and @h000 that intersect in a point p contained in B. This is illustrated in

Figure 4. If the three circular boundaries intersect in one or two points, then the planes intersect

in a point on @B (or possibly in a line that intersects B).

b0 \ b00 \ b000 = region bounded by 3 arcs (or points) () p 2 B (8)
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b0

b00

B

l

Figure 3: The intersection between the boundaries of two disks b0, b00 in <2 corresponds to a line l

intersecting the sphere B.

b0

b00

B
b000

p

Figure 4: The non-empty intersection, when bounded by three circular arcs, between three disks

b0, b00, and b000 in <2, corresponds to a point p contained in the ball B.
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dim (@b0 \ @b00 \ @b000) = 0 () p 2 @B : (9)

The proof of (8) is given in Appendix A.

This correspondence has a generalization to arbitrary dimensions. For dimension d, suppose

we have d + 1 balls b(1), . . . , b(d+1) in <d. Let b(i)� denote a region which can be either b(i) or its

complement b(i). Then if b(1)� \ b(2)� \ � � � \ b(d+1)� 6= ; for all possible combinations of the b(i)�,

then the d+ 1 corresponding hyperplanes (of dimension d) intersect in a point contained in B.

Concentric spheres in <d generally correspond to hyperplanes in <d+1 that pass through a

speci�c hyperplane of dimension d�1. Explicitly, consider the set of spheres with center (c1; � � � ; cd)

and radii ri. The corresponding hyperplanes are

(1 + c21 + � � �+ c2d � r2i )� 2(c1�1 + � � � + cd�d) + (1 + c21 + � � �+ c2d + r2i )�d+1 = 0 :

These all contain the hyperplane of dimension d � 1 de�ned by the intersection of �d+1 = 1 and

c1�1 + � � � + cd�d = c21 + � � � + c2d + 1. There is an exceptional case when the common center of the

spheres is the origin. In this case the corresponding hyperplanes are 1 � r2i + (1 + r2i )�d+1 = 0, or

�d+1 = (r2i �1)=(r2i +1), which form a set of hyperplanes parallel to and in between the hyperplanes

�d+1 = �1 and �d+1 = 1.

Parallel hyperplanes in <d+1 generally correspond to spheres with collinear centers in <d. Ex-

plicitly, consider the set of hyperplanes c1�1+ � � �+ cd+1�d+1 = ki. In order that the corresponding

spheres have real radii, we must have k2i � c21 + � � � c2d+1. The corresponding spheres have centers

[�1=(cd+1 � ki)](c1; : : : cd) and radii (c21 + � � �+ c2d+1 � k2i )
1=2=jcd+1 � kij. Thus the centers of these

spheres all lie on the line through the origin in the direction (c1; : : : ; cd). Furthermore, the inter-

sections of these spheres with this line are such that the product of their distances to the point

[cd+1=(c
2
1+ � � �+c2d)](c1; : : : ; cd) is a constant, namely (c21+ � � �+c2d+1)=(c

2
1+ � � �+c2d). If one of the ki

should happen to equal cd+1, then the corresponding sphere degenerates to a hyperplane of dimen-

sion d� 1 through [cd+1=(c
2
1+ � � �+ c2d)](c1; : : : ; cd) and with normal vector (c1; : : : ; cd). There is an

exceptional case when the hyperplanes are parallel to �d+1 = 0, or equivalently, c1 = � � � = cd = 0,

cd+1 6= 0. In this case the corresponding spheres are all centered at the origin, and have radii

(cd+1 � ki)=(cd+1 + ki). In order for the spheres to have positive radius, we need jkij < jcd+1j.

If ki = �cd+1, the sphere degenerates to a point, the origin, and if ki = cd+1, the corresponding

sphere goes to in�nity.
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2.2 Convex Hulls and Boolean Combination of Balls

Consider the intersection of n balls or their complements, such as b1\�b2\�b3\� � �\bn. We can map

each of the bi or �bi to a halfspace h in <d+1 so that the computation of the intersection is reduced

to a convex hull computation. Note that if all the balls are complemented we get the complement

of the union of balls as in [21]. In general, for the computation of the topological structure of a

non-linear, non-convex, possibly disconnected region in <d, the intersection of inequalities of the

type (6) is reduced to the computation of the boundary of the convex polytope CP , intersection of

halfspaces (4), and intersecting this boundary with the unit sphere (1).

This mapping generalizes the \lifting" scheme [18] so that it can represent both the interior and

the exterior of balls and so that one can compute any boolean combination of balls instead of just

their union. In the present formulation we also represent the balls by their implicit inequality (4)

instead of just a center and a radius, so that one can deal with in�nite radius spheres (note that

such cases arise in practice in the computation of trimming curves).

An additional advantage of the present mapping with respect to the \lifting" scheme is the com-

pact representation of several collections of curve arrangements in the special case of the collection

of trimming circles of patches that form a molecular surface. In fact in this case we need only to

observe that the convex polytope CP , that is dual to each arrangement of trimming curves of each

patch, is indeed the cell of that patch in the 3-dimensional Power Diagram. This avoids the repre-

sentation of a separate polytope CP per arrangement of trimming curves since the 3-dimensional

Power Diagram contains all of them. The advantage in storage comes in representing only once

any lower dimensional face sheared by more than one polytope and providing also, by this shearing

of faces, explicit adjacency information for each boundary curve of each patch.

3 Maintaining Trimmed NURBS Under Quadratic Growth

We call quadratic growth the scheme of growing balls which keeps the Power Diagram unaltered and

thus the topology of the union of balls is given by the corresponding �-shape. Under this growth

of the balls we only need to maintain the set of trimming curves of each patch in the surface. In

particular we need to e�ciently detect any topological change (new intersections between curves,

creation/deletion of connected components) that occur in the trimming curves (circles and lines)

in the domain plane.

This goal can be achieved by looking at each patch separately (actually the computation can be
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performed in parallel for all patches) and classifying the faces of its associated polytope CP with

respect to the relative ball B at the current size. This is achieved by using the relations stated in

Section 2.1 as follows:

� Each facet of CP that intersects @B corresponds to a circle that is e�ectively involved in the

set of trimming curves.

� Each edge of CP that intersects @B corresponds to two circles that intersect each other.

This leads to the following algorithm for maintaining trimming curves. For each face f of CP we

determine its minimum distance dm and its maximum distance dM from the origin (the center of

B). This tells us when the circle associated with f is involved in the boundary of the trimming

circles. We organize the ranges of all the faces in an Interval tree so that we can e�ciently perform

range queries, optimal in space and time. While growing the ball B we look at the faces of CP

which range [dm; dM ] contains the current radius r of B to directly determine the topology of the

trimming circles. For example, if the range of a facet of CP contains f but none of its boundary

edges implies that an entire circle forms a separate component in the boundary of the trimming

curves.

At the same time this tells us that in the growing process the values of dm,dM of the faces of

CP constitute the set of \event points" at which the growth of r produces some topological change

in the trimming circles. Hence we can e�ciently maintain the dynamic arrangement of circles in

the plane.

The topological structure of the molecule is given by the Regular Triangulation and its dual,

the Power Diagram. We examine the family of triangulations that yield the topological structure of

the molecular surfaces (solvent contact of solvent excluded surfaces) while the solvent radius grows.

The determination of the topological structure of such molecular surfaces is an important

problem addressed by several papers [15, 16]. The family of shapes obtained from a weighted �-

shape [19,21,22] is based on a quadratic growth of the radii of the balls and therefore not directly

related to the family based on the growth of the solvent ball radius. In fact the fundamental prop-

erty on which the �-shape construction is based on is that for any �, the Power Diagram/Regular

Triangulation remains the same. This is achieved by growing each sphere by a di�erent amount,

namely the radius of each sphere is augmented by a quantity such that the square of each radius

is increased by the same quantity (see �gure 5). This implies that smaller spheres are grown more

than the larger ones. As a consequence the resulting surface does not re
ect exactly the required
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molecular surface. When this level of approximation (possibly incorrect both in geometry and in

topology) is not satisfactory, one needs to resort to the method introduced in the following section.

linear growth

quadratic growth

l

l1 l2

l
0

1
l
0

2

r1

p
r2
1
+ r

r2

p
r2
2
+ r

l

l1 l2

l
0

1
l
0

2

r1

r1 + r

r2

r2 + r

1 2 3
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radius

growth

equal increase

different increase

equal growth

Figure 5: (a) If the radii of two balls are incremented by the same amount, then their Voronoi

separator moves towards the smaller one. (b) If the squares of the radii of two balls are incremented

by the same amount, then Voronoi separator remains the same.

4 Maintaining Trimmed NURBS under Linear Growth

The fundamental dynamic setting we consider is the case of a global linear growth of all the atoms

of a molecule, corresponding to a linear growth of the solvent atom radius r. In this case the

Voronoi Diagram (or more exactly Power Diagram) plane that separates the two balls moves as a

function of r. In fact as the radius of each ball is increased by r, the Voronoi plane that separates

the two balls moves towards the smaller ball. An example is shown in �gure 5. The distances l1; l2

of the Voronoi plane � from the centers of the two balls must be such that the power distances of
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� are equal, that is:

l21 � r21 = l22 � r22

Moreover, the distance between the two balls is constant (the two balls grow but do not move):

l1 + l2 = l

From these two equations we obtain for l1:

l21 � r21 = (l � l1)
2 � r22 = l2 + l21 � 2l1l � r22

l1 =
l2 + r21 � r22

2l

When r1 changes to r1 + r and r2 changes to r2 + r we have:

l1 =
l2 + (r1 + r)2 � (r2 + r)2

2l

=
l2 + r21 + r2 + 2r1r � r22 � r2 � 2r2r

2l

=
l2 + r21 � r22 + 2r(r1 � r2)

2l

In general, consider two balls B1; B2 (of radii r1 and r2 respectively) in <
d and assume, without

loss of generality, a coordinate system with the origin in the center of B1 and the center of B2 on

the positive part of the x1 axis (the center of B2 is the point (l; 0; : : : ; 0)). The hyperplane of the

Power Diagram that separates B1 from B2 has the equation:

� : x1 =
l2 + r21 � r22

2l
+ r

2(r1 � r2)

2l
(10)

which is linear in r. Hence this is also a hyperplane in the (d+1)-dimensional space (x1; : : : ; xd; r).

Figure 6 shows the 1-dimensional case of two balls (segments) that grow quadratically (a) or linearly

(b). In the �rst case the hyperplane of the Power Diagram that separates B1 from B2 remains the

same for all values of r. In the second case, the hyperplane of the Power Diagram that separates

B1 from B2 moves linearly with r with a slope towards the center of B1.

This fundamental observation leads to the construction of the Power Diagram of a set of growing

balls as the intersection of a hyperplane r = const with a complex C of convex polytopes in the

(d+1)-dimensional space (x1; : : : ; xd; r). If the molecule B is composed of n balls fB1; : : : ; Bng then

the complex C is a collection of n convex polytopes fC1; : : : ; Cng one per ball. In particular the cell

Ci associated with the ball Bi is the intersection of all the halfspaces of points \nearer" to Bi then

to Bj (with j = 1; : : : ; i� 1; i + 1; : : : ; n). The boundary hyperplane of such halfspaces is given by

13



B1

(a)

(b)

r

Power Diagram

B1 + r

B2

B2 + r

B1

p
B2
1
+ r2

B2

p
B2
2
+ r2

r

Figure 6: The 1-dimensional case of ball growth. The quadratic growth (a) keeps the Power

Diagram hyperplane (a point) still. The linear growth (b) moves the Power Diagram hyperplane

linearly with r.

equation (10). Note that cell Ci is de�ned as the intersection of all possible n+ 1 halfspaces since

by linear growing many 
ips can occur in the Regular Triangulation. The brute force application

of the technique as described here requires the computation of n convex hulls [10], which leads to

an O(n3) time worst case complexity. For our purposes this is just a preprocessing step needed to

construct the data-structure used for animating the molecular surface. So we do not report in the

present paper the details of an e�cient computation of this complex C. Note however, that in the

case of a molecule in three dimensions (d = 3) we have to compute a set of 4-dimensional convex

hulls that can be computed more e�ciently, in an output sensitive sense, by using the algorithm

given in [9]. The use of this algorithm would indeed be bene�cial because the overall number

of faces in C is indeed O(n2). This is proved by a technique introduced in [7] that generalizes

the \lifting" scheme for the computation of Power Diagrams [18] and maps the construction of

the complex C to a convex hull computation (intersection of halfspaces) in one dimension higher

(that is in dimension d + 2). In the case of a molecule in the three dimensions, this leads to the

computation of the convex hull in dimension �ve that can be computed optimally [10] in O(n2)

time. This is certainly optimal in odd dimension (and in particular in the case of molecules where

d = 3) since a single Power Diagram (and C contain many of them) already has the same number

of faces as a (d+ 1)-dimensional convex polytope.

In the previous section we introduced the construction of a complex of convex polytopes C

14



embedded in the (d + 1)-dimensional space (x1; : : : ; xd; r) whose \horizontal" slices (that is an

intersection with the hyperplane r = const) are the Power Diagrams of the balls B with radii

uniformly increased by r. This data-structure allows us to animate (update) e�ciently the repre-

sentation of a molecular surface (solvent accessible or solvent contact) with respect to a change in

the solvent radius.

In particular we can achieve simple and e�cient updates on the Power diagram localized in

regions where the topological changes actually occur. In this way we can then in turn directly

apply directly the method described in Section 3.

Being that the Power Diagram is the intersection of a horizontal hyperplane H : r = const

with the complex C, in the dynamic setting the linear growth of the radii is simply a sweep of such

horizontal hyperplanes H along the r-axis. Hence the \event points" at which we have to update

the topological structure of the Power Diagram are the vertices of C. In particular to compute

these hyperplane sections of C we apply the robust approach in [6] which is based on the robust

\above or \below" classi�cation of the vertices of C with respect to H. We sort the vertices of C

by their r coordinates so that their classi�cation is obtained in logarithmic time by locating the

current height value of H in such a sorted list of vertices. This approach is also suitable for the

dynamic growth setting in which we will be continuously moving the hyperplane H. In fact in such

a scenario, each time we cross a vertex of C, we will need to update only the cells incident to this

vertex. Moreover in general, if we suddenly change our solvent radius from a value r1 to a value

r2, we will be able to detect the vertices whose r coordinate is in the range [r1; r2], change their

above/below classi�cation and consequently update all the incident faces of H \ C.

We reach the conclusion that when spheres grow linearly, some 
ips can occur in the Regular

Triangulation, unlike the quadratic growth, so that the usual �-shape construction is invalid (see

�gure 7).

5 Implementation Details and Examples

The �rst step in the implementation is a preprocessing step. We construct the complex C, and

then let the hyperplane H sweep along the r-axis from r = �1 to r = +1 and record the 
ips [23]

that occur dynamically. Second, once an array of 
ips sorted by r is obtained, make a logarithmic

search of the initial value and perform the 
ips from that point up (or down) the destination r

value. A compact representation of this algorithm is illustrated in Figure 8.
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Figure 7: A simple case of a Regular Triangulation for which the topology changes in a simple

linear growth of the radius of the balls.

r

Flips that occur in the growth from     to
10

r

r
10

r

Figure 8: Flips in the Regular Triangulation as the radius r increases
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Figure 9 illustrates an example of how the smoothed molecular surface changes as the radii

of the atoms grow linearly. As the atoms grow, some of the interior balls are engulfed. Also the

patches interpolating three atoms tend to consistently get wider.

In the following two subsections we provide detailed development of the method for two relatively

simple cases. For a general setting we locally translate each atom to the origin of the reference

system so that we can compute the trimming curves of the corresponding NURBS patch with the

given expressions that are hence hardcoded in the program instead of being computed every time.

To place the result in the global reference of the molecule we just need to apply the inverse mapping

to the control points of the NURBS. The mapping is not applied to the trimming curves since they

are de�ned in the parameter space of the NURBS patch.

5.1 Example 1

Here we choose a coordinate system so that two of the balls have centers on the �1-axis in <3.

Speci�cally, consider three balls B0, B00, and B000. Choose a coordinate system so that their centers

are located at (0; 0; 0), (l12; 0; 0), and (l13 cos �; l13 sin�; 0), where l12 and l13 are the distances

between the centers of B0 and B00, and between the centers of B0 and B000, respectively, and � is

the angle made by the three centers, with B0 at the vertex. We can assume 0 < � < �. Let the

solvent ball have radius r.

We consider the two planes �1; �2 relative to two trimming curves c1; c2. The position of the

line l = �1 \ �2 of intersection is used to track the intersection between c1 and c2 and to give their

2D NURBS representation.

With the above coordinate system, the two planes have equations (see �gure 10):

�1 : �1 = a1 + ra2 (11)

�2 : (cos �)�1 + (sin�)�2 = a3 + ra4 (12)

where

a1 =
l212 + r21 � r22

2l12
a2 =

r1 � r2
l12

a3 =
l213 + r21 � r23

2l13
a4 =

r1 � r3
l13

:

in accordance with (10).
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Molecular surface in which the radii of the atoms grow linearly at times (a) t = 1, (b)

t = 50, (c) t = 100, (d) t = 150, (e) t = 200, (f) t = 250. The individual atoms are colored blue

and cyan. Patches between two and three atoms are colored yellow and green, respectively. The

topology of the union of patches changes over time.
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The image of the trimming curve is the intersection of the spherical surfaces of the balls B0(r)

and B00(r), which we de�ne as the balls of radii r1+ r and r2+ r centered at (0; 0; 0) and (l12; 0; 0),

respectively. The implicit equation of the spherical surface of B0(r) is then �21 + �22 + �23 = (r1+ r)2,

and one �nd that the �3 coordinate of the two points of intersection between this sphere and the

line l is

�3 = �
q
(r1 + r)2 � �2

1
� �2

2
(13)

The segment of the line l = �1 \ �2 within B0(r) then has the parametrization:

�1 = a1 + ra2

�2 = a5 + ra6 (14)

�3 =
q
(r1 + r)2 � (a1 + ra2)2 � (a5 + ra6)2 u ;

�1 � u � 1 ;

where

a5 =
a3 � a1 cos �

sin�
a6 =

a4 � a2 cos �

sin�
:

For brevity, these quantities which will appear frequently in the sequel will be named as follows.

Keep in mind that all of these bi are functions of r.

b1 = r1 + r

b2 = a1 + ra2

b3 = a3 + ra4

b4 = a5 + ra6

b5 =
q
b2
1
� b2

2
� b2

4

b6 =
q
b2
1
� b2

2

b7 =
q
b2
2
+ b2

4

To map the surface of the ball B0(r) to a plane, we use an inverse mapping similar to (3) but

for a sphere of radius r1 + r instead of 1 and speci�cally d = 2:

x1 =
�1

r1 + r � �3

x2 =
�2

r1 + r � �3
:
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From this one obtains the intersection points q1 and q7 (see Figure 10(b); these points lie on a line

through the origin) in the (x1(r); x2(r)) parameter space as

q1 =

�
b2

b1 + b5
;

b4
b1 + b5

�

q7 =

�
b2

b1 � b5
;

b4
b1 � b5

�

and the trimming curve is an arc of the circle with center

q0 =

�
b1
b2
; 0

�

and radius
b6
b2

:

One next needs to �nd suitable break points q3 and q5 (see Figure 10). Ideally we want none of

the arcs
_
q1q3,

_
q3q5,

_
q5q7 to be close to 180

�. We can make sure that none of these arcs exceeds 120� as

follows. Let q8 be the midpoint of segment q1q7, and let q9 be the intersection of the perpendicular

bisector of q1q7 with the arc
_
q3q5. Now choose q3 and q5 to be on the line perpendicular to

 !
q8q9

that intersects the
 !
q8q9 at a point 3/4 of the way from q8 towards q9. In the limiting case when q1

and q7 coincide, which occurs when (r1 + r)2 = (a1 + ra2)
2 + (a5 + ra6)

2, the three arcs
_
q1q3,

_
q3q5,

_
q5q7 are all 120

�, and they all shrink as the arc q1 � q3 � q5 � q7 shrinks.

In the x1x2-plane, line
 !
q1q7 has the equation (a5 + ra6)x� (a1 + ra2)y = 0. We also have

q8 =

�
b1b2
b2
7

;
b1b4
b2
7

�

and

q9 =

�
b1
b2

+
b4b6
b2b7

;�
b6
b7

�
:

From this we get

q3 =

 
4b1b

2
7 � b1b

2
4 + 3b4b6b7

4b2b
2
7

�

q
6b2

1
b2
4
+ 7b2

2
b2
5
+ 6b1b4b6b7

4b2
7

;

b1b4 � 3b6b7
4b2

7

�
b4

q
6b2

1
b2
4
+ 7b2

2
b2
5
+ 6b1b4b6b7

4b2b
2
7

1
A

q5 =

 
4b1b

2
7 � b1b

2
4 + 3b4b6b7

4b2b
2
7

+

q
6b2

1
b2
4
+ 7b2

2
b2
5
+ 6b1b4b6b7

4b2
7

;

b1b4 � 3b6b7
4b2

7

+
b4

q
6b2

1
b2
4
+ 7b2

2
b2
5
+ 6b1b4b6b7

4b2b
2
7

1
A :
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We now determine q2, q4, and q6 as the points of intersection of the tangents lines through q1,

q3, q5, and q7. We get

q4 =

 
�7b2

1
b3
4
+ 4b2

1
b4b

2
7
� 12b1b6b

3
7
� 7b2

2
b4b

2
5
� 9b4b

2
6
b2
7

4b2b27(b1b4 � 3b6b7)
;
7b2

1
b2
4
+ 7b2

2
b+ 52 + 9b2

6
b2
7

4b2b27(b1b4 � 3b6b7)

!
:

Also

q2 = (1=d1)
�
b2[7b

3

1b
2

2b
3

4 + 7b31b
5

4 � 4b31b
3

4b
2

7 + 7b21b
2

2b
3

4b5 + 4b21b
2

2b4b5b
2

7 + 7b21b
5

4b5

� 4b21b
3

4b5b
2

7 + 12b21b
2

4b6b
3

7 + 7b1b
4

2b4b
2

5 + 7b1b
2

2b
3

4b
2

5 � 4b1b
2

2b
3

4b
2

7 + 13b1b
2

2b4b
2

6b
2

7

� 12b1b
2

2
b5b6b

3

7
+ 9b1b

3

4
b2
6
b2
7
+ 12b1b

2

4
b5b6b

3

7
+ 7b4

2
b4b

3

5
+ 7b2

2
b3
4
b3
5
+ 12b2

2
b2
4
b6b

3

7

+ 9b2
2
b4b5b

2

6
b2
7
� 12b2

2
b3
6
b3
7
+ 9b3

4
b5b

2

6
b2
7

+ (�4b21b2b4b
2

7 � 8b1b2b4b5b
2

7 + 4b2b
3

4b
2

7 � 4b2b4b
2

6b
2

7)c1];

7b1b
2

2b
2

4b
4

5 + 7b1b
4

2b
2

5b
2

6 + 7b1b
2

2b
2

4b
2

5b
2

6 + 7b21b
2

2b
2

4b
3

5 + 7b22b
2

4b
3

5b
2

6 + 12b21b4b
3

6b
3

7

+ 9b1b
2

4b
4

6b
2

7 + 7b21b
2

2b
2

4b5b
2

6 � 12b22b4b
3

6b
3

7 + 7b31b
2

2b
2

4b
2

6 + 9b21b
2

2b5b
2

6b
2

7 � 12b1b
2

2b4b5b6b
3

7

� 4b1b
2

2b
4

4b
2

7 + 7b41b
2

2b
2

4b5 � 4b41b
2

4b5b
2

7 + 4b21b
2

2b
2

4b5b
2

7 + 9b1b
2

2b
4

6b
2

7 + 7b21b
4

4b5b
2

6

� 4b31b
2

4b
2

6b
2

7 + 4b1b
2

2b
2

4b
2

6b
2

7 � 4b31b
2

4b
2

5b
2

7 + 9b1b
2

2b
2

5b
2

6b
2

7 + 12b21b4b
2

5b6b
3

7 + 9b1b
2

4b
2

5b
2

6b
2

7

+ 12b31b4b5b6b
3

7 + 7b31b
2

2b
2

4b
2

5 + 5b21b
2

4b5b
2

6b
2

7 + 9b22b5b
4

6b
2

7 + 12b1b4b5b
3

6b
3

7 + 9b24b5b
4

6b
2

7

+ 7b31b
4

4b
2

6 + 7b41b
4

4b5 + 7b31b
4

4b
2

5 + 7b1b
4

2b
4

5 + 7b42b
3

5b
2

6 + 7b21b
4

2b
3

5 + 12b22b
3

4b6b
3

7

+(�4b31b2b5b
2

7 � 4b21b2b
2

5b
2

7 � 4b21b2b
2

6b
2

7 + 4b1b
3

2b5b
2

7 � 4b1b2b5b
2

6b
2

7 � 4b32b
2

4b
2

7 + 4b32b
2

6b
2

7)c1
�

and

q6 =
1

d2

�
b2[4b

2

1b
3

4b5b
2

7 � 9b22b4b5b
2

6b
2

7 � 12b1b
2

4b5b6b
3

7 � 9b34b5b
2

6b
2

7 + 7b31b
5

4 + 12b21b
2

4b6b
3

7

+ 9b1b
3

4b
2

6b
2

7 � 7b21b
2

2b
3

4b5 + 12b22b
2

4b6b
3

7 � 12b22b
3

6b
3

7 + 12b1b
2

2b5b6b
3

7 � 4b21b
2

2b4b5b
2

7

+ 13b1b
2

2b4b
2

6b
2

7 + 7b31b
2

2b
3

4 � 7b21b
5

4b5 � 4b31b
3

4b
2

7 � 4b1b
2

2b
3

4b
2

7 � 7b42b4b
3

5

� 7b22b
3

4b
3

5 + 7b1b
2

2b
3

4b
2

5 + 7b1b
4

2b4b
2

5

+ (4b21b2b4b
2

7 + 4b2b4b
2

6b
2

7 � 8b1b2b4b5b
2

7 � 4b2b
3

4b
2

7)c1];

� 7b1b
2

2b
2

4b
4

5 � 7b1b
4

2b
2

5b
2

6 � 7b1b
2

2b
2

4b
2

5b
2

6 + 7b21b
2

2b
2

4b
3

5 + 7b22b
2

4b
3

5b
2

6 � 12b21b4b
3

6b
3

7

� 9b1b
2

4b
4

6b
2

7 + 7b21b
2

2b
2

4b5b
2

6 + 12b22b4b
3

6b
3

7 � 7b31b
2

2b
2

4b
2

6 + 9b21b
2

2b5b
2

6b
2

7 � 12b1b
2

2b4b5b6b
3

7

+ 4b1b
2

2b
4

4b
2

7 + 7b41b
2

2b
2

4b5 � 4b41b
2

4b5b
2

7 + 4b21b
2

2b
2

4b5b
2

7 � 9b1b
2

2b
4

6b
2

7 + 7b21b
4

4b5b
2

6

+ 4b31b
2

4b
2

6b
2

7 � 4b1b
2

2b
2

4b
2

6b
2

7 + 4b31b
2

4b
2

5b
2

7 � 9b1b
2

2b
2

5b
2

6b
2

7 � 12b21b4b
2

5b6b
3

7 � 9b1b
2

4b
2

5b
2

6b
2

7

+ 12b31b4b5b6b
3

7 � 7b31b
2

2b
2

4b
2

5 + 5b21b
2

4b5b
2

6b
2

7 + 9b22b5b
4

6b
2

7 + 12b1b4b5b
3

6b
3

7 + 9b24b5b
4

6b
2

7
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� 7b31b
4

4b
2

6 + 7b41b
4

4b5 � 7b31b
4

4b
2

5 � 7b1b
4

2b
4

5 + 7b42b
3

5b
2

6 + 7b21b
4

2b
3

5 � 12b22b
3

4b6b
3

7

+(4b3
2
b2
6
b2
7
� 4b2

1
b2b

2

5
b2
7
+ 4b1b2b5b

2

6
b2
7
+ 4b3

1
b2b5b

2

7
� 4b2

1
b2b

2

6
b2
7
� 4b1b

3

2
b5b

2

7
� 4b3

2
b2
4
b2
7
)c1
�

where

c1 =
q
6b2

1
b2
4
+ 7b2

2
b2
5
+ 6b1b4b6b7

d1 = b2
7
(b1 + b5)[(�b1b4b5 � b2

2
b4 � b4b

2

6
)c1

+ b21b2b4b5 � b1b2b
3

4 + b1b2b4b
2

6 � 3b1b2b5b6b7 + 3b2b
2

4b6b7 � 3b2b
3

6b7]

d2 = b27(b1 � b5)[(b1b4b5 � b22b4 � b4b
2

6)c1

+ b21b2b4b5 + b1b2b
3

4 � b1b2b4b
2

6 � 3b1b2b5b6b7 � 3b2b
2

4b6b7 + 3b2b
3

6b7]

We now need rational parametrizations of the circular arcs. The parametrization for arc q1 �

q2 � q3 is provided by

(x1; x2) =
(1� t)2q3 + 2t(1 � t)w1q2 + t2q1

(1� t)2 + 2t(1 � t)w1 + t2
; 0 � t � 1 ;

for a particular value for the weight w1, which turns out to be the cosine of half the angle 6 q1q0q3,

or cos q1q0q2. This can be computed as

w1 =
(q1 � q0) � (q2 � q0)

kq1 � q0kkq2 � q0k
:

Analogous parametrizations hold for arcs q3 � q4 � q5 and q5 � q6 � q7.

5.2 Example 2

Here we place the balls in <3 so that the line through the endpoints of a trimming arc is parallel

to the x1-axis in x1x2-space. Consider three balls B
0, B00, and B000. Choose a coordinate system so

that their centers are located at (0; 0; 0), (l12 cos�;�l12 sin�; 0), and (l13 cos(���); l13 sin(���); 0)

where l12 and l13 are the distances between the centers of B0 and B00, and between the centers of B0

and B000, respectively, � is the angle made by the three centers, with B0 at the vertex (0 < � < �),

and

� = tan�1
�
(a3 + ra4)� (a1 + ra2) cos �

(a1 + ra2) sin�

�
:

With this de�nition we have that � is the angle between the ray through the centers of B0 and B00,

and the �1-axis, and

cos� =
b2 sin�

(b2
2
� 2b2b3 cos � + b2

3
)1=2

sin� =
b3 � b2 cos �

(b2
2
� 2b2b3 cos � + b2

3
)1=2

:
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Figure 10: (a) (�1; �2) section of the (�1; �2; �3) space. The circle is a cross section of ball B0(r) of

radius r1 + r. Line l, which is parallel to the �3 axis, is the intersection of the planes �1 and �2,

which in turn are the Voronoi planes separating B0(r) and B00(r) and separating B0(r) and B000(r).

(b) control points of the trimming curve that is part of the boundary of b0(r) for Example 1. (c)

the same control points in Example 2.

Note that � is a function of r. This coordinate system is chosen so that the Voronoi planes de�ned

below intersect at the �1-axis.

Let the solvent ball have radius r. We consider the two planes �1; �2 relative to two trimming

curves c1; c2. The position of the line l = �1 \ �2 of intersection is used to track the intersection

between c1 and c2 and to give their 2D NURBS representation.

With the above coordinate system, the two planes have equations:

�1 : (cos�)�1 � (sin�)�2 = a1 + ra2 (15)

�2 : [cos(� � �)]�1 + [sin(� � �)]�2 = a3 + ra4 (16)

where

a1 =
l212 + r21 � r22

2l12
a2 =

r1 � r2
l12

a3 =
l213 + r21 � r23

2l13
a4 =

r1 � r3
l13

:

in accordance with (10).

The image of the trimming curve is the intersection of the spherical surfaces of the balls

B0(r) and B00(r), which we de�ne as the balls of radii r1 + r and r2 + r centered at (0; 0; 0)
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and (l12 cos�;�l12 sin�; 0), respectively. The implicit equation of the spherical surface of B0(r) is

then �21 + �22 + �23 = (r1 + r)2, and one �nd that the �3 coordinate of the two points of intersection

between this sphere and the line l is

�3 = �
q
(r1 + r)2 � �2

1
� �2

2
(17)

The segment of the line l = �1 \ �2 within B0(r) then has the parametrization:

�1 = (a1 + ra2)= cos�

�2 = 0 (18)

�3 =
q
(r1 + r)2 � (a1 + ra2)2= cos2 � u ;

�1 � u � 1 :

To map the surface of the ball B0(r) to a plane, we use an inverse mapping similar to (3) but

for a sphere of radius r1 + r instead of 1 and speci�cally d = 2:

x1 =
�1

r1 + r � �3

x2 =
�2

r1 + r � �3
:

From this one obtains the intersection points q1 and q7 (see Figure 10(c)) in the (x1(r); x2(r))

parameter space as

q1 =

0
@b1 cos��

q
b2
1
cos2 �� b2

2

b2
; 0

1
A

q7 =

0
@b1 cos�+

q
b2
1
cos2 �� b2

2

b2
; 0

1
A

and the trimming curve is an arc of the circle with center

q0 =

�
b1 cos�

b2
;�

b1 sin�

b2

�

and radius
b6
b2

:

In the x1x2-plane, line
 !
q1q7 is just the x1-axis, and line

 !
q8q9 is x1 = b1 cos�=b2. We also have

q8 =

�
b1 cos�

b2
; 0

�

and

q9 =

�
b1 cos�

b2
;�

b1 sin�+ b6
b2

�
:
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From this we �nd that the break points q3 and q5 are

q3 =

 
b1 cos�

b2
�

(7b26 � b21 sin
2 �+ 6b1b6 sin�)

1=2

4b2
;�

3

4

b1 sin�+ b6
b2

!

q5 =

 
b1 cos�

b2
+

(7b26 � b21 sin
2 �+ 6b1b6 sin�)

1=2

4b2
;�

3

4

b1 sin�+ b6
b2

!
:

We now determine q2, q4, and q6 as the points of intersection of the tangents lines through q1,

q3, q5, and q7. We get

q4 =

 
b1 cos�

b2
;�

b1 sin�

b2
+

4b26
b2(b1 sin�� 3b6)

!
:

Also

q2 =

 
b1 cos�

b2
�

3b2
6
(b1 sin�+ b6)

b2[b1(c2 � c1) sin�+ 3b6c1]
;�

b1 sin�

b2
+

b2
6
(c2 � 4c1)

b2[b1(c2 � c1) sin�+ 3b6c1]

!

and

q6 =

 
b1 cos�

b2
+

3b26(b1 sin�+ b6)

b2[b1(c2 � c1) sin�+ 3b6c1]
;�

b1 sin�

b2
+

b26(c2 � 4c1)

b2[b1(c2 � c1) sin�+ 3b6c1]

!

where

c1 =
q
b2
1
cos2 �� b2

2

c2 =
q
7b2

6
� b2

1
sin2 �+ 6b1b6 sin� :

6 Conclusions

We have described modeling and animation algorithms that dynamically update and render exact

and smoothed molecular surface representations for moving or growing collections of balls. Two

main classes were considered: one where the radii of the atoms grow quadratically so that the

Power Diagram remains �xed, and the other in which the atom radii grow linearly and the Power

Diagram is updated continuously. In the �rst case accuracy of the solution is sacri�ced for speed

of the computation to allow fast user interaction times. In the latter case the exact solution is

given at a higher computation cost for the case where higher accuracy is needed. The use of these

algorithms can enable one to manipulate molecular models and smoothed molecular surfaces in a

wide variety of applications.
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Appendix A: Proof of equation (8)

Let the three circles be (x� xi)
2 + (y � yi)

2 = r2i , i = 1; 2; 3. Then the three corresponding planes

are (1 + x2i + y2i � r2i ) � 2xi�1 � 2yi�2 + (1 � x2i � y2i + r2i )�3 = 0. Their point of intersection, if

unique and �nite, is given by (�1; �2; �3) = (D1=D4;D2=D4;D3=D4), where

D1 =

����������

�1� x21 � y21 + r21 �2y1 1� x21 � y21 + r21

�1� x2
2
� y2

2
+ r2

2
�2y2 1� x2

2
� y2

2
+ r2

2

�1� x23 � y23 + r23 �2y3 1� x23 � y23 + r23

����������
;

D2 =

����������

�2x1 �1� x2
1
� y2

1
+ r2

1
1� x2

1
� y2

1
+ r2

1

�2x2 �1� x22 � y22 + r22 1� x22 � y22 + r22

�2x3 �1� x23 � y23 + r23 1� x23 � y23 + r23

����������
;

D3 =

����������

�2x1 �2y1 �1� x2
1 � y21 + r21

�2x2 �2y2 �1� x2
2 � y22 + r22

�2x3 �2y3 �1� x2
3
� y2

3
+ r2

3

����������
; D4 =

����������

�2x1 �2y1 1� x21 � y21 + r21

�2x2 �2y2 1� x2
2 � y22 + r22

�2x3 �2y3 1� x2
3
� y2

3
+ r2

3

����������
:

The condition that this point of intersection lies in the interior of B is

D2

1 +D2

2 +D2

3 �D2

4 < 0 : (19)

If D4 = 0, then the point of intersection is at in�nity, and the inequality (19) cannot be satis�ed.

(If D1 = D2 = D3 = D4 = 0, then the three planes have a line in common which intersects B, and

it can be shown that the centers of the three circles are collinear and the circles intersect in two

points.)

The intersection of three disks is bounded by three circular arcs exactly when each disk contains

exactly one of the two points of intersection of the other two circles. In order for the �rst two

circles to intersect in two points, we need that the distance between their centers is strictly between

jr1 � r + 2j and r1 + r2. This can be expressed algebraically as

A1 = [(x1 � x2)
2 + (y1 � y2)

2 � (r1 � r2)
2][(x1 � x2)

2 + (y1 � y2)
2 � (r1 + r2)

2] < 0 : (20)

Next, we need that r3 is between the distance from (x3; y3) to the two points of intersection of the

�rst two circles. This condition turns out to be expressible as����������

x1 x2 x3

y1 y2 y3

1 1 1

����������

2

A1 +A2
2

[(x1 � x2)2 + (y1 � y2)2]2
< 0 (21)
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where

A2 = [(x2 � x1)(x2 � x3) + (y2 � y1)(y2 � y3)]r
2

1

+ [(x2 � x1)(x3 � x1) + (y2 � y1)(y3 � y1)]r
2

2

+ [(x2 � x1)
2 + (y2 � y1)

2][(x3 � x1)(x3 � x2) + (y3 � y1)(y3 � y2)� r2
3
] :

Remarkably,

D2

1
+D2

2
+D2

3
�D2

4
=

����������

x1 x2 x3

y1 y2 y3

1 1 1

����������

2

A1 +A2

2
:

Therefore, if the intersection of the three disks is bounded by three circular arcs ((20) and (21)

hold), then the intersection point of the three planes is within B ((19) holds). If the intersection

point of the three planes is a point within B ((19) holds), then (21) holds. Since (21) holds, we

must have A1 < 0, so that (20) holds as well, and then the three circles intersect pairwise in two

points, and each disk contains exactly one of the two points of intersection of the other two circles.
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