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ABSTRACT 

 
The imaging process in a transmission electron 
microscope (TEM) produces a number of artifacts 
including the contrast transfer function (CTF) and 
envelope functions. In addition, when electron 
cryomicroscopy is performed for purposes of single 
particle reconstruction, signal to noise ratios are very low, 
generally peaking between 0.1 and 1.0, and averaging 0.01 
to 0.1. We apply a semi-empirical model of the 
microscope artifacts to optimally correct data used for 3D 
single particle reconstructions. 

 
1. INTRODUCTION 

 
Electron cryo-microscopy applied to single particle 
processing is a methodology for reconstructing the 3D 
structure of biological molecules and macromolecular 
assemblies at resolutions currently ranging between 0.7 
and 2 nm. In this technique ostensibly identical 
molecules/assemblies are embedded in a thin layer of 
vitreous ice and imaged in the microscope. The individual 
randomly oriented particles are then located in the 
resulting micrographs and through a complicated process 
are merged to produce a 3D structure of the particle in 
question. Such biological molecules are fragile, and easily 
damaged in the high energy (100 – 400 keV) electron 
beam. So, particularly for high resolution work, the signal 
to noise ratio in the micrographs is dose-limited. Typical 
spectral signal to noise ratios for moderate sized particles 
(10-30 nm) at intermediate resolutions (1-2 nm) peak 
between 0.1 and 1.0, and average only 0.01 to 0.1. 
 
Additionally, the TEM produces a number of artifacts in 
the recorded images known as the CTF and envelope 
functions. The well-known image contrast theory [1] 
provides a good approximation to the true CTF. While 
theoretical expressions exist for several of the resolution-
limiting envelope functions [2] they can be grouped 
together and approximated as a single Gaussian [3, 4]. 
 
The problem we seek to address is optimal deconvolution 
and filtration when data is being averaged together from 
several micrographs with different CTFs and envelope 
functions. This problem has been addressed in different 
contexts several times in the past [5, 6]. Our approach 
makes optimal use of the available data and provides 

accurate envelope function correction/filtration for 2D 
averaging. Figure 1 demonstrates these effects and the 
appearance of the raw data. 
 

 
Figure 1 – a) computed projection of a GroEL particle 

[3]. b) the same particle with CTF and envelope functions 
applied. c) a typical single particle image from a real 

micrograph aligned to a. d) average of 48 particles with 
corrections applied as derived below. 

 
2. MICROSCOPE ARTIFACTS 

 
We begin by defining the CTF and how it affects the data. 
The Fourier transform of the measured microscope image 
can be described as: 
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where ),( θsM is the Fourier transform of the measured 
image data expressed in polar coordinates. The overbar 
marks complex valued functions. C(s) and E(s) represent 
the CTF and envelope functions of the microscope, 
respectively. They are real-valued functions of s (spatial 
frequency) only. This is our first assumption; the image is 
stigmatic and drift-free eliminating any azimuthal 
dependence. Extension of this derivation to astigmatic 
and/or drifting images is straightforward, but makes the 
derivation considerably more complicated. ),( θsF  
represents the Fourier transform of a true particle 



projection. In this case, this is the unknown we wish to 
regenerate from a set of measurements, ),( θsM n . 

),( θsN is a complex vector representing background 
noise present in the image. As noise, it is completely 
random and uncorrelated with ),( θsF . The noise 
distribution in real space is approximately Gaussian. 
 
Image contrast theory provides a reasonably accurate 
theoretical model of C(s): 
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k is a trivial scaling factor relating the arbitrary scale of 
),( θsF  to the specific electron dose, film speed, etc. CS is 

the spherical aberration of the objective lens (constant for 
most microscopes), λ is the electron wavelength, and ∆Z is 
defocus. Image contrast theory produces two terms, one 
for phase contrast and one for amplitude contrast. Q is the 
fractional amplitude contrast in this model. 
 
The envelope function, E(s) can be complicated, and 
contains contributions from a number of effects, such as 
spatial and temporal coherence, specimen motion, etc. [2] 
Functional forms exist for many of these effects, but other 
possible effects like specimen charging and complex 
beam-induced movement are not well characterized. In 
addition, accurately determining all of the parameters for 
such a model is virtually impossible since many of them 
are nearly singular. It has been shown that in most cases a 
simple Gaussian with a single factor, B, adequately 
describes the cumulative envelope function: 
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It is, of course, impossible to obtain an expression for 
),( θsN , since the phases, and individual amplitudes are 

completely random. The best we can do is to characterize 
the spectral profile of the intensity of the background. 
Generally the background intensity is rotationally 
symmetric, so we characterize the noise as a function of 
spatial frequency only. The sources of noise in the 
microscope and post-processing are difficult to explicitly 
enumerate, so the expression for background noise is 
purely empirical: 
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This functional form has been found to fit the data from 
several microscopes sufficiently well to provide accurate 
corrections. As will be seen below, minor inaccuracies in 
background fitting have a minimal effect on the corrected 
images. 
 

3. PERFORMING 2D IMAGE RESTORATION 
 
As seen in eqn. 2, the functional form of the CTF is 
oscillatory with a varying period, with the position of the 
first zero-crossing varying with microscope defocus. This 
provides an interesting deconvolution problem. Q is 
generally in the range 0.05 to 0.15, meaning C(s) is largely 
sinusoidal and is very small at low spatial frequencies. For 
this reason, electron micrographs are typically collected 
somewhat out of focus to improve low resolution contrast. 
 
While the oscillations of the CTF make deconvolution 
more difficult, we can also take advantage of this fact. 
Since we know the signal component is exactly zero at 
several spatial frequencies, we can determine the precise 
value of the background at these points. Focal series 
demonstrate that we can assume the background varies 
smoothly between these points, which allows complete 
separation of the signal from the background in the image 
power spectrum. Not only does this provide an accurate 
estimate of the spectral signal to noise ratio, but it also 
provides the opportunity to accurately determine CTF and 
envelope function parameters. 
 
The data we wish to process consists of i micrographs, 
each containing a large number of particles in random 
orientations. In this derivation, we consider the process of 
combining n particles, all in the same orientation, selected 
from the set of micrographs. This set of n may contain 
several particles from each micrograph. Our goal is to 
produce a particle average that matches the corresponding 
projection of the true 3D structure as closely as possible.  
 
In considering how to optimize the 
deconvolution/filtration process, we begin with our model 
of the raw data (eqn 1): 
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),(, θsM nΨ  represents any particle, n, in  approximately 
the same 3D orientation, Ψ, from any of the i micrographs. 

),( θsFΨ  represents the true 2D structure factor (Fourier 
transform) of the particle in this orientation. Note that, as 
the true answer, ),( θsFΨ is the same for all n particles. 
Our problem is to recover ),( θsFΨ  as accurately as 
possible given only ),( θsM n . Clearly we will need to 
characterize )(sCn , )(sEn and the spectral profile of 

),( θsNn  to achieve this result. We currently utilize an 
eight parameter model, including k, Q, ∆Z, B and n1-4. All 
other parameters in the above equations are known 
microscope constants. To determine the needed 
parameters, we consider the one dimensional power 
spectrum of all of the particles in a single micrograph. 



This assumes that none of the micrograph parameters vary 
substantially within a micrograph:
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The l subscript is a sum of all particles within a 
micrograph regardless of orientation and the i subscript 
discriminates between different micrographs. )(2 sM i  
approximates the one dimensional power spectrum of the 
particles in a micrograph. There is an arbitrary scaling 
factor associated with the final solution, which allows us 
to drop the normalization constant at the front of this 
expression. We thus obtain 
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This expression does not contain a vector cross term 
between F and N since N is incoherent with respect to F. 
This makes the cross term the average of a random vector, 
which goes to zero with sufficient averaging. Techniques 
for obtaining the eight parameter values using eqn. 6 are 
described elsewhere ([3, 4, 7]). This expression is used 
solely for determining the micrograph parameters, and F 
in this case is an average over all 3D particle orientations.  
 
Assuming we have obtained accurate parameter values for 
C(s), E(s) and N(s) for each micrograph, we need to 
determine how to best reconstruct ),( θsFΨ  using 
particles in the same orientation from several micrographs. 
We will look for the best solution in a least-squares sense. 
In the following derivation, we determine ),( θsAΨ , the 
final average of particles in orientation Ψ, which should 
approach ),( θsFΨ . To perform a 3D reconstruction, this 

process is repeated for all orientations. ),( θsAΨ  will be 
represented as a weighted average in Fourier space of the 
individual particle images. That is: 
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where kn(s) are the particle weights. We wish to obtain 
an ),( θsAΨ  with the highest possible signal to noise ratio. 
The absolute signal to noise ratio of an individual particle 
(using the micrograph average parameters for each 
particle) is: 
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The absolute signal to noise ratio of ),( θsAΨ  is then 
simply: 
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We wish to maximize RA, giving n constraints for all s: 
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In addition, we must provide a normalization constraint to 
define the overall filtering of the data. We have assumed 
that the data in each image, ),(, θsM nΨ , is normalized 
such that F(s) has the same amplitude in each image. For 
the moment, we wish to maintain this normalization: 
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Solving eqn 11,12 simultaneously gives: 
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This can be rewritten a bit more transparently as: 
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which is simply the relative spectral signal to noise ratio of 
the image. That is, the individual micrographs are 
weighted by their relative signal to noise ratios at each 
spatial frequency. The division by C(s)E(s) performs the 
actual deconvolution. The weighting term prevents 
infinities at the zeros of the CTF except in cases where 
there is a coincident zero in all data sets. It is therefore 
critical that several micrographs with different defocuses 
are used. Note also that FΨ

2(s), the 1D structure factor of 
the projection, is not required to determine kn(s). 
 
The normalization imposed in eqn. 12 produces an 

),( θsAΨ  with a signal component approaching ),( θsFΨ , 
but it ignores the presence of noise, which will be 
substantially upweighted. For interpretation of the results 
we wish ),( θsAΨ  to match ),( θsFΨ as closely as 
possible in the least-squares sense in real space. That is, 
we wish to adjust the normalization such that: 
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is minimized, where aΨ(x,y) and fΨ(x,y) are the inverse 
Fourier transforms of ),( θsAΨ and ),( θsFΨ  respectively. 
 
The solution to this well-known problem is simply to 
include a Wiener filter [8]: 
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where SNR(s) is the spectral signal to noise ratio of 
),( θsAΨ . Obtaining a reliable SNR(s) is the main 

difficulty involved in applying Wiener filters in most 
applications. However, in this case, an accurate estimate of 
the absolute SNR(s) is already available from the 
derivation above. Eqn. 10 reduces to: 
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FΨ(s), or an adequate approximation to it can be obtained 
using a variety of methods, including x-ray solution 
scattering experiments or combination of low resolution 
EM data with representative PDB  data. 
 
This final filtration process is completely separable from 
the deconvolution/weighting process, and can be 
incorporated into a single overall correction equation: 
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This provides an optimal solution for the CTF correction 
problem in a least-squares sense. It can be fairly trivially 
extended to include astigmatism and drift. However, 
presence of these artifacts may also lead to errors in 2D 
alignment and nonisotropic resolutions, so such data 
should be avoided whenever possible. 
 

4. CONCLUSIONS 
 
We have presented a mathematical model for optimal 
correction of TEM artifacts when performing 2D 
averaging. This methodology is incorporated into the 
EMAN [3, 7] single particle reconstruction software suite, 
which provides nearly automated correction of these 
artifacts in the context of a 3D single particle 
reconstruction. 
 
If particles treated with this methodology in the context of 
producing a 3D model, the additional averaging should be 

taken into account in the Wiener filter, otherwise the 3D 
model will be moderately overfiltered. The overfiltration 
is mitigated by the fact that the most averaging occurs at 
low spatial frequencies where the signal to noise ratio is 
already high, and hence the Wiener filter is effectively 1.0. 
Relatively little averaging occurs at higher spatial 
frequencies when using typical reconstruction parameters.  
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