

Improving cryo-EM maps: focused 2D & 3D classifications and focused refinements

3rd International Symposium on Cryo-3D Image Analysis 23.3.2018, Tahoe

Bruno Klaholz

Centre for Integrative Biology, IGBMC, Illkirch, France

http://www.igbmc.fr/Klaholz

Note: you are welcome to reuse slides elsewhere but please cite your source

Conformational changes of cats?

I. Particle sorting

How to sort out heterogeneity (composition / conformation)? → particle sorting

<u>4 different approaches in the cryo-EM field:</u>

- 1) reference-based, i.e. cross correlation with forward-projections of known structures
- 2) multivariate statistical analysis (MSA): 2D classification or 3D classification, variance analysis + resampling, bootstrapping, 3D resampling
- 3) maximum likelihood based classifications
- 4) deep learning methods

Determining structures of multiple conformational states in a single sample

1) reference-based, i.e. cross correlation with forward-projections of known structures

Loerke et al., Meth. Enzymol. 2010

Determining structures of multiple conformational states in a single sample 2) multivariate statistical analysis (MSA): 2D classification, 3D classification

distinguish: orientational classification and conformational classification

Determining structures of multiple conformational states in a single sample 2) multivariate statistical analysis (MSA): 2D classification, 3D classification

distinguish: orientational classification and conformational classification

Determining structures of multiple conformational states in a single sample

2) multivariate statistical analysis (MSA): 2D classification, 3D classification

Perform 2 classifications:

(i) global MSA for classification according to <u>particle orientations</u> (i.e. classical class averages)
(ii) local MSA <u>with a smaller mask</u> for classification according to <u>particle variability</u>.

Klaholz et al., Nature 2004; see Suppl. Mat.

Sorting out heterogeneity of complexes:

see also work by P. Penczek (bootstrapping (re-sampling), used primarily to find region of variance) see also S. Scheres/J-M Carazo (maximum likelihood parameter refinement and classification) Simonetti *et al.*, *Nature*, 2008. used by Fischer *et al.*, *Nature*, 2010; Papai *et al.*, *Nature* 2010.

Determining structures of multiple conformational states in a single sample

3) maximum likelihood based classifications

→ assign particles to different 3D classes based on maximum likelihood
 (probability distribution; uses randomly selected references + ML-weighting)
 Practically:

random subsets are optimized and a low-resolution average structure is used as reference, i.e. <u>resampling</u> is used in combination with likelihood optimization

e.g. Scheres et al., JMB 2005; Meth. Enzymol. 2010;

Lyumkis et al., JSB 2013

Introduction of the ML concept in cryo-EM: F. Sigworth, JSB 1998;

in X-ray crystallography: G. Bricogne, Acta Cryst A, 1991

Examples of ML-based 3D classification

Strong heterogeneity of a reconstituted eukaryotic translation initiation (eIF5B) complex: sorting → 5143 particles, representing 3% of the population in the sample, 6.6 Å reconstruction. Fernández *et al.*, *Science* 2013; V. Ramakrishnan & S. Scheres.

e.g. ML-based focused classification of 80S / TSV IRES complex with eEF2/GDP/sordarin

Abeyrathne et al., eLife 2016

See also: von Loeffelholz et al., Curr. Opin. Struct. Biol. 2017.

e.g. ML-based focused classification

sorting scheme for human 80S/antibiotic complex

Myasnikov et al., Nat. Comm. 2016.

II. Focused refinement

Local MSA / focused 2D/3D classification & focused refinement:

focused classification

see also:

Klaholz et al., Nature 2004; White *et al.*, *JSB* 2004; Penczek et al., JSB 2006; Wong *et al.*, *Elife* 2014;

Concept of focused cryo-EM structure refinement through

- 3D resampling & 3D classification (3D-SC) / bootstrapping
- maximum likelihood 3D classification

using spherical mask or dilated, binarized map of region of interest

Helps: use a slightly larger region than the region of interest, e.g. 30-50 Å in diameter

von Loeffelholz et al., Curr. Opin. Struct. Biol. 2017.

. . .

Focused refinement:

60S and 40S ribosomal subunits

60S subunit, 40S body and 40S head regions

Natchiar et al., Nature 2017. See also: von Loeffelholz et al., Curr. Opin. Struct. Biol. 2017.

Natchiar et al., Nature 2017.

Allows visualization of chemical modifications in rRNA:

Natchiar et al., Nature 2017.

III. Improving data collection quality

Detectors, dose weighting, movie alignment

Orlov et al., Biology of the Cell, 2017.

Volta phase plate data collection facilitates image processing and cryo-EM structure determination

dfVPP data behave more robustly during image processing: particle selection, accuracy in alignments, 2D & 3D classifications, map interpretation

MSA-based classification (3 particles)

von Loeffelholz et al., JSB 2018.

Single- / dual-tilt cryo electron tomography

Titan Krios, GIF/K2, VPP, SerialEM, Tom toolbox, IMOD **T. Frosio & J. Ortiz / Klaholz lab.**

see also Myasnikov et al., Ultramicroscopy 2013.

Summary

Improving 3D reconstructions and cryo-EM maps:

- particle sorting (to address heterogeneity)
 focused refinement (→ composite maps; for a given conformation)
 improve data quality (CMOS detectors, VPP, dual-axis tomography)
- 4) to help interpretation: map sharpening
 - (B-factor, bp-filtering, LocScale, phenix.autosharpen etc.)

Keep in mind:

- cryo-EM maps are electrostatic potential maps (\rightarrow Glu's, Asp's etc.)
- initial 3D reconstruction (not "model")
- \rightarrow atomic <u>model</u> building & refinement, proper geometry & B-factors

