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3-D reconstruction is a statistical estimation problem

The basic single particle reconstruction (SPR) problem is a statistical
estimation problem:

Estimate the 3-D structure from noisy, non-centered, CTF-effected
2-D tomographic projections taken at unknown viewing angles.

The parameter of interest is the 3-D structure.

All other parameters (viewing angles, shifts, etc.) are nuisance
parameters.
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Statistical Estimation Methods

1 The Method of Moments (Pearson, 1894)

Easy to compute

Consistent

Asymptotically normal (1/
√
n)

Not optimal (variance is not smallest among all possible estimators)

2 Maximum Likelihood (Fisher, 1912-1922)

Harder to compute

Consistent

Asymptotically normal (1/
√
n)

Optimal or efficient (has smallest variance for large sample size)

3 Bayesian inference

Incorporates a prior distribution
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Statistical Estimation Methods in SPR

Maximum likelihood was introduced to SPR by Sigworth in 1998, and
together with Bayesian inference is the most popular and successful
approach in the field (RELION, cryoSparc, and many more).

A method of moments for SPR was proposed by Kam in 1980 but is
not being used.

Today:

Introduction to the Method of Moments

Kam’s method

Limitations of Kam’s original proposal

Potential advantages of the method of moments in SPR
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The Method of Moments (univariate distributions)

Suppose that the parameter θ = (θ1, . . . , θd) has d components.

n data samples x1, . . . , xn are independently drawn from a probability
distribution Fθ(x).

The j ’th moment of a distribution Fθ(x) is defined as

mj(θ) = Eθ[X j ] =

∫
x j dFθ(x)

The j ’th sample moment is defined as

m̂j =
1

n

n∑
i=1

x ji

The Method of Moments Estimator θ̂n is the solution to the system
of d equations in d unknowns:

m1(θ̂n) = m̂1, m2(θ̂n) = m̂2, · · · , md(θ̂n) = m̂d
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The Method of Moments: Toy Example 1

Estimate the rate parameter λ of a Poisson distribution (count data)

Pr{X = k} = e−λλ
k

k!
, k = 0, 1, 2, . . .

The first moment is λ, so the Method of Moments Estimator (MME) is the
sample mean

λ̂n =
1

n

n∑
i=1

xi

The likelihood and log-likelihood functions are

Ln(λ) =
n∏

i=1

e−λλ
xi

xi !
, `n(λ) =

n∑
i=1

−λ+ xi log λ− log(xi !)

First order condition for the Maximum Likelihood Estimator (MLE)

0 =
d`n
dλ

=
n∑

i=1

−1 +
xi
λ

MME and MLE coincide in this case.
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The Method of Moments: Toy Example 2

Estimate the parameters of a mixture of two Gaussians (µ1, σ
2
1 , µ2, σ

2
2 , p).

The five moments m1,m2,m3,m4,m5 are polynomials in the parameters.
Pearson solved the polynomial system by hand, obtained finitely many
solutions, and chose the solution that best fits the sixth moment.

This was done in the 19th century.

Just one pass over the data to compute sample moments, can be done
on-the-fly, data need not be stored, then solve a small system independent
of sample size.
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MLE for Mixture of Gaussians

Two versions of maximum likelihood:

Estimate the mixture parameters and the class labels.

A constant positive fraction of the sampled are mislabeled.
The MLE is guaranteed to be consistent only when the number of
parameters does not grow indefinitely with the sample size (e.g., the
Neyman-Scott “paradox”, 1948).

Estimate only the mixture parameters by marginalizing over class labels.

The MLE is consistent.
The MLE is more accurate than the MME.
How to compute the MLE? Expectation-maximization (EM), stochastic
gradient descent (SGD).
MLE requires multiple passes over the data until convergence (?), slower
than MME and must store the entire data.
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Lessons for SPR

The number of nuisance parameters (viewing angles, shifts, etc.)
grow indefinitely with the number of images.

Estimating nuisance parameters is not recommended:

MLE (also of the parameter of interest, i.e., 3-D structure) becomes
inconsistent.

The nuisance parameters are going to be badly estimated.

Should avoid validation using estimated nuisance parameters.

MME can be computed much faster than MLE, in a streaming
fashion.

MME can be used to initialize MLE refinement.
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Method of Moments for SPR

Suppose I1, . . . , In are noisy 2-D projection images of a 3-D structure.

Näıve sample estimators for the moments are of the form

m̂1(x , y) =
1

n

n∑
i=1

Ii (x , y)

m̂2(x1, y1; x2, y2) =
1

n

n∑
i=1

Ii (x1, y1)Ii (x2, y2)

m̂3(x1, y1; x2, y2; x3, y3) =
1

n

n∑
i=1

Ii (x1, y1)Ii (x2, y2)Ii (x3, y3)

Can we estimate the 3-D structure from the moments?

How many moments are required?

How to estimate the 3-D structure from the moments?

How to deal with the increased dimensionality of the moments? m1 seems to be
2-D, m2 is 4-D, m3 is 6-D.

How to compute the moments?
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Method of Moments for SPR

The first order moment is a radially symmetric image: either there is no preferred
in-plane rotation, or we can enforce uniform distribution of in-plane rotations by
angular averaging

m̂1(r) =
1

n

n∑
i=1

1

2π

∫ 2π

0

Ii (r , α) dα

(CTF can be easily incorporated, not included here for simplicity; also non-perfect
centering is ignored)

The first order moment is just 1-D.

Similarly, the second order moment is just 3-D (rather than 4-D):

m̂2(r1, r2, ψ) =
1

n

n∑
i=1

1

2π

∫ 2π

0

Ii (r1, α1 + α)Ii (r2, α2 + α) dα, ψ = α2 − α1.

Comparing the number of parameters to be estimated (3-D structure) and number
of moment equations (also 3-D), we might be lucky.

Computation of the second order moment is essentially PCA of the 2-D images.

Is there enough information in the mean image and eigenimages and eigenvalues to
determine the 3-D structure?
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Kam’s theory: uniform viewing angle distribution
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The Fourier Projection-Slice Theorem
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Kam’s theory: uniform viewing angle distribution

The second order moment of the Fourier transformed images is the autocorrelation
function of the Fourier transformed 3-D structure φ̂ with itself over the rotation
group SO(3).

A function cannot be uniquely determined from its autocorrelation function.

The autocorrelation function determines the magnitudes of the Fourier transform
but not its phases.

The Fourier transform over the rotation group SO(3) calls for expansion of φ̂ in
spherical harmonics:

φ̂(k, θ, ϕ) =
L∑

l=0

l∑
m=−l

Alm(k)Y m
l (θ, ϕ)

The second moment determines for each l the matrix Cl given by

Cl(k1, k2) =
l∑

m=−l

Alm(k1)A∗
lm(k2), or Cl = AlA

∗
l

From Cl we can get the Alm’s only up to an orthogonal matrix of size
(2l + 1) × (2l + 1).

The missing orthogonal matrix is the analog of the missing phase.
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Estimating the second order moment

Considering the important role of the second order moment we developed an
accurate and efficient procedure for its estimation in SPR:

Zhao, Shkolnisky, Singer, IEEE Trans. Computational Imaging, 2016.

Bhamre, Zhang, Singer, Journal of Structural Biology, 2016.

Improvements over standard Principal Component Analysis (PCA) or
Multivariate Statistical Analysis (MSA):

Accuracy:

Eigenvalue shrinkage turned out to be extremely important (using high
dimensional statistics and random matrix theory)

Full CTF correction, not just phase flipping.

Computational complexity: For images of size L× L, standard PCA takes
O(nL4 + L6) and O(L4) storage, whereas our steerable PCA procedure takes
O(nL3 + L4) and O(L3) storage.
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Improved Image Restoration without Averaging

Bhamre, Zhang, Singer (Journal Structural Biology, 2016)
Raw Closest projection TWF CWF

CWF = Covariance Wiener Filter, TWF = Traditional Wiener Filter

TRPV1, K2 direct electron detector

35645 motion corrected, picked particle images of 256×256 pixels belonging to
935 defocus groups (Liao et al., Nature 2013)
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Improved Image Restoration without Averaging

Bhamre, Zhang, Singer (Journal Structural Biology, 2016)

Raw Closest projection TWF CWF

80S Ribosome, FALCON II 4k×4k direct electron detector

105247 motion corrected, picked particle images of 360×360 pixels, 290 defocus
groups (Wong et al., eLife 2014)

Amit Singer (Princeton University) March 2018 17 / 26



Improved Image Restoration without Averaging

Bhamre, Zhang, S (Journal Structural Biology, 2016)

Raw Closest projection TWF CWF

IP3R1, Gatan 4k×4k CCD

37382 picked particle images of 256×256 pixels, 851 defocus groups (Ludtke et al.,
Structure 2011)
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Kam’s theory: uniform viewing angle distribution

2nd order moment is insufficient to determine the structure.

Kam proposed using a slice of higher order moments and empirically
observed uniqueness.

3rd order moment guarantees uniqueness (or more precisely, a finite number
of possible 3-D structures):

Bandeira, Blum-Smith, Perry, Weed, Wein, arXiv preprint, 2017

3rd order moment is more difficult to estimate than 2nd order moment:

– Requires more images (because noise variance is amplified cubically rather
than quadratic)

– Has higher dimensionality (5-D instead of 3-D)

– No existing eigenvalue shrinkage procedures for tensors

Can we avoid 3rd order moments?
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Can we avoid 3rd order moment?
Non-uniform viewing angles

Conjecture: 2nd order moment is sufficient to guarantee uniqueness (up to
finitely many possibilities) for non-uniform distribution of viewing angles
(work in progress).
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Can we avoid 3rd order moment? Homology modeling

Estimate orthogonal matrices from another similar previously solved structure
Bhamre, Zhang, Singer, IEEE Symp. Biomedical Imaging 2015
Bhamre, Zhang, Singer, arXiv, 2017

EMDB 8118 EMDB 8117
(a) (b)

E

Ground Truth Least Squares Twicing Anisotropic Twicing
(b) (c) (d) (e)

Homologous structure
(a)

Synthetic Dataset: TRPV1 with DxTx and RTX, SNR= 1/40, 26000 images, 10

defocus groups.
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Can we avoid 3rd order moment?
Add a couple of “clean” projections

2nd order moment + 2 “clean” projections determine the 3-D
structure uniquely

Levin, Bendory, Boumal, Kileel, Singer, IEEE Symp. Biomedical
Imaging 2018

High quality projections could be obtained if there is a preferred
orientation under some sample preparation conditions, or from
dominant class averages.
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Why was Kam’s method mostly ignored?

Idea that was ahead of its time: There was not enough data to
accurately calculate second and third order statistics.

Requires uniform distribution of viewing directions.

Maximum likelihood framework prevailed.
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Summary

The Method of Moments cannot compete with Maximum Likelihood
in terms of resolution, but can be much faster, and can be used to
initialize refinement procedures.

Extending Kam’s method to non-uniform distributions of viewing
directions may yield an ultra-fast ab-initio modeling technique.

Just one pass over the data for PCA type computation, completely
sidesteps rotation estimation, no need to worry about initial model
and convergence.

From the theoretical standpoint: SPR is possible at any SNR, as long
as sufficiently many particles can be picked.

At low SNR, rotations (nuisance parameters) cannot be estimated
accurately. Rotation-based validation methods are not very
informative at low SNR.
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Princeton_Nature Conference:   

Frontiers in Electron Microscopy for the Physical and Life sciences  
Princeton, NJ, July 11-13, 2018  
 

https://www.nature.com/natureconferences/f

empl2018/index.html 
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