CTF correction for "high-resolution" subtomogram averaging

Institute of Science and Technology

Florian Schur

Acknowledgements

Briggs group John Briggs William Wan Beata Turonova Svetlana Dodonova Simone Mattei And all the others

Wim & the microscopes Wim Hagen

Sachse group Carsten Sachse Arjen Jakobi

EMBL IT-services Frank Thommen

Serial EM Boulder, University of Colorado David Mastronarde

The power of cryo-ET and subtomogram averaging

ER-associated ribosome

Pfeffer S et al, 2015, Nat.Comm. PyTOM

Serotonin-receptor

Kudryashev M, et al, 2015, Structure Dynamo

Lassa virus glycoproteins

Li, S et al, 2016, PLOS Pathogens Dynamo

S-layer on C. crescentus

Bharat T, et al, 2017, Nature Microbiology TOM/AV3/Relion

Kosinski J, et al, 2016 ,Science 3 TOM, AV3

What determines the resolution in cryo-ET and subtomogram averaging?

- Sample

- Data acquisition
- Image processing

They all should be considered when talking about defocus estimation and CTF-correction

SIZ

Eukaryotic cells

Defocus gradient in thick specimens

Prokaryotes

(Retro)-Viruses ~120-200 nm CHALLENGE

CTF-correction

2D CTF-correction Tile vs. Strip

Fernández, J. J., Li, S., & Crowther, R. A. (2006). CTF determination and correction in electron cryotomography. *Ultramicroscopy*, *106*(7), 587–596.

Xiong Q, Morphew MK, Schwartz CL, Hoenger AH, Mastronarde DN(2009), CTF determination and correction for low dose tomographic tilt series, J.Struct.Biol (168)

How accurate does the defocus estimation/CTF correction have to be?

Solid line: no error in defocus determination Dashed line: normally distributed error (0nm mean, 12 nm SD) 2D CTF-correction 3D CTF (30nm defocus step) 3D CTF (15nm defocus step)

Turonova B, Schur FKM, Wan W, Briggs JAG, Journal of Structural Biology, 2017

3D CTF correction

Jensen and Kornberg (2000) Micrograph is CTF-corrected several times with a different defocus value Kunz and Frangakis (2017) WBP and SART Tomographic slices are corrected

3D-CTF correction NOVACTF

- NovaCTF can be easily integrated to standard IMOD tomography workflow
- Command-line based, reads IMOD input files
- Phase-flipping, multiplication, astigmatism correction
- Download from
 - https://github.com/turonova/ novaCTF
 - With helpful wiki, how compile, run etc....
- Workflow
 - 1. Generate defocus files
 - 2. CTF-correction
 - 3. Reconstruction

2D vs 3D CTF-correction

Disc #1 x=0nm, z=0nm

Disc #2 x=0nm, z=250nm

Turonova B, Schur FKM, Wan W, Briggs JAG, Journal of Structural Biology, 2017

2D CTF-correction – phase-flipping

12

NovaCTF

Method	CTF Correction	Reconstruction	Total time
IMOD	19 m 36 s	31 m 57 s	51 m 33 s
NovaCTF – 1 correction per tilt image	01 m 56 s	1 h 0 m 03 s	1 h 1 m 59 s
NovaCTF – 11 corrections per tilt image	21 m 16 s	1 h 0 m 11 s	1 h 21 m 27 s
NovaCTF – 33 corrections per tilt image	1 h 03 m 48 s	1 h 0 m 43 s	2 h 04 m 31 s
	Total memory (RAM)		Temporary storage
NovaCTF – 1 correction per tilt image	734 MB		68.2 GB
NovaCTF – 11 correction per tilt image	740 MB		90.5 GB
NovaCTF – 33 correction per tilt image	753 MB		139.6 GB

Times were measured on a Xeon E3-123V3, 3.5 GHz, 32GB RAM (single CPU). Tomogram size 3710x3710x1200 voxels

• Main limitation is I/O when running on cluster

Want something to play? EMPIAR-10164

- Full immature HIV-1 VLP dataset deposited
- 43 tilt series
 - Schur FKM, Obr M, Hagen WJH, Wan W, Jakobi AJ, Kirkpatrick JM, Sachse C, Kräusslich H-G, Briggs JAG, (2016), An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation, Science, 353(6298): 506-508. doi: 10.1126/science.aaf9620
- Raw frames including mdoc files
- Released this week

EMPIAR-10164

Cryo-electron tomography of immature HIV-1 dMACANC VLPs [43 multi-frame micrographs composed of 8 frames each in MRC format] Schur FK, Obr M, Hagen WJ, Wan W, Jakobi AJ, Kirkpatrick JM, Sachse C, Krausslich HG, Briggs JA, Turoňová B [Pubmed: 27417497] [DOI: 10.1126/science.aaf9620] EMD-3782, 865.0 EMD-4015, GB

5193

3.4-3.9

Thanks for your attention

https://schurlab.pages.ist.ac.at/

Institute of Science and Technology