e2refinemultinoali

usage: prog --model model1.hdf,model2.hdf --oldpath refine_01
	Perform a 3d classification like e2refine_multi using the orientation of each particle in an e2refine_easy

Option Type Description
--version None show program's version number and exit
--oldpath str Path to the original refinement (input, required)
--path, --newpath str Path to the classified results (output). Default = multinoali_XX
--models, --model str Comma separated list of reference maps used for classification. If a single map is provided, data will be split into two groups based on similarity to the single map.
--simcmp str The name of a 'cmp' to be used in comparing the aligned images. eg- frc:minres=80:maxres=20. Default=ccc
--threads int Number of threads.
--randomphase float Randomize initial model to certain frequency.
--parallel str Parallel option.
--iter int Number of iterations.
--mask str Name of an optional mask file. The mask is applied to the input models to focus the classification on a particular region of the map. Consider e2classifyligand.py instead.
--breaksym None breaksym
--symcopy None symcopy
--nomask None no mask
--ppid int Set the PID of the parent process, used for cross platform PPID