
Introduction to
Programming for

Scientists

Prof. Steven Ludtke
N410, sludtke@bcm.edu

Lecture 4
More programming examples, file manipulation, numbers

1Thursday, March 31, 2011

HOMEWORK REVIEW

loan=int(raw_input("Enter loan amount: "))
rate=(float(raw_input("Enter annual interest rate: "))/100)*(1.0/12.0)
payment=int(raw_input("Enter payment amount: "))

counter=1
results=file("results.txt","w")
while loan > 0:
! interest=loan*rate
! if (loan < payment):
! ! ! results.write("%3d: Interest:%8.2f Balance:%10.2f\n"%(counter, interest, 0.0))
! ! ! break
! loan=interest+loan-payment
! results.write("%3d: Interest:%8.2f Balance:%10.2f\n"%(counter, interest, loan))
! counter=counter+1

results.close()
!

2Thursday, March 31, 2011

‘Scrabble’ Problem
• What words could you make given these letters: PGAORRM ?

3Thursday, March 31, 2011

‘Scrabble’ Problem
• What words could you make given tiles containing PGAORRM

• 68 of them

• program armor gompa gramp groma maror morra pargo gamp
gapo gora gorm gorp gram marg mora ogam orra parr pram prao
proa prog prom ramp roam roar roma romp ago amp apo arm
gam gap gar goa gor mag map mar moa mog mop mor oar ora
pam par poa pom pro rag ram rap rom ag am ar go ma mo om op
or pa po a

4Thursday, March 31, 2011

‘Scrabble’ Problem
• You have 7 random letters. What real words can you make from

them ?

• How many ‘words’ could we make ?

• 7*6*5*4*3*2*1 + 7*6*5*4*3*2 + ... = 7! + 7!/1! + 7!/2! + 7!/3!
+ ... = 13699

5Thursday, March 31, 2011

‘Scrabble’ Problem
• You have 7 random letters. What real words can you make from

them ?

• How many letter combinations could we make ?

• 7*6*5*4*3*2*1 + 7*6*5*4*3*2 + ... = 7! + 7!/1! + 7!/2! + 7!/3!
+ ... = 13699

• Different approaches:

• Make all possible words, check to see if each is in the
dictionary

• Linear

• Recursive

• Check each word in the dictionary to see if it can be made
from the letters in the list

6Thursday, March 31, 2011

Design #1
• ask for letters

• Read list of words

• Nested loop to make each possible word from letters

• check to see if word is real

• if so, add it to the list

• sort the list and print results

7Thursday, March 31, 2011

Design #2
• ask for letters

• Read list of words

• Recursion to make each possible word from letters

• check to see if word is real

• if so, add it to the list

• sort the list and print results

8Thursday, March 31, 2011

Recursion

• A function that calls itself

def factorial(x):
if x==1 : return 1
return x*factorial(x-1)

9Thursday, March 31, 2011

Design #3
• ask for letters

• Read list of words

• Loop over list of words

• make a list of available letters

• Loop over the letters in word

• see if each letter is in the list, if so, remove

• if we found all of the letters print the word

10Thursday, March 31, 2011

Results

• Nested loop : 93.8 sec

• Nested loop (set): 0.44 sec

• Recursive : 0.38 sec

• Check all words: 0.92 sec

11Thursday, March 31, 2011

Numbers & Computers

12Thursday, March 31, 2011

Why Binary ?

8V
7V

Analog
Adder

5V

1V, carry

8+7=15

13Thursday, March 31, 2011

Why Binary ?

8V

7V
Analog
Adder

5V

1V, carry

Analog
Adder

1V

2V

18+27=45

4V

14Thursday, March 31, 2011

Decimal Numbers

 1
 0 1
 0 0 1
 0 0 0 1
 X X X X.X X X

15Thursday, March 31, 2011

Binary Numbers
 1
 2 6 3 1
 8 4 2 6 8 4 2 1
 X X X X X X X X

1 0000 0001
2 0000 0010
4 0000 0100
8 0000 1000
15 0000 1111
212 1101 0100

16Thursday, March 31, 2011

Binary Numbers
 1
 2 6 3 1
 8 4 2 6 8 4 2 1
 X X X X X X X X.X X X

1 0000 0001
2 0000 0010
4 0000 0100
8 0000 1000
15 0000 1111
212 1101 0100

0.25 0000 0000.010
0.625 0000 0000.101
0.3 0000 0000.0100 1100 1100 ...

17Thursday, March 31, 2011

Boolean Algebra Made Real

http://en.wikipedia.org/wiki/
Logic_gates

and

or

not

xor

18Thursday, March 31, 2011

1 bit binary adder
1+1=10

1
1

1

0
0

19Thursday, March 31, 2011

2 bit binary adder

20Thursday, March 31, 2011

1 bit binary adder

US Patent
4,831,578

26 transistors

21Thursday, March 31, 2011

8 bit binary adder

22Thursday, March 31, 2011

6800 CPU

www.cpu-
world.com

 Introduced 1974
 4000 transistors
 1.0-2.5 MHz
 3, 8 bit registers
 3, 16 bit registers

23Thursday, March 31, 2011

Motorola 6800 CPU

 72 instructions (197 opcodes) ‏

 8 bit data bus (0-255)‏

 16 bit address bus (64k max RAM) ‏

 6 registers:

− 8 bit ACCA

− 8 bit ACCB

− 16 bit IX

− 16 bit PC

− 16 bit SP

− 6 bit CC

24Thursday, March 31, 2011

CPU Communications

CPU

Address Bus Data Bus

0000 0000 0000 0000 1010 0110
0000 0000 0000 0001 1100 1110
0000 0000 0000 0010 0000 0111
0000 0000 0000 0011 1000 0000
0000 0000 0000 0100 0000 0000
0000 0000 0000 0101 1000 0110

R/
W

25Thursday, March 31, 2011

6800 Assembly
33+10/2

Memory:
0000: 1000 0110 LDA
0001: 0010 0001 33 33 -> ACCA
0002: 1000 1011 ADDA
0003: 0000 1010 10 43 -> ACCA
0004: 0100 0110 RORA 21 -> ACCA
0005: 1001 0111 STAA
0006: 0000 1010 10 ACCA -> mem(10)‏
...
000A: 0001 0101

26Thursday, March 31, 2011

Athlon-64

 ~106 million transistors (~10 m3 if individually packaged)‏
 Socket-939 (939 pins)‏
 40 bit addressing (1 TB)‏
 64 bit data bus
 ~2 GHz
 registers:
 16, 64 bit integer
 16, 128 bit 'media'
 8, 64 bit float

27Thursday, March 31, 2011

Opteron Execution Units

28Thursday, March 31, 2011

Microprocessors

 6800 ~4000 transistors, 8 bit (1974) ‏

 68000 ~70,000 transistors, 16/32 bit (1979) ‏

 68040 ~1,200,000 transistors 32 bit+FPU (1990) ‏

 Core2 duo ~291,000,000 transistors 64 bit (2006)‏

29Thursday, March 31, 2011

Binary Numbers
 1
 2 6 3 1
 8 4 2 6 8 4 2 1
 X X X X X X X X.X X X

1 0000 0001
2 0000 0010
4 0000 0100
8 0000 1000
15 0000 1111
212 1101 0100

0.25 0000 0000.010
0.625 0000 0000.101
0.3 0000 0000.0100 1100 1100 ...

30Thursday, March 31, 2011

IEEE Floating Point
 Single (float) 1/24/8 bits 7 digits 1038

 Double 1/53/11 bits 15 digits 10308

 Long Double 1/64/16 bits 18 digits 109864

Single:

SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM

S – Sign bit 0=+

E – Exponent, bias 127

M – Significand (Mantissa), implicit 1 when normalized

31Thursday, March 31, 2011

Bases

Binary 0101001010100111

Hexadecimal 0x52A7

Octal 051247

Decimal 5*4096+2*256+10*16+7 = 21159

32Thursday, March 31, 2011

Digital Representation of
Numbers

 Bit 0-1

 Nibble (4 bits) 0-15

 Byte (char) (8 bits) 0-255

 Word (short) (16 bits) 0-65,535

 Longword (long) (32 bits) 0-4,294,967,296

 Long Longword (64 bits) 0-1.844x1019

 Float (32 bits) 1038

 Double (64 bits) 10308

33Thursday, March 31, 2011

IEEE Floating Point
float f=0;
for (int i=1; i<1000; i++) f+=i;
printf("%f\n",f/999.0);

500.0

34Thursday, March 31, 2011

IEEE Floating Point
float f=0;
for (int i=1; i<1000000; i++) f+=i;
printf("%f\n",f/999999.0);

35Thursday, March 31, 2011

IEEE Floating Point
float f=0;
for (int i=1; i<1000000; i++) f+=i;
printf("%f\n",f/999999.0);

499940.86013

36Thursday, March 31, 2011

IEEE Floating Point
float f=0;
for (int i=1; i<1000000; i++) f+=i;
printf("%f\n",f/999999.0);

499940.86013

float f=0;
for (int i=999999; i>0; i--) f+=i;
printf("%f\n",f/999999.0);

499873.194145

37Thursday, March 31, 2011

IEEE Floating Point
double f=0;
for (int i=1; i<1000000; i++) f+=i;
printf("%f\n",f/999999.0);

500000.0

double f=0;
for (int i=999999; i>0; i--) f+=i;
printf("%f\n",f/999999.0);

500000.0

38Thursday, March 31, 2011

File Manipulation
• os.listdir - Lists files in a particular folder

• os.stat - info about a file

• os.rename - rename (mv) a file

• os.mkdir - create a folder

• os.remove - delete a file

• os.rmdir - remove a directory

• os.system - execute a command (mostly mac/linux)

39Thursday, March 31, 2011

Homework #4
• We are going to write our first useful program (scientifically speaking). We will be

computing a histogram of a list of numbers.

The input to the program will be the name of a file containing a list of numbers. Each
line will contain a single number. Read this file in (you can use argv or prompt the user
for a filename). Now produce a histogram of the numbers, that is, you have a set of
(max-min)/bin_size ‘bins’, and you need to count how many of the numbers fall into
each bin, then present the results. Do not ask the user for the histogram
parameters, but come up with intelligent values based on the data.
Max/min are not necessarily the max and min of the data, depending on how you
decide to handle unusual cases. You could consider using ‘outlier’ bins.The results are
just the center of each bin and how many numbers are in it.

The class website will have 3 example files to download and test your program on. Do
not change the program between the 3 runs. Your program should generate
reasonable results for all 3. Please email your program and the results from running it
on each of the 3 data sets.

If you aren’t feeling challenged, you could try to come up with a more ‘artistic’ way to
present the results using text output.

• Install the Python Imaging Library (PIL) on your computer:

http://www.pythonware.com/products/pil

or ‘easy_install pil’

Test by doing an ‘import PIL’ in python

40Thursday, March 31, 2011

