CIBR Mini-Workshop on
Parallel Computing

http://blake.bcm.edu/CIBRClusters




Part 1
Cluster Architecture




Shared Clusters at BCM

® Genome Center

@ Cancer Center

@ CIBR Co-op:

@ 5 clusters (CIBR + 6 PIs)

® 960+704+640+256+180 = 2740 cores
@ ~24,000,000 CPU-hr/year
@ 350 TB reliable storage
@ 60,000 CPU-hr/qtr free for any CIBR PI

clusters.key - March 24, 2015




Shared or Distributed ?

@4&@

I

I !

RAM RAM RAM [RAM

I

Easy Parallelism Inexpensive




Shared or Distributed ?

Easy Parallelism Inexpensive

clusters.key - March 24, 2015




SMP or Distributed

S @ 1964, CDC 6600, $60m (2012 $), 500 kFlops, 1 CPU
S #1977, CRAY 1, $33m, 80 MFlops, 1 CPU"_ iPhone4S
S #1984, CRAY XMP, $25m, 800 MFlops, 4 CPUs - vector

D #1987, CM-2, $22m, 6 GFlops, 65,536 CPUs, 2048 MPU

S @ 1996, Origin 2000, ~“$3m, 10 GFlops, 32 CPUs SMP

D @ 2005, Cluster, $0.4m, 900 GFlops, 106 nodes, 212 cores

? @ 2011, Cluster, $0.22m, 5.5 TFlops, 48 nodes, 576 cores

| @ 2015, Tesla K80 GPU, $0.005m, 5.6 TFlops, 1 PCIe board

clusters.key - March 24, 2015




To]
—
o
Al
A.y
Al
<
[&]
e
©
=
)
>
Q
=<
(]
o
[0}
—
(2]
=
[&]

il «\\\\\\%\\\sx A

Typical
Rack 42U




Cluster Hardware

P
CRENGERR AN W
- == ) f/

4 nodes
1o +96 cores
e 2-4 TFLOPS

e 2 processors/node:
*12 cores/processor
¢ 128 GB RAM/node
e 2 TB Hard Drive/node
*10 Gb ethernet

> e 68 GB/sec RAM
P 512 GB RAM (5GB/core)

« $26,000 ($270/core)

clusters.key - March 24, 2015




Cluster Hardware

@ 1 Rack:
@ 20 * 2U ->
@ $26,000 * 20 -> $520k + ~$30k (rack, etc.)
@ 20%96 cores -> 1920 cores
@ 40-80 TFLOPS Peak
@ ~ 30 KW
@ 30 KW * 8700 hr/yr = 260 MWH/yr
@ ~$30,000/yr electric bill
@ A/C bill 1?

clusters.key - March 24, 2015




Comparison of Languages

Loop/Array/Math Benchmark

Language - Time |

C++ (-02) |
C++ (no opt) 2
Javascript (JIT) 2
Java 5.1

Python 16.5

Perl 24.6

PHP 55.6

clusters.key - March 24, 2015




Quad Core Cache Structure

Corel Core2 Core 3 Core 4

| Registers | | Regls’rers |

Registers | | Registers Full Speed

Extra
Super
Speedy

Super
Speedy

Just
Speedy

Meh

clusters.key - March 24, 2015




D

d

Speed

300,000 MIPS - (Million instructions per second) current peak
capabilities of a single CPU (with multiple cores)

100,000 MB/sec - Level 1 cache memory bandwidth (32 kbytes/core)
50,000 MB/sec - Level 2 cache memory bandwidth (256 kbytes/core)
35,000 MB/sec - Level 3 cache memory bandwidth (8000 kbytes/CPU)
18,000 MB/sec - RAM (typical DDR3 dual channel)
8,000 MB/sec - PClIe x16 (2.0)
1,500 MB/sec - 12 drive RAID6 with PCle controller
800 MB/sec - QDR Infiniband
150 MB/sec - Typical sequential disk read bandwidth for one drive
100 MB/sec - Gigabit network

clusters.key - March 24, 2015




Hypo’rhefical Cluster

100MB/sec
Campus 100MB/sec
Ne’rwork

Head Storage Compute Compute|
Node Node Node 1 Node 2
IZOOOMB/sec I 130MB/sec I 130MB/sec

RAID Scratch Scratch




Hypo’rhefical Cluster

100MB/sec  1400MB/sec
Campus 100MB/sec

Head Storage Compu’re Compute|
Node Node Node 1 Node 2
IZOOOMB/sec I 130MB/sec I 130MB/sec

RAID Scratch Scratch




What about the cloud?

@ Amazon EC2:

@ c3.8xlarge, $1.68/hour

@ 16 physical core, 4GB RAM/core




What about the cloud?

® Amazon EC2:
@ c3.8xlarge, $1.68/hour

@ 16 physical core, 4GB RAM/core

@ Cluster
@ Prism: $4800 /(3 years * 365 * 24) = $0.18/hour
@ ~140k CPU-hr/yr

@ 16 physical cores, 4GB RAM/core

clusters.key - March 24, 2015




XSEDE/TACC

@ Multiple clusters available, eg:
@ Stampede: 6,400 nodes + Phi coprocessors
@ "2+ 7FPF
@ FREE allocation grants for academic projects

@ 2-3M CPU-hr/year allocations possible

clusters.key - March 24, 2015




Part 2
Parallelism




Simple Task

@ Take a 20 GB sequence and locate all of the TATA
blocks within it.

@ Choice of language ?

@ Run on a cluster ?

@ Multiple cores ?

@ How long will it take to run ?

® How to make it faster ?

clusters.key - March 24, 2015




Another Task

@ You have 500, 4096x4096 pixel floating point images.
You need to apply a (Fourier) low-pass filter to all of
them

@ Read -> FFT -> multiply -> IFT -> Write

@ Image size: 64 MB

@ Total time for one image on desktop PC: 73.5 sec
@ Run on multiple cores ?

® Run on a cluster ?

clusters.key - March 24, 2015




Slightly Trickier

@ Iterative Image Alignment - You have a set of 1000,
256x256 images:

@ average all images ftogether
@ align each image to the average
@ repeat 10x

® How to handle communications ?

clusters.key - March 24, 2015




Amdahls Law

@ Speedup achievable with many processors is limited
by the non-parallel portions of the task:

@ S=1/(B+(1-8)/n)
@ B=fraction of the code which cannot run in parallel

@ n=number of processors

clusters.key - March 24, 2015




Speedup

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

Amdahl’'s Law

Number of Processors

23

//
P
/ .
/ Parallel Portion
. ——50%
/ —75%
—90%
/ ——95%
//
/ T |
/
/N A
/ //
V/ —
/
/f__

clusters.key - March 24, 2015



Slightly Trickier

@ Iterative Image Alignment - You have a set of 1000,
256x256 images:

@ average all images ftogether
@ align each image to the average
@ repeat 10x

® How to handle communications ?

clusters.key - March 24, 2015




Slightly Trickier

@ average all images ftogether
@ All images on 1 node ? (serial !)
@ How else to handle ?
@ align each image to the average
@ Each node needs:
@ the reference

@ 1 or more images to align

clusters.key - March 24, 2015




Coarse vs Fine

@ Coarse-grained parallelism

@ Tasks are completely independent (may have shared
input data)

@ Example: filter 1000 images
@ Fine-grained parallelism

@ Tasks need to communicate between each other
continuously

@ Example: Matrix inversion

clusters.key - March 24, 2015




Example

@ You have 200 sequences and wish to run a mulfiple
sequence alignment against a set of 20 shorter
reference sequences. How to parallelize ?

clusters.key - March 24, 2015




Coarse Grained?

@ Each of the 200 sequences to one processor, which
computes all of the 20 alignments for that sequence

@ Advantages:
@ Very coarse, easy to distribute
@ Potentially 'perfectly’ parallel
@ Disadvantages:
@ Only works if you have at most 200 cores

@ If the 200 sequences vary significantly in length,
total time will be limited by the longest sequence

clusters.key - March 24, 2015




Fine Grained

@ Tackle 1 sequence and 1 reference at a time. Each
processor helps compute the local score

@ Advantages:
@ Fine grained - more uniformly scalable
@ Disadvantages

® May be VERY inefficient due to communications
bottlenecks

clusters.key - March 24, 2015




Intermediate Approach

@ Split the overall process into 200*20 = 4000
individual alignment tasks, and send one to each core
as it becomes available

@ Advantages
@ Each task independent, so still ‘perfectly’ parallel
@ Parallelizable up to 4000 cores

@ Disadvantages

@ May still have some inefficiencies with differing
sequence lengths, particularly for large number of
processors

clusters.key - March 24, 2015




MD Simulations

clusters.key - March 24, 2015




MD Simulations

@ VERY high CPU/Disk ratio
@ Long-time single simulation

@ Many short-time simulations (folding@home)

Native petaFLOPS threshold| Date crossed | Fastest Supercomputer at Date Crossed°*

1.0 September 16, 2007 |0.2806 petaFLOP BlueGene/L!'%"!
2.0 May 7, 2008 0.4782 petaFLOP BlueGene/L!'%!

3.0 August 20, 2008 1.042 petaFLOP Roadrunner!'?”)

4.0 September 28, 2008 1.042 petaFLOP Roadrunner!'%”!
5.0 February 18, 2009 1.105 petaFLOP Roadrunner!'%!

6.0 November 10, 2011 8.162 petaFLOP K computer!'?°!
All of our clusters combined
total ~0.1 Petaflops

32 clusters.key - March 24, 2015




Questions to Ask Yourself

@ Total time required for I/0

@ Possible to share data?

@ Total time required for processing
@ Memory usage

@ Interprocess communication

clusters.key - March 24, 2015




Speedup

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

Amdahl’'s Law

Number of Processors

34

//
P
/ .
/ Parallel Portion
. ——50%
/ —75%
—90%
/ ——95%
//
/ T |
/
/N A
/ //
V/ —
/
/f__

clusters.key - March 24, 2015



Disc Tricks

(for data intensive jobs)

@ Run on 'storage node’

@ Purpose-specific node/workstation

@ Clone data via broadcasting

@ Copy data to scratch storage on appropriate nodes
@ Lustre filesystem

@ Process while copying

clusters.key - March 24, 2015




Part 3
Using Clusters




How to

Interrogate
Your
Cluster !




Cluster Resources

@ RTFM (http://blake.bcm.edu/CIBRClusters)

@ cat /etc/hosts

@ df -h

@ mount

@ ifconfig

@ /proc filesystem (cpuinfo, meminfo)
@ gstat -q

@ Filesystem speed ?

@ dd if=/dev/zero of=test bs=1M count=2000; rm test

clusters.key - March 24, 2015




Subsystems

@ BQS (Batch Queuing System)
@ PBS (OpenPBS, Torque, etc.)
@ SGE (Sun Grid Engine)
@ HTCondor (UW)

@ Parallelized programs
@ pthreads
@ OpenMP

@ MPI

clusters.key - March 24, 2015




BQS

@ OpenPBS/Torque
@ Edit batch script
@ Submit job (qsub)
@ to a specific queue (gstat -q)
@ Job waits in queue (gstat -a)
® Nodes allocated ($PBS_NODEFILE)
@ Script run on the first node ($PBS_O_WORKDIR)
@ Cleanup/logfiles
@ Kill a bad job (qdel)

@ Accounting updated (resources used)

clusters.key - March 24, 2015




Batch Script

#!/bin/bash

#

# This is an example PBS/Torque script

# modify the number of nodes, ppn (processors per node), and walltime
H#

#PBS -| nodes=2:ppn=12
#PBS -| walltime=2:00:00

cd $PBS_O_WORKDIR

YOUR COMMANDS HERE

qsub -q <queuename> myscript.pbs

clusters.key - March 24, 2015




-9

@ cput - Maximum amount of CPU time used by all processes in the job. Units: time.

@ file - The largest size of any single file that may be created by the job. Units:
Size.

@ nodes - Number of nodes to allocate

@ pcput - Maximum amount of CPU time used by any single process in the job.
Units: time.

@& pmem - Maximum amount of physical memory (workingset) used by any single
process of the job. Units: size.

@ ppn - Number of processors to use per node

@ pvmem - Maximum amount of virtual memory used by any single process in the
job. Units: size.

@ walltime - Maximum amount of real time during which the job can be in the
running state. Units: time.

clusters.key - March 24, 2015




Part 4
Parallel Programming




Parallel programming

@ pthreads
@ OpenMP

@ MPI

® Other niche systems...




pthreads

@ Only one node at a time (SMP)
@ SMP -> easy communications
@ Somewhat painful to program
@ Synchronization issues
@ May be limits in some languages

@ Available in multiple programming languages

clusters.key - March 24, 2015




pthreads

Python example:

from threading import Thread
import time,sys

def func(n):
for 1 in range(10):
time.sleep(1l)
print n, i1
sys.stdout.flush()

threads=[Thread(target=func,args=[1]) for i in xrange(4)]

for t in threads:
t.start ()
time.sleep(0.1)

clusters.key - March 24, 2015




OpenMP

@ Very good speedups with limited effort
® Same code can compile parallel and serial

@ One node only (SMP)

@ Needs to be part of the compiler (available in gcc)

@ http://www.openmp.org

clusters.key - March 24, 2015




OpenMP Example

#include <stdio.h>
#include <math.h>
#include <omp.h>

int main() {

tnt1;:3;
double sum=0;
for (1=0; 1<100000000; i++) {

sum+=pow(1.00001,1/1000) ;
h

printf("%Lf\n",sum);
hy

clusters.key - March 24, 2015




OpenMP Example

#include <stdio.h>
#1include <math.h>
#include <omp.h>

int main() {

ek 1,7
double sum=0;

#pragma omp parallel

{

#pragma omp for

for (1=0; 1<100000000; i++) {
sum+=pow(1.00001,1/1000) ;

}

¥

printf("%Lf\n",sum);

}

clusters.key - March 24, 2015




OpenMP Example

#include <stdio.h>
#1include <math.h>
#include <omp.h>

int main() {

ek 1,7
double sum=0;

#pragma omp parallel

{

#pragma omp for reduction(+:sum)

for (1=0; 1<100000000; i++) {
sum+=pow(1.00001,1/1000) ;

;

¥

printf("%Lf\n",sum);

}

clusters.key - March 24, 2015




MP1I

@ MPI: Message Passing Interface

@ Written by computer scientists for computer scientists
@ Operates on distributed processors

@ Bindings for many languages

@ Explicit interprocess communication via messages

@ All nodes run the same program

@ Communications problems are common

® Zero fault tolerance

clusters.key - March 24, 2015




MP1I

@ Many variants - OpenMPI, MPICH, Intel MP],...

@ mpicc - MPI aware C compiler
@ which mpicc - identify which MPI installation
@ mpirun - convenient program launching tool
® Runs the exact same program on each processor!

® On most clusters, automatically talks to BQS

clusters.key - March 24, 2015




MP1I

@ Outline of one strategy for MPI program:
@ MPI_Init() - Initialize MPI on all nodes
@ MPI_Barrier() - Synchronize nodes
@ MPI_Comm_rank() - Identify CPU (rank)
@ rank O:

@ coordinate processing, perhaps do some
@ rank 1-n:

@ perform work assigned by rank O

® MPI_finalize() - clean everything up

clusters.key - March 24, 2015




MP1I

#1include <mpi.h>
#include <stdio.h>
#include <unistd.h>

int main(int argc, char **argv)

£

int rank;
char hostname[256];

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

gethostname(Chostname,255);

printf("Hello world! I am process number: %d on host %s\n", rank, hostname);

MPI_Finalize();

return 0;

https://hpcc.usc.edu/support/documentation/examples-of-mpi-programs/

clusters.key - March 24, 2015




MPI - python

#!/usr/bin/env python
from sys import argv,stdout
from mpi import *

mpi_init(Q, [])
mpi_barrier(MPI_COMM_WORLD)
proc=mpi_comm_rank(MPI_COMM_WORLD)
nproc=mpi_comm_size(MPI_COMM_WORLD)
print "Running on %d/%d"%(proc,nproc)

1f proc==0 :

print "Stage 1, synchronous send/receive"

print "Rank ",

for 1 1n range(l,nproc):
mpi_send("TESTING",7 ,MPI_CHAR,1,1,MPI_COMM_WORLD)
print 1,
stdout. flush()

print "\nTransmit complete"

else :
data=mpi_recv(7,MPI_CHAR, 0,1,MPI_COMM_WORLD)
print proc," received ",data

mpi_barrier(MPI_COMM_WORLD)
mpi_finalize()

clusters.key - March 24, 2015




Other systems?

@ Many other language dependent systems
® May not be broadly supported on 'big iron' clusters

@ Sysops may be hostile to use of anything but MPI

clusters.key - March 24, 2015




Where to Learn More

@ Passing interest

@ Youtube has many good videos
® Somewhat interested

@ TACC offers multi-day workshops on parallelism
@ Really Committed

@ (if you are a GS) Rice offers Comp 422, a full
semester course on parallel computing

@ iTunesU - full courses (eg - Stanford)

clusters.key - March 24, 2015




