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Abstract

In single particle analysis, the alignment of two-dimensional images is a fundamental step aimed at bringing into
register various particle views of biological macromolecules observed with the electron microscope. The computational
efficiency of this step is a deciding factor in design of alignment strategies for large sets of noisy data and in
development of three-dimensional structure refinement methods. In addition, the accuracy of the alignment method
varies depending on the numerical solutions adopted to efficiently perform exhaustive searches for three orientation
parameters. The selected alignment methods are analyzed in terms of their computational complexity and the estimates
of numbers of arithmetic operations for each method are given. The tests of alignment accuracy are performed using
images simulated in accordance with the linear theory of image formation in the electron microscope. It is demonstrated
that the efficiency of the alignment methods can be improved if approximate centers of gravity of particle views are
known. The accuracy of the methods considered is largely affected, particularly for high noise levels, by the order in

which interpolation steps are applied. © 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The problem of determining the relative orien-
tations of two-dimensional (2D) images is a
fundamental one in single particle analysis of
electron microscope (EM) data [1]. The images
collected at the microscope are projections of
presumably the same biological macromolecule
found in various orientations on the support grid.
Depending on the specimen, the preparation
technique used, and other, rather poorly under-
stood factors, the number of exhibited orientations
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can vary largely. The observed views may have a
nearly uniform distribution, or there can be few
strongly preferential orientations. In either case, it
is essential to sort through the amassed data set
and select homogenous subsets of particle views
[2,3]. This is achieved through 2D alignment,
which in its core has a step during which two 2D
images are brought into register, and through
subsequent classification of the data. Most 2D
alignment methods used in EM are iterative [4,5];
thus, their efficiency critically depends on the
number of arithmetic operations required to align
two images

The ultimate goal of single particle analysis is to
obtain a faithful representation of the 3D distribu-
tion of mass of the biological macromolecule.
After initial steps of 2D alignment and classifica-
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tion, a preliminary low-resolution 3D structure is
obtained. Various 3D refinement methods aimed
at improvement of the resolution of the structure
have been proposed [6-11]. In most of them,
particle views have to be compared with large
numbers of reference images—generated by pro-
jecting the 3D structure in a number of quasi-
evenly spaced directions—in order to find the
orientation parameters necessary to perform the
3D reconstruction. These refinement methods rely
heavily on the alignment of two 2D images or, to
be more precise, on the comparison of the input
data with a set of 2D reference images. Whether
this step is implemented exactly as described
depends on the particular method used, but
most techniques can be conceptually reduced to
such an operation. Usually, the number of
particle views is larger than the number of
reference images by at least an order of magnitude.
Therefore, to reduce the time of calculations, every
effort has to be made to pre-calculate and store in
the computer memory an appropriately trans-
formed set of reference images. Due to a very large
number of particle views analyzed in cryo-EM
(currently in the range of 10%, soon expected to
reach 10° images [12]) the efficiency of 3D
refinement methods is the readily recognizable
limiting factor in the efforts to improve resolution
of the results.

2D alignment methods can be divided into two
classes: those that employ exhaustive search in
order to find three orientation parameters, and
those that use either simplifications (separate
searches for translation and rotation parameters)
[4], or take advantage of invariant image repre-
sentations [13-16]. More recently, an interesting
approach based on the singular value decom-
position of the sinogram image representation
was proposed [17]. Although this method is
potentially very efficient, the details of the
implementation have to be yet fully worked out.
Therefore, in what follows we will primarily
focus on the exhaustive search methods, as in
most cases they yield superior results. In addition,
we will make comparisons with an autocorre-
lation function-based method [18], which due to
employment of invariants is computationally very
efficient.

2. Methods

The alignment of 2D images in single particle
analysis should be considered as a special case of
the general problem of template matching [19].
The templates, or as they are referred to in single
particle analysis, the reference images, are selected
particle views obtained either with the help of a
clustering method, or generated as 2D projections
of the available 3D reference structure. Thus, we
can assume that reference images are at least
approximately centered and that there is only one
object within the image frame. Individual particle
views, as windowed from micrographs, have to be
compared with reference images in order to find
the most similar one and in this process to find
three orientation parameters: two translation
parameters and the rotation angle. In what
follows, we will assume that the approximate
particle size is known and that the image size n was
chosen not to exceed the particle size by more than
15-20%. Due to technical reasons, we will also
assume that the particle views are always located
in the image frame within a circle with a radius
n/2. The geometrical constraints described are
illustrated in Fig. 1.

Finally, due to random orientations of par-
ticles on the support grid, it can be expected that
half of the particle views will be mirrored ver-
sions of the other half. In practice, due to
anisotropic shapes of most of the macromolecules,
such an even division is unlikely; neverthe-
less, during both the 2D alignment and 3D
refinement of the structure it is necessary to
consider particle views related by mirror opera-
tion. As will be explained later, some 2D alignment
methods yield themselves to this requirement
better than others.

All 2D alignment methods considered are aimed
at finding such transformation parameters that the
least-square discrepancy between two images f
and ¢ is minimized:

/ |f (1) — g(Tu)|*du— min, (1)

where u = [u, u, 1 ]' is a vector containing the
coordinates, and T is the transformation matrix
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Fig. 1. The geometrical constraints of the 2D alignment problem. (a) The reference particle view is placed within a square image frame
n x n pixels and its size is such that it can be bounded by a circle with a radius no larger than » = n/2. (b) The particle view, which size
is bounded by the same radius as the reference view, can be located within a circle centered on discrete locations within the image
frame, such that the maximum translation is kX = n/2 — r. The number of possible translations is (2k + 2 =1

given by
cos —sinf x
T@O,x,y)= |sinf cosO y (2)
0 0 1

and dependent on three transformation para-
meters: rotation angle 6 and two translations x
and y. It has to be noted that minimum of Eq. (1)
can be found rapidly using the fast fourier
transform (FFT) algorithm if only the x—y
translation is sought (2D FFT), or if only the
rotation angle is needed (1D FFT).

2.1. Measure of the accuracy of alignment

2D alignment methods yield three transforma-
tion parameters: rotation and two trans-
lations(6, x, y). These parameters define how a
source image is transformed into a destination
image. The transformation 7 is applied to the
source image /; to transform all the pixels into
destination image I, and the new coordinates
v=_[vx v, 11" are computed using a matrix
multiplication v = Tu.

In order to compare two transformations 7}
and T, we have to define a measure of error
between them. We will define this measure as a
maximum pixel discrepancy calculated over the
area of object support that results from applica-
tion to the image of a combined transformation

T2_1T1Z

emax(Tls TZ) = max H5T1,T2(M)Ha (3)
ueD,

where D, is a disk with radius r that corresponds to
the particle size, and the error vector er, r,(u) is
given by

enn,(W)=v—u= T{lTlu—u = (T{lTl —Du.
4)

Obviously, if there is no error between two
transformations, that is if 71 = 75, then ep, 1,(u) =
0 and e(Ty,T>) =0. |er.r,(u)|* is a positive
bilinear form; thus, it has only one nontrivial
minimum. Since there is no scale transformation
between both axes, the form HeTl,Tz(u)H2 is also
isotropic. H8T1,T2(“)H2 has a form:

ler, . 1* = atllu — ml|* + B, )

where m is the point at which HST],TZ(M)HZ reaches
minimum with value f. In order to calculate the
pixel error we have to find point M e D,, which
maximizes ler, @) 2. Maximization  of
Hng’TZ(u)H2 is equivalent to maximization of the
distance between M and m. The point M is on C,,
a circle delimiting D,, which intersects the line
defined by the point m and the center of C;:
—m

M=r (6)

d
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Thus, the final expression for the pixel error is

emax(Tl,T2) = H'ng,Tz(M)H

= ol M —m|*+B. ()

In order to calculate m,o,andf, we have to
derive the explicit expression of HsTl,Tz(u)\|2. The
evaluation of &7, (1) requires calculation of
T{l T::

T{l = T(—0,,—x3cos 0, — 2 sin 0,
X3 sin 0, — yycos ),
T,'Ty = T(AO, X, Y),

where

AO =0, — 0,,

X = (x; —xp)cos O, + (¥ — y2)sin 0y,

Y =—(x] — XQ)SiIl 0, + (}/1 — yz) cos 0. (8)

Thus, &7, 1,(u) is given by

[cosAO—1 —sinA8 X | [u,
er.T,(U) = sin A0 cosA0—1 Y| |u
L 0 0 0 1
fa —b X [uy
=1|b a Y||u 9)
10 0 0 1

and its square norm by

ler, () = (auy — buy + X)?
+ (buy + au, + ). (10)
The partial derivatives of Eq. (10) are
oller,., W)
ox

ller, r,w)I*
oy

=2((a* + P*)uy + aX + bY),
=2((a* + bu, — bX +aY).  (11)

For m to be the minimum of HsTI,TZ(u)HZ, both
derivatives have to be equal to zero. Solving the
corresponding system of equations, we obtain

—aX —bY

m bX —aY |. (12)

T2

Using Egs. (6), (8), (10) and (12), the equation
for pixel error can be rewritten as
emax(T1, T2) = d

sin% + VAX2 + Ay?, (13)

where A0 =0, —0,,Ax =x; — x2,Ay =y1 — 2,
and d is the diameter of the particle. The pixel
error given by Eq. (13) has two components. The
first one is proportional to the angular error
between transformations, and the second one is
simply the translation error between transforma-
tions.

Similar expression can be derived for an average
pixel error between two images:

A
eane(T1, T) = \/ d?sin’ 79 +AX2 + A2 (14)

Since both measures are monotonic, they will
yield similar results. Nevertheless, the maximum
pixel error is more informative as it can be directly
related to the highest achievable accuracy of the
alignment methods set by the pixel size used.
Therefore, in what follows, we will use the
maximum pixel error (Eq. (13)) in the analysis of
the alignment methods.

3. Results
3.1. Preparation of the test image

In the preparation of the test image, we
attempted to emulate the image formation process
in the electron microscope, as described by the
linear contrast transfer theory (CTF) (weak-phase
approximation) [20]. In addition, we designed the
test image such that the signal to noise ratio
(SNR = 631/ 0noise) 15 Well defined and can be
easily controlled both in real as well as in Fourier
space. In the latter case, the SNR is referred to as
spectral SNR (SSNR). The original test image was
chosen to be a binary, quasi-rectangular shape
approximately 34 x 18 pixels placed in a window
63 x 63 pixels (Fig. 2a). First, in order to equalize
the power spectrum, the squared Fourier ampli-
tudes of the image were adjusted such that their
rotational average became constant as a function
of spatial frequency (Fig. 2b). Second, a CTF was
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Fig. 2. Preparation of the test image. (a) The original binary test image. (b) The binary image after an adjustment of its Fourier
amplitudes so their rotational average is constant as a function of frequency. (c) The final test image obtained by application of a CTF
to image (b). (d) Test image (c) corrupted by Gaussian noise resulting in SNR=0.1. (e) Test image (c) after application of a Gaussian
low-pass filter (half-width =10 Fourier pixels) and corrupted by Gaussian noise resulting in SNR =0.15. The SSNR in image (¢) has an
overall shape of the square of the CTF applied to the image attenuated by the Gaussian envelope function. Thus, the SSNR is 0.06 at
Fourier pixel 1, increases to a maximum of 0.45 at Fourier pixel 10, has first zero at Fourier pixel 14, and subsequently has a number of
maxima with steadily decreasing values. (f) The rotationally averaged power spectrum of the test image (c).

applied to the image (for the definition of the CTF
see Eq. 8 in Zhu et al. [21]). The sign of the CTF
was chosen such that the positive contrast of the
image was preserved (Fig. 2¢). Since the CTF of an
electron microscope has a sinusoidal form, the
parameters of the CTF used were adjusted so that
the value at Fourier pixel zero was 0.1, the first
maximum of 0.85 was at Fourier pixel nine, and
the first zero-crossing was at Fourier pixel thirteen.
Finally, a Gaussian noise, therefore a noise with
constant power spectrum, was added to the test
image. This was done in two different ways during
respective tests. In the first set of tests, only the
amplitude of the noise in real space was varied;
thus, the resulting images had a CTF-derived
shape of the SSNR (Fig. 2d). The level of noise
was adjusted to produce test images with SNR in
the range between 0.001 and 7.5. In the second set
of tests, in accordance with the general tendency of
images of macromolecules to have their power

spectrum decreasing as a function of spatial
frequency and in order to emulate various resolu-
tion-limiting factors of the image formation
process (usually described by the so-called envel-
ope functions [21]), the test image was low-pass
filtered using a Gaussian function with the half-
width ranging from 2.5 to 30.0 Fourier pixels. This
operation, after addition of a constant level of
Gaussian noise, resulted in test images that had
SSNR decreasing as a function of spatial fre-
quency. For each of these images, the effective
SNR was also calculated.

During the tests, the CTF-modified, but noise-
free source image was transformed using a
predefined set of transformation parameters (rota-
tion angle 120°, x translation 4 pixels, and y
translation —4 pixels). Since the alignment meth-
ods tested employ exhaustive searches, the parti-
cular values chosen for the transformation
parameters are irrelevant. Next, independent
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Gaussian noise was added to both images and the
transformation parameters were calculated using
the chosen 2D alignment method with the source
image selected as a reference image. For the
alignment method based on resampling to polar
coordinates, the search range k was set to 5. The
error of the transformation found was calculated
using Eq. (13). Since the results proved to be quite
unstable, particularly for low SNR, the tests were
repeated 1000 times using different realizations of
Gaussian noise, and the average pixel error and its
standard deviation were calculated and used for
the final analysis.

In order to test the dependence of the alignment
accuracy on the shape of the test object used, all
the tests were repeated using another, quasi-
circular test object. Since the results were essen-
tially the same as those described below, for the
sake of brevity they are not shown.

All tests were performed using the SPIDER
image processing system [22]. The 2D alignment
using resampling into polar coordinates is avail-
able in this system as the AP NQ command (see
the manual of SPIDER commands at http://
www.wadsworth.org/spider_doc/spider/docs/spi-
der.html). The remaining methods are implemen-
ted as SPIDER scripts and are available upon
request from the authors.

3.2. Elementary operations in 2D alignment
methods

All 2D alignment methods take advantage of a
small number of basic operations. In order to
make comparisons, we will define these operations,
assign to them the number of arithmetic opera-
tions they require, and express each 2D alignment
method as a sequence of elementary operations
chosen. It has to be understood that efficiency of
practical implementations varies, but our concern
is with the order of magnitude of the number of
operations rather than with intricacies of particu-
lar implementation. Thus, we will consider the
following five elementary operations:

® shift image in real space by integer number of
pixels—negligible, as it does not require inter-
polation,

rotate image—n?,
2

project image onto 1D line—n-,
convert image to polar coordinates—n?,
1D FFT—nlog, n,

2D FFT—2n? log, n.

Three of the elementary operations listed (rota-
tion, projection onto 1D line, conversion to polar
coordinate) require interpolation of an image in
order to determine image values between the
original grid points. Both the accuracy of the
interpolation and the number of arithmetic opera-
tions depend on the interpolation method used.
The often-used bilinear interpolation is the sim-
plest and fastest one, but it is the least desirable in
terms of the quality of the results. Higher-order
interpolations reduce detrimental low-pass filter-
ing effects at the expense of larger number of
arithmetic operations necessary to perform them.
For the tests described, we used quadratic inter-
polation implemented in the SPIDER system.

In terms of the elementary operations selected,
calculation of a 2D auto-correlation function
(ACF) using FFT requires one forward FFT
(2n*log, n), calculation of the modulus of the
Fourier transform (n*), and one inverse FFT
(2n? log, n), bringing the total number of opera-
tions to n*(4log, n + 1). Taking into account that
to avoid aliasing effects the image has to be
padded with zeroes to at least double the original
size, the number of operations is 4n*(4log, n +
5)=16n? log, n.

For each 2D alignment method, two phases of
the procedure are considered. During the first one,
the reference images are prepared; during the
second one, the particle views are compared with
the reference images.

3.3. Direct alignment in real space

Two images are compared directly in real space
using exhaustive search, which means that Eq. (1)
has to be evaluated for all possible orientations of
the particle view. During the first phase, 27n/2 =
nn versions of the reference image progressively
rotated by angle 360/(nn) degrees have to be
created, which requires (nn)n®> = nn’ arithmetic

operations. In case many different reference
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images are used, this step has to be repeated for all
of them. During the second phase, for each
possible shift (see Fig. 1) the particle image has
to be compared with all the rotated reference
images, which requires (nn)n> = mn® arithmetic
operations. With the number of possible shifts / =
(2k + 1)%, the total number of operations is Izn’.
If the mirrored versions of reference images are
to be considered, both the memory requirements
and the number of operations have to be doubled.
The advantages of this method are that except for
rotation in real space, no other interpolation or
transformation is required and that in the algo-
rithm discrepancy forms other than that given by
Eq. (1) can be employed, for example the L; norm.

3.4. Direct alignment using 2D FFT

The rotated versions of reference images are
required, but the translation parameters are
estimated using the standard FFT technique,
which is employed to calculate a 2D discrete
cross-correlation function (CCF). Therefore, un-
like in the direct alignment in real space, the
applicability of this method is restricted to the
alignment criterion given by Eq. (1). During the
first phase, 2nn/2 = nn versions of the reference

@ n

image progressively rotated by angle 360/(nn)
degrees are calculated (nn’) and their 2D FFTs
are calculated ((nn)(2n*log, n) = 2nn’ log, n) and
stored. Thus, for the first phase n’*n(2log, n+ 1)
operations are needed. During the second phase,
the FFT of the particle image has to be calculated
(2n? log, n), multiplied by each rotated version of
the reference image ((nn)n® = 2nn’), and inverse
FFTs have to be calculated ((nn)(2n*log, n)
= 2nn’ log, n), bringing the total number of
operations to 2nn’(log, n + 1) + 2n* log, nx 2nn’
log, n.

If the mirrored versions of reference images are
to be considered, both the memory requirements
and the number of operations have to be doubled.
The advantage of this method is that there is no
restriction on the estimated maximum shift. The
disadvantages are caused by the practicalities of
the CCF estimation using the FFT technique.
First, to prevent real space aliasing effects, the
images have to be padded with zeroes to double
the image size. This increases the number of
estimated operations to = 167n’ log, n. Second,
due to the padding, the CCF coefficient (ky, k) has
(n — ky)(n — k,) non-zero contributions; thus, dif-
ferent CCF coefficients have different statistical
weights.

jiR

(b)

Fig. 3. The principle of 2D Discrete Radon Transform. (a) The 1D projection of a 2D object is calculated by summation of pixels
within the circle with radius r = /2 along lines parallel to the direction of projection at the angle «. (b) The set of nn 1D projections
forms the 2D DRT. The 1D projections are arranged in a 2D matrix according to the value of the projection angle forming a so-called

sinogram.
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3.5. Sinograms

Simultaneous search for three orientation para-
meters can be carried out using a 2D discrete
radon transform (DRT) technique, as proposed by
Radermacher [7]. First, the 2D DRT is formed by
calculation of nn/2 1D projections of a 2D image
in angular directions evenly spaced in the range
[0,m [(Fig. 3). This can be carried out either in real
space (as assumed in the description below), or
using interpolation in Fourier space [23]. The
latter approach, even if computationally efficient,
is bound to result in non-local interpolation
artifacts in real space. In either case, the number
of required line projections is reduced because the
line projection calculated at the angle ¢ + 180 is a
mirrored version of the line projection at the angle
¢@. The resulting set of line projections is often
referred to as a “‘sinogram’ [24]. In this represen-
tation, the rotation of the image corresponds to
permutations and mirroring of the lines in DRT,
and the translation to appropriate shifts of the
DRT lines [7].

In order to perform the 2D alignment, the 2D
DRTs of reference images have to be formed and a
1D FFT of each line projection in the sinogram
has to be calculated. This requires (zn)(n>+
nlog, n) operations. During the second phase,
the 2D DRT of a particle view and 1D FFTs of
line projection have to be calculated ((mn)(n> + n
log, n)). Next, for each of mn rotation angles
(corresponding to the appropriate permutation of
lines in the sinogram), 1D CCFs between pairs of
lines have to be calculated ((mn)(nn/2)(nlog, n)
= 0.57°n* log, n) and the cross-correlation coeffi-
cients have to be calculated by appropriate
summations of 1D CCFs ((nn)(nn/2)n = 0.57°n%)
[7], bringing the total number of operations to
0.57*n(log, n + 1). Since the 1D lines in sinograms
have to be padded with zeroes to double the
length, the number of operation is =~4n°n* log, n.

Comparisons with mirrored versions of refer-
ence images can be implemented efficiently by
taking advantage of the fact that the 2D DRT
representation of the mirrored image is obtained
from the 2D DRT of the original image by
changing the assignment of angles in line projec-
tions by ¢ — 180 — ¢.

3.6. Alignment using resampling to polar
coordinates

In this method, the image is resampled to polar
coordinates with respect to selected origin loca-
tions within the image frame (Fig. 3b)—which
corresponds to shifts of the image—and the 1D
FFT algorithm is used to rapidly calculate the
rotation angle for each of the resampled versions
of the image. In order to prepare the reference
images, it is enough to resample them to polar
coordinates (7%) and calculate 1D FFTs for each of
the resulting concentric rings. The length of each
ring is no larger than zn; thus, the number of
operations is less than (n/2)nnlog, nn =
0.57n? log, mn. During the second phase, the
particle view has to be resampled to polar
coordinates (n?), 1D FFTs have to be calculated
(0.571° log, nn), multiplied by 1D FFTs of the
reference image (n?), and finally an inverse 1D
FFT has to be calculated (nnlog, nn) (for details
of the implementation see [4]). This sequence of
operations has to be repeated for /= (k + 1)
translations of the particle view, bringing the total
number of operations to 0.5/7n’ log,n n.

Comparisons with mirrored versions of refer-
ence images can be implemented very efficiently by
taking advantage of the fact that in 1D Fourier-
polar representation of an image, its mirrored
version is obtained by taking the complex con-
jugate of the 1D Fourier-polar transform.

3.7. Indirect alignment using autocorrelation
Sfunction

This is the only method considered that does not
employ an exhaustive search for orientation
parameters. Instead, it is based on the fact that
the ACF of an image is invariant with respect to
the translation of this image. Thus, the search for
orientation parameters can be broken into two
steps. First, the rotation angle between ACFs of
both images is calculated. Because the ACF is
centrosymmetric, there is a 180° ambiguity in the
angle obtained, so it has to be resolved by testing
both possibilities. Thus, during the second step,
one of the images is rotated by the angle found and
both the translation parameters and the value of



L. Joyeux, P.A. Penczek | Ultramicroscopy 92 (2002) 33—46 41

the correlation coefficient between two images are
calculated using the FFT technique. Next, this step
is repeated using the angle value increased by 180°,
and the corresponding shift and correlation
coefficient are found. Finally, two correlation
coefficients are compared and orientation para-
meters corresponding to the larger of the two are
chosen.

For the method to perform well, it is necessary
to modify the ACFs used. Our goal is to find
orientation parameters that minimize the discre-
pancy between two images in real space, as stated
by Eq.(1). This equation can be evaluated in
Fourier space:

If — g <I|F — G = |F] — 2FG* + |G/, (14)

where by capital letters we denoted Fourier
transforms of respective real space functions. If
the search for rotation angle is carried out using an
ACFs, the equation corresponding to Eq. (14) is

IACF(f) — ACF(g)P* = ||IF* — |GI*]?
=|FI* = 2|FP|GP + |GI*. (15)

To have the norm of Eq. (15) the same as the
norm of Eq. (14), we have to divide FTs of ACFs
by moduli of the FTs of respective functions, that
is instead of using an ACF defined as

ACF(f) = FT'(IFF) (16)

we have to use the so-called self-correlation
function (SCF) [18], defined as

SCF(f) = FT '(|F]). (17)

In order to prepare reference images, for each its
Fourier transform has to be calculated (21> log, 1)
and stored, then its SCF has to be calculated,
which requires calculation of moduli of the FT (n?)
and the inverse FFT (2n? log, n), bringing the total
number operations per reference image to
n*(4log, n+1). During the second phase, the
SCF of the particle view has to be calculated
(n*(41og, n + 1)), the angle between the two SCFs
has to be calculated using the resampling to polar
coordinates technique described in Section 3.6
(n*(nlog, n+ 1) + nlog, n), then the CCF has to
be calculated for both the angles found
(n* +2n’log, n) and for the angle increased by
180 degrees (2n* + 4n* log, n). The latter requires

additional rotation and an additional FFT of the
image. The total number of operations required is
~n*((8 + n)log, n + 4). Since the images have to
be padded with zeroes to double the size, the
number of operations is ~45n? log, n.

Comparisons with mirrored versions of refer-
ence images are achieved during the SCF-based
angle calculation using the strategy described in
Section 3.6.

3.8. Accuracy of the alignment in case of the
uniform noise

The accuracy of three selected 2D alignment
methods was compared: “Direct alignment using
FFT” (Section 3.4), “Alignment using resampling
to polar coordinates” (Section 3.6), and “Indirect
alignment using autocorrelation function” (Sec-
tion 3.7). We omitted two methods. The ““Direct
alignment in real space” (Section 3.3) is imprac-
tical, as indicated by the number of arithmetic
operations required (Table 1). Moreover, as far as
the dependence on the interpolation errors is
concerned, it can be implemented in a way that
makes it equivalent to the much more efficient
alignment using resampling to polar coordinates
(see Discussion). The sinograms-based method is
in turn equivalent both in terms of efficiency (see
Table 1) and interpolation errors to the direct
alignment using FFT.

Test images were obtained as described in
Section 3.1. The variance of the CTF-modified
simulated image was 0.0189, and after addition of
uniform Gaussian noise with the variance ranging
from 25 to 0.0025, the test images had SNRs
ranging from 0.00075 to 7.56. Since the power
spectrum of the simulated image had the shape of
squared CTF, the addition of uniform noise
resulted in the same, CTF-derived distribution of
SSNR in test images.

The plot of pixel error (Eq. (13)) versus SNR for
the three alignment methods tested is given in
Fig. 4. Since for both extremes of SNR values pixel
errors for all methods remained constant, we show
only the interesting part of the plot for SNR
between 0.01 and 2.0. For each alignment method,
the shape of each curve, and thus the general
dependence of the accuracy of methods tested on
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Table 1

Numbers of arithmetic operations for five selected 2D alignment methods and comparisons of their efficiency

Number of operations per image 3.3 34 3.5 3.6 3.7

i3 33 — 2(logy, m)'/? —1/2 (nlog,n)'/*> —1/2 No k 2(log, n/(mn))'2=1/2

1671’ log, n
4r’n’ logy n
0.57in? logynn
451 logy n

3.4 1/(161log, n) — No k
35 I/(4nlogym)  ~1 — Qqmn)'* —1/2 No k

3.6 2n/log, tn (32qn)/1 (8qmn) /1 — (22q/m)'* —1)2
3.7 min/(45log,n) ~n ~n 7l /(90q) —

22qm)'* —1/2 No k

n is the image size, k is the maximum translation of the image, / = (2k + 1)*is the number of possible translations, and ¢ =
log, n/log, nn. The alignment methods are: 3.3—direct alignment in real space, 3.4—direct alignment using 2D FFT, 3.5—sinograms,
3.6—alignment using resampling to polar coordinates, 3.7—indirect alignment using autocorrelation function (the numbers refer to
the section number in the text containing detailed descriptions of each method). The lower triangle of the table contains ratios of the
number of operations of two methods. Thus, cell (3.5, 3.6) contains a ratio of number of operations required by the sinograms methods
to the number of operations required by the method based on resampling to polar coordinates. Choosing image size n = 128 and
maximum translation k = 6, we conclude that the sinogram method would require 15 times more arithmetic operations. The upper
triangle contains expressions indicating that maximum translation k for which a method that performs explicit translations (3.3 and
3.6) remains faster than a method that yields results for all translations (3.4, 3.5, and 3.7). For example, according to the expression in
cell (3.6, 3.5), for image size n = 128 the method based on resampling to polar coordinates remains faster than the sinograms method
for translations up to k = 25.

a——i
[
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Error (Pixels)
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0.01
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Fig. 4. Pixel error versus SNR for three 2D alignment methods in the case of the uniform noise: (a) alignment using resampling to

polar coordinates; (b) indirect alignment using autocorrelation function; (c) direct alignment using 2D FFT. Vertical bars represent the
standard deviation (divided by 5 for best visualization).

SNR are similar, although the obtained pixel
errors are significantly different, as evaluated by
Student’s z-test. As expected, the pixel error
decreases when SNR increases. For small SNR
values (less than 0.04), each curve reaches a
maximum that corresponds to the average max-
imum pixel error of 26, 23, and 30 for the direct
alignment using FFT, the alignment using resam-

pling to polar coordinates, and the indirect
alignment using autocorrelation function, respec-
tively. In this SNR region, the results of 2D
alignment are nearly random, although the dis-
tribution of alignment parameters depends on the
method used. In general, the distribution of
rotation angle found is, for all methods, uniform
in the range from 0° to 360°. The distribution of
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translation parameters is random and uniform in
the range from —k to k for the alignment using
resampling to polar coordinates, and Gaussian
centered on the origin for the two other methods.
The non-uniform distribution of translation para-
meters in latter cases is caused by the particular
implementation of the two methods, which in-
volved application of a circular mask to test
images. It is also worth noting that the maximum
possible pixel errors for each method are much
larger than the average maximum errors obtained.
The maximum possible pixel error can be calcu-
lated using Eq. (13) and for the range of search
parameters used; this error is 63 for the alignment
using resampling to polar coordinates, and 100 for
two other methods.

Within the range of SNR between 0.2 and
0.04 the pixel error increases sharply. In this
relatively narrow region, the reliability of the three
alignment methods deteriorates rapidly. This
transition occupies the broadest range of SNR
for the direct alignment using FFT. Of the main
interest is the fact that for such a narrow transition
region it is for practical purposes difficult to expect
partially correct results of 2D alignment. Instead,
it is most likely that, depending on the quality of
the data, the results of alignment will be either
correct or incorrect for all images analyzed. If we
chose the acceptable limit of 2D alignment
accuracy to be 0.5 pixel (below this value inter-
polation artifacts begin to play major role), than
the corresponding value of SNR is 0.1 for the
alignment using resampling to polar coordinates
and 0.3 for the indirect alignment using auto-
correlation function. For the direct alignment
using FFT, the pixel error is larger than 0.6 for
all SNR values used.

3.9. Accuracy of the alignment in case of Gaussian
fall-off of the spectral SNR

In this set of tests, we attempted to emulate a
more realistic distribution of the SSNR, in which
the relative strength of the signal decreases in the
high frequency region. This was achieved by an
application of a Gaussian low-pass filtration of the
simulated image followed by an addition of the
uniform Gaussian noise with the variance 0.0225.

Depending on the amount of low-pass filtration,
the SNR in real space decreases accordingly. For
example, for the standard deviation of the
Gaussian filter (the filter radius) set to 16 Fourier
pixels, the effective SNR in real space is equal to
0.08 and in this case the fall-off of the SSNR is
minimal. When the filter radius is set to 8, only the
first maximum of the SSNR is retained and its
amplitude is reduced by ~33%. In this case, the
effective SNR is 0.023.

The plot of pixel errors versus SNR for the three
alignment methods tested is shown in Fig. 5. The
pixel errors for SNR above 0.07 are constant;
therefore, we show the results for the SNR range
from 5x 107* to 0.1. As in previous tests, pixel
error decreases when SNR increases and the
overall shape of the error curves is similar. For
SNR under 0.03, the error for each method
reaches a respective maximum similar to that
obtained in previous tests, which means that the
alignment results become random. For SNR
varying from 0.3 to 0.03, the pixel error decreases
rapidly. Again, this transition is different for each
method and occupies the broadest range of SNR
for the direct alignment using FFT. For SNR
larger than 0.3, the pixel errors reach respective
minimum values, which are 0.13 for the alignment
using resampling to polar coordinates, 0.26 for the
indirect alignment using autocorrelation function,
and 2.0 for the direct alignment using FFT. For
the latter method, pixel error is always larger than
1.0 for all the SNR values tested. The pair-wise
comparisons between pixel errors for respective
alignment methods indicate that the differences
between them are statistically significant, as
evaluated by Student’s z-test.

The comparison of the results of both tests leads
to a conclusion that for a given SNR level, the
pixel errors are larger in the case of uniform noise
(Section 3.8). This is caused by a different
distribution of the SSNR in both tests. In the case
of the Gaussian fall-off of the SSNR, the
information in Fourier space is accumulated in
the low frequency region and this results in lower
alignment errors in comparison with the situation
in which the same effective SNR in real space
originates from SSNR distributed approximately
evenly in Fourier space.
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Error (Pixels)

Fig. 5. Pixel error versus SNR for three 2D alignment methods in case of Gaussian fall-off of the spectral SNR: (a) alignment using
resampling to polar coordinates; (b) indirect alignment using autocorrelation function; (c) direct alignment using 2D FFT. Vertical
bars represent the standard deviation (divided by 5 for best visualization).

4. Discussion

The main factor determining the accuracy of the
2D alignment for the methods tested is the order in
which the interpolation steps are applied.
Although the translation of the image by an
integer number of pixels does not require inter-
polation, both translation by a non-integer num-
ber and any rotation (except for special cases of
90°, 180°, and 270°) do. Any interpolation
scheme can be analyzed in terms of frequency
response of the associated Fourier-space filter.
In image processing applications, preference is
given to rapid low-order interpolation schemes.
Without going into details, it is enough to assume
that the lower the interpolation order, the stronger
the low-pass filtering effect of the interpolation on
an image. To make matters worse, the character-
istics of the associated filter depends on the
amount of shift applied. In case of translation,
shift by k pixels does not corrupt the image, but
shift by k+ x,x =]0,1[ does, and the low-pass
filtering effect is the strongest for x = 0.5. Simi-
larly, rotation by ¢ = m 90,m = {0, 1, 2,3} degrees
does not corrupt the image, but any intermediate

rotation angle will result in a low-pass filtration of
the image with the strongest effect for ¢ =45+ m
90,m = {0,1,2,3} degrees. Thus, application of
any method that combines rotation of the refer-
ence image (which involves interpolation) with
subsequent translation search on a Euclidean grid
(which does not involve interpolation) will neces-
sarily favor image orientations with angles close to
o=m 90,m={0,1,2,3} degrees. It has to be
noted that the sinograms-based method falls into
the described category of alignment methods, as
calculation of a line projection is numerically
equivalent to a rotation of an image. Therefore,
line projections calculated in directions of ¢ =
45+ m 90,m = {0,1,2,3} degrees will have high
frequencies suppressed in comparison to line
projections calculated at ¢ = m90,m = {0, 1,2, 3}
degrees.

Admittedly, when the 2D alignment step is
performed only once, the error induced by
interpolation will be most likely negligible, but in
cases when 2D alignment step is repeated numer-
ous times within an iterative procedure (such as
2D reference-free, multi-reference, maximum-like-
lihood alignments, or 3D structure refinement
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procedures), the effects will accumulate and lead to
erroneous results. Out of five 2D alignment
methods described, only the method based on
resampling to polar coordinates (Section 3.6) does
not share this problem. The reason is that the
order in which orientation parameters are estab-
lished in this method is reversed. The rotation
angle is calculated first, and the translation is
found by application of the same rotation-
search procedure to images resampled to polar
coordinates with respect to origins of the system of
coordinates corresponding to translations con-
sidered. Thus, irrespectively of any particular
orientation parameters, the images that are com-
pared are always interpolated in the same, uniform
way.

According to the test results described in
Sections 3.8 and 3.9, the accuracy of the alignment
ranks the method based on the resampling to polar
coordinates as the best, while the direct alignment
using FFT ranks as the worst. At the same time,
according to the estimations of the number of
required arithmetic operations given in Table 1,
the direct alignment using FFT is considerably less
efficient than the ACF-based method (since this
method is equivalent both in terms of interpola-
tion errors and the efficiency to the sinograms-
based methods, any conclusions about the former
apply to the latter). It is also less efficient than the
alignment based on resampling to polar coordi-
nates for broad ranges of possible translations.
For example for image size n=128, the latter
method is more efficient for translations as large as
28 pixels. For the same image size, the alignment
based on resampling to polar coordinates is more
efficient than the ACF-based method for very
restricted searches, namely £ =2. Since the ACF-
based method is remarkably stable for a broad
range of SNR values, it should be used whenever
the quality of the data is sufficiently high and large
translation values are expected. Under any other
circumstances, particularly when the images are at
least approximately centered (for example by
calculation of centers of gravity of the objects)
and the translation range can be restricted, the
alignment based on resampling to polar coordi-
nates will not only yield better results, but can be
almost equally efficient.

5. Conclusions

The techniques of 2D orientation search con-
stitute a foundation of single particle analysis
methods. Their efficiency is a major factor in the
overall efficiency of 2D and 3D alignment
procedures. Therefore, we have expressed five
selected 2D alignment methods in terms of five
elementary image operations and based on the
number of arithmetic operations necessary to
perform these elementary operations, we provided
detailed analysis of the computational efficiency of
the selected methods. We have concluded that the
method based on image invariants in the most
efficient one, followed by the method based on
resampling into polar coordinates, if the transla-
tional search in the latter is restricted to small
values. We have also tested the accuracy of
three 2D alignment methods on a test image
prepared according to the basic theory of image
formation in the electron microscope. We have
demonstrated that in each case, the pixel error
remains small for large SNR in the test image and
it increases rapidly within a narrow range of
decreasing SNR in the data. Therefore, unless
the SNR Ilevel in the data is known, preference
should be given to the most accurate alignment
method.

The choice of the 2D alignment method used
should be dictated by factors such as the SNR of
the data, data collection conditions (particularly
the defocus and voltage settings of the eclectron
microscope), and expected range of translation
values. In addition, it has to be taken into account
that due to iterative nature of many alignment
procedures, even minor inaccuracies of 2D orien-
tation search method are likely to be enhanced and
may hamper the quality of the final results. The
most accurate of the methods tested, the alignment
based on the resampling to polar coordinates, is
also the most efficient if the maximum translation
of particles can be restricted to a predetermined,
small value. In this case, nearly exhaustive searches
for orientation parameters can be performed
effectively within iterative schemes aimed at
refinement of three-dimensional structures. Thus,
the future work on 2D alignment methods should
be focused on development of techniques that
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would allow a robust estimation of centers of
gravity of particle views.
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