A machine learning method for resolving heterogeneity in CryoEM single particle reconstruction

Muyuan Chen 2018-03

> Baylor College of Medicine

Baylor College of Medicine

Single particle reconstruction

Heterogeneity in Single particle reconstruction

Classical strategy: multi-model refinement

Works, but is suboptimal...

Determination of conformational landscape

A even simpler simulated dataset

- 3000 particles from 11 classes
- Low resolution SNR: ~1
- 2 3.5um defocus

Start form a single model refinement

t in de la Conjection Alexandria			

Gaussian representation of density map

x-pn $map(\mathbf{x})$ =)Amplitude Sigma

- Reduce complexity
- Easier to model continuous motion

Particle-projection comparison

Particle-projection FRC

Goal: To improve particle-projection matching (FRC)

Gradient calculation

Goal:

To improve particle-projection matching (FRC)

For each Gaussian, which direction should it move to improve the particle-projection FRC on each particle?

Gradient calculation

Gradient per particle per Gaussian

2D gradient vectors on projection plane

Gather gradient vectors of all particles in 3D

3D gradient vectors projected on x-y plane

Statistics on gradient vectors

Average amplitude of gradient vector of each Gaussian indicates **local flexibility**

Statistics on gradient vectors

Connect gradient vectors from the same particle

Statistics on gradient vectors

Gradient vectors from each image are correlated

PCA extracts eigen-motion vectors of the system

Most particles span on this motion trajectory

This is one vector of length (#Gaussian x 3), which shows a global motion of all Gaussians

Eigen-motion trajectory

 $map_i(\mathbf{x})$: Density map corresponding to the ith particle $A_j, \mathbf{p}_j, \sigma_j$: Amplitude, position, sigma of the jth Gaussian \mathbf{V}_{j} : Eigen-motion vector of the jth Gaussian C_{i} : Conformation position of the ith particle on the motion trajectory

For each particle, optimize C_i with gradient descent

Map each particle on the motion trajectory

Reconstruct 3D map with particles of similar conformations

planar motion in this simulated dataset (invisible at z direction) exaggerates top view error...

r..

Relationship with neural network

Relationship with neural network

One layer neural network

- Implement under deep learning framework
- Efficient GPU utilization
- Symbolic gradient calculation

Relationship with neural network

Performance on real examples

Ribosome (EMPIAR-10107)

Compositional heterogeneity (50Å, 64 Gaussians): gradient with respect to amplitude of each Gaussian

 $Grad_j = \frac{\partial FRC}{\partial A}.$

Conformational heterogeneity (40Å, 128 Gaussians)

Color: eigen-motion amplitudes

Ribosome (EMPIAR-10107)

Global motion

Reconstructed maps from classified particles

Focus on local regions

Focus on local regions

Focus on local regions

GroEL

- From Roh 2017, PNAS
- Filtered to 7Å
- 1344 Gaussians
- Motion of helices
- Symmetry breaking
- Correlation of conformation between subunits

Advantages

VS multi-model refinement:

- Deterministic
- Handles continuous motion

VS image based manifold mapping:

- Lower requirement for dataset
- Simple, expandable framework
- Solves global and local motion

Limitations

 Requires determined orientations from single model refinement

• Linear and short motion trajectory

 Low resolution due to limited GPU memory

Advantages

VS multi-model refinement:

- Deterministic
- Handles continuous motion

VS image based manifold mapping:

- Lower requirement for dataset
- Simple, expandable framework
- Solves global and local motion

Limitations and future directions

- Requires determined orientations from single model refinement
 - Iteratively optimize conformation and orientation
- Linear and short motion trajectory
 - Replace PCA with stacked autoencoder for trajectory calculation
- Low resolution due to limited GPU memory
 - Better hardware and software platforms

- EMAN2/examples
 - build_ali_lst.py
 - gmm_heterog.py or gmm_heterog_tensorflow.py main program (theano or tensorflow implementation)
- Tutorial coming soon...

Availability

build list file with alignment information from existing refinement

Acknowledgement

- Pls:
 - Steven Ludtke, *Baylor College of Medicine*
- NIH grants:
 - R01GM080139

Special thanks to Hui Ye for looking after my cat...

Baylor College of Medicine

Thank you

Linear/nonlinear motion

Both are linear in Gaussian representation.

- Implement under deep learning framework
- Efficient GPU utilization
- Symbolic gradient calculation

