
Introduction to Programming
for Scientists

Lecture 1

Introduction
Datatypes

Programming

● What is and isn't programming ?

Language History
8512 documented lanuages (vs. 2376)

● Four of the first modern languages (50s):

– FORTRAN (FORmula TRANslator)

– LISP (LISt Processor)

– ALGOL

– COBOL (COmmon Business Oriented Language)

● C (1972)

● C++ (1983)

● Perl (1990)

● Python (1991)

● Ruby (1992)

● HTML (1994)

● Java (1995)

Programming

● Programming Languages

– Small vocabulary

– Standard constructs across languages

– Simple, exactly specified syntax

– Datatypes

Python ?

PYTHON OOL- developed by Guido van Rossum, and named after Monty Python.(No one
Expects the Inquisition) a simple high-level interpreted language. Combines ideas from
ABC, C, Modula-3, and ICON. It bridges the gap between C and shell programming,
making it suitable for rapid prototyping or as an extension of C. Rossum wanted to
correct some of the ABC problems and keep the best features. At the time, he was
working on the AMOEBA distributed OS group, and was looking for a scripting
language with a syntax like ABC but with the access to the AMOEBA system calls, so
he decided to create a language that was extensible; it is OO and supports packages,
modules, classes, user-defined exceptions, a good C interface, dynamic loading of C
modules and has no arbritrary restrictions.

www.python.or
g

Hello World

● Python
print “Hello, world!”

● Perl
print "Hello, world!\n";

● C:
#include <stdio.h>

main() {
 printf(“Hello, world!\n”);
 exit(0);
}

The first program you learn in any programming language.

Install Python

Note that these are specific to version 2.4.3, in the future, you may want to just go to
www.python.org and follow the links...

Windows
browse to:
http://www.python.org/download/releases/2.4.3/
follow instructions

Linux
probably already installed

OSX
browse to:
http://www.python.org/download/releases/2.4.3/
follow instructions, or you can use 'fink'

Python as a Calculator

> python (under windows, run 'Idle' from the start menu)
....
IDLE 1.0.2

>>> 5*10 <-- Note that bold italics indicate what you should type at the prompt

50

>>> 5*10/3

16

>>> 5.0*10/3

16.666666666666668

>>> 5**2

25

>>> 5**3

125

>>> sqrt(4)

Traceback (most recent call last):
 File "<pyshell#5>", line 1, in -toplevel-
 sqrt(4)
NameError: name 'sqrt' is not defined

Python as a Calculator

>>> import math <-- before we use special math functions, we need to 'import' the

>>> math.sqrt(4) math library

2.0

>>> math.sqrt(-1) <-- normal math library does not support imaginary numbers

Traceback (most recent call last):
 File "<pyshell#2>", line 1, in -toplevel-
 math.sqrt(-1)
ValueError: math domain error

>>> import cmath <-- cmath stands for 'complex math' and supports complex numbers

>>> cmath.sqrt(-1)

1j

>>> from math import * <-- the '*' is a wildcard meaning read everything, after doing

>>> pi this, all math operations are available without 'math.'

3.1415926535897931

>>> sin(pi/2)

1.0

Variables
>>> a=5 <--- An integer

>>> b=4.0 <--- A floating point number

>>> a*b

20.0

>>> y=m*x+b <--- Not a function, just a 1 time calculation, so all variables must exist

Traceback (most recent call last):
 File "<pyshell#56>", line 1, in -toplevel-
 y=m*x+b
NameError: name 'm' is not defined

>>> m=1

>>> x=2

>>> y=m*x+b

>>> y

6.0

>>> x=3

>>> y
6.0 <--- Since y=m*x+b was a 1-time calculation, y does not change when x changes

>>> y=m*x+b

>>> y

7.0

Your Own Functions
>>> def y(m,x,b): <-- Now we define it as an actual function we can re-use

return m*x+b

>>> y(1,2,3) <-- Call the function with m=1, x=2 and b=3

5

>>> f(1.0,2,3)

5.0

>>> def g(x,y):

return float(x)**int(y) <-- '**' means raise to the power of in python

>>> g(5.0,3)

125.0

>>> g(5,3.0)

(what do you think?)

>>> cos(pi)

-1.0

>>> def cos(x): return x+1.0

>>> cos(pi)

4.1415926535897931

Simple Strings
>>> "Hello there" <--- A simple string

'Hello there'

>>> 'Hello there' <--- Single quotes equivalent to double

'Hello there'

>>> """Hello There""" <--- Triple-double-quotes let you span multiple lines

'Hello There'

>>> "'Hello' there"

"'Hello' there"

>>> print "'Hello' there"
'Hello' there

>>> print """This is a

multiline string, denoted by

triple quotes"""

This is a
multiline string, denoted by
triple quotes

String Math

>>> "This"+" is "+"a test" <-- Adding strings concatenates

'This is a test'

>>> "5+2="+(5+2) <-- Cannot add strings and numbers

Traceback (most recent call last):
 File "<pyshell#22>", line 1, in -toplevel-
 "5+2="+(5+2)
TypeError: cannot concatenate 'str' and 'int' objects

>>> "5+2="+str(5+2) <-- First convert the number to a string

'5+2=7'

>>> "abc"*3 <-- Multiplication makes copies of strings

'abcabcabc'

>>> str(5+2)*3
(what do you think?)

String Slicing and Dicing

>>> "Hello there world"

'Hello there world'

>>> “Hello there world”[1] <-- Returns element number 1 from the string

'e' but the first element is 0, so 1 is the second

>>> "Hello there world"[6:11] <-- A 'slice of the string, the 7th thru 11th elements

'there' the last element (number 11) is never included

>>> "Hello there world"[:5] <-- Starts at the beginning if the first number

'Hello' is missing

>>> "Hello there world"[-5:] <-- Negative values count from the END of the

'world' string, if the 2nd number is missing, go to end

 1111111

01234567890123456 <-- counting from the beginning
Hello there world

 987654321 <-- counting from the end

Homework
Practice on your own:
● Install Python on your machine. Also, here are a couple of quick tests you can

try yourself to see if you understood all of the material today. Try to figure out
what the results will be, then enter them in python and check yourself. They
may be tricky, so do check yourself even if you think you know the answer:

1)
a="18"
b="5"
int(a+b)/3

2)
1/2+1.0/2

3)
int('9'*3)+1

