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Single particle reconstruction



Heterogeneity in Single particle reconstruction

Low resolution in 
heterogeneous 

regions



Classical strategy: multi-model refinement

X

X

Works, but is suboptimal…



Determination of 
conformational landscape 



A even simpler simulated dataset

•  3000 particles from 11 classes 
•  Low resolution SNR: ~1 
•  2 - 3.5um defocus



Start form a single model refinement



Gaussian representation of density map

• Reduce complexity  
• Easier to model continuous motionAmplitude

Sigma

3D Position 
vector



Particle-projection comparison

Particle-projection FRC

Target resolution

Raw particle

Corresponding projection



Gradient calculation

Goal: 
  To improve particle-projection matching (FRC)  

For each Gaussian, which direction should it move to 
improve the particle-projection FRC?



Gradient calculation

Goal: 
  To improve particle-projection matching (FRC)  

For each Gaussian, which direction should it move to 
improve the particle-projection FRC on each particle?



Gradient per particle per Gaussian

2D gradient vectors on 
projection plane



Gather gradient vectors of all particles in 3D

……

3D gradient vectors projected on x-y plane



Statistics on gradient vectors
Average amplitude of gradient 

vector of each Gaussian indicates 
local flexibility



Statistics on gradient vectors
Connect gradient vectors from the 

same particle



Statistics on gradient vectors
Gradient vectors from each image 

are correlated



PCA extracts eigen-motion vectors of the system

This is one vector of length 
(#Gaussian x 3), which shows a 
global motion of all Gaussians

Most particles span on this motion 
trajectory



Eigen-motion trajectory

0-1 +1



Map each particle on the motion trajectory

: Amplitude, position, sigma of the jth Gaussian  

: Density map corresponding to the ith particle

: Conformation position of the ith particle on the motion trajectory 

: Eigen-motion vector of the jth Gaussian 

For each particle, optimize      with gradient descent 

Particle 
conformation

Motion 
vector



Reconstruct 3D map with particles of similar 
conformations 

planar motion in this simulated dataset (invisible at z direction) exaggerates top view error… 

Ground truth class ID
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Relationship with neural network

Euler angle

For each particle:

(alt, az, phi) (3x3 matrix)
Position of 
Gaussians

(3xn matrix)

Transformed 
Gaussian 
positions

Multiply

(3xn matrix)

Projection 
image

FRC
Gradient

Projection

Raw particle

Rotation 
matrix



Relationship with neural network

One layer neural network

Weights (W)

Multiply
Output (y)

Gradient descent

Activation 
function

Loss 
function

Target output 
(y’)

Input (x) W x + b



Relationship with neural network

For each particle:

• Implement under deep learning framework 
• Efficient GPU utilization 
• Symbolic gradient calculation

Projection

Euler angle

(alt, az, phi) (3x3 matrix)
Position of 
Gaussians

Transformed 
Gaussian 
positions

Multiply

(3xn matrix)

Projection 
image

FRC
Gradient

Raw particle

Activation 
function

Target 
output

Weights

Input

Rotation 
matrix



Performance on real examples



Ribosome (EMPIAR-10107)

Compositional heterogeneity (50Å, 64 Gaussians): 
  gradient with respect to amplitude of each Gaussian

Color: gradient eigen-
vector amplitude 



Ribosome (EMPIAR-10107)
Conformational heterogeneity (40Å, 128 Gaussians)

Color: eigen-motion amplitudes Gaussian model



Global motion

Gaussian model Reconstructed maps from 
classified particles



Focus on local regions



Focus on local regions



Focus on local regions



GroEL

• From Roh 2017, PNAS  
• Filtered to 7Å 
• 1344 Gaussians 
• Motion of helices 
• Symmetry breaking 
• Correlation of 

conformation between 
subunits



Limitations
• Requires determined orientations 

from single model refinement 
 

• Linear and short motion trajectory 
 

• Low resolution due to limited 
GPU memory

VS multi-model refinement: 


• Deterministic


• Handles continuous motion


VS image based manifold mapping:


• Lower requirement for dataset


• Simple, expandable framework


• Solves global and local motion 

Advantages



Limitations
• Requires determined orientations 

from single model refinement 
 

• Linear and short motion trajectory 
 

• Low resolution due to limited 
GPU memory

Advantages

• Iteratively optimize conformation 
and orientation 

• Replace PCA with stacked 
autoencoder for trajectory 
calculation 
 

• Better hardware and software 
platforms

and future directions
VS multi-model refinement: 


• Deterministic


• Handles continuous motion


VS image based manifold mapping:


• Lower requirement for dataset


• Simple, expandable framework


• Solves global and local motion 



Availability 

• EMAN2/examples


• build_ali_lst.py 
build list file with alignment information from existing refinement


• gmm_heterog.py   or  gmm_heterog_tensorflow.py  
main program (theano or tensorflow implementation)


• Tutorial coming soon…
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Linear/nonlinear motion

Linear to intensity Nonlinear to intensity

Small scale 
motion

Reconstruction 
from PCA

Large scale 
motion

Reconstruction 
from PCA

a b

c

Both are linear in Gaussian representation.



Relationship with neural network

For each particle:

• Implement under deep learning framework 
• Efficient GPU utilization 
• Symbolic gradient calculation
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