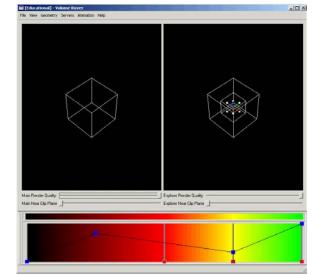
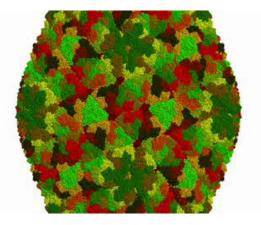
Geometric and Signal 3D Processing (and some Visualization)

Chandrajit Bajaj



Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences


University of Texas at Austin

Algorithms & Tools

- Structure elucidation: filtering, contrast enhancement, segmentation, skeletonization, subunit identification
- > Structure Modeling: finite element meshing, spline representations(Aspline,RBF representations) for structural fitting & complementary docking
- Visualization: multi-dimensional transfer functions, surface and volume texture rendering, wavelet compression, hierarchical representations, cluster based parallelism

VolRover

Center for Computational Visualization

Institute of Computational and Engineering Sciences Department of Computer Sciences

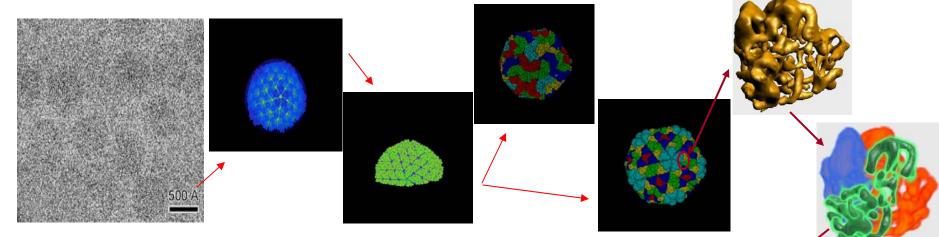
University of Texas at Austin

The CVC Team and Collaborators

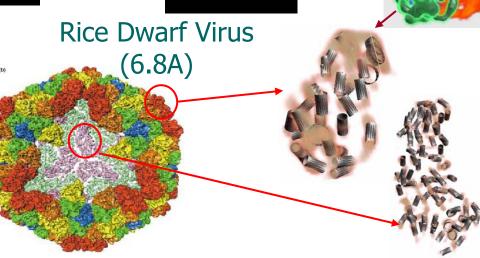
Personnel

- Inderjit Dhillon (Assoc. Director)
- Albert Chen (CS, Ph.D)
- Katherine Clarridge (MBE,M.S.)
- KL Chandrasekhar (ME, Ph.D.)
- Tamal Dey (OSU) **
- Samrat Goswami (PostDoc, CS)
- Rick Hankins (Res. Scientist)
- Insung Ihm (SNU, S. Korea)**
- Sangmin Park (CS, Ph.D.)
- Bong-June Kwon (CS, M.S.)
- Bong-Soo Sohn (Stanford U)**
- Jason Sun (Res. Scientist)
- John Wiggins (Res. Scientist)
- Vinay Siddahanavalli (CS, Ph.D.)
- Guoliang Xu (AS,China)**
- Zeyun Yu (CS, Ph.D)
- Xiaoyu Zhang (CSU)**
- Jessica Zhang (PostDoc, ICES)
- Wenqi Zhao (ICES, Ph.D.)

- Senior Collaborators
 - Manfred Auer (LBL)
 - Nathan Baker (Wash. U.)
 - Helen Baker, Cathy Lawson (Rutgers U)
 - Tim Baker (UCSD)
 - Tom Bartol (SALK)
 - Luis Caffarelli (ICES)
 - Wah Chiu, Matt. Baker (Baylor)
 - Leszek Demkowicz (ICES)
 - Gregory Gladish, J. Hazle (MD Anderson)
 - Tom Hughes (ICES)
 - Andy McCammon (USCD)
 - Tinsley Oden (ICES)
 - Art Olson, M. Sanner, D. Goodsell, Charlie Brooks, V. Reddy (Scripps)
 - Peter Rossky (ICES)
 - Andre Sali (UCSF)
- Funding
 - NIH: P20(planning), R01
 - NSF: ITR , DDDAS
 - Whitaker Foundation



Center for Computational Visualization

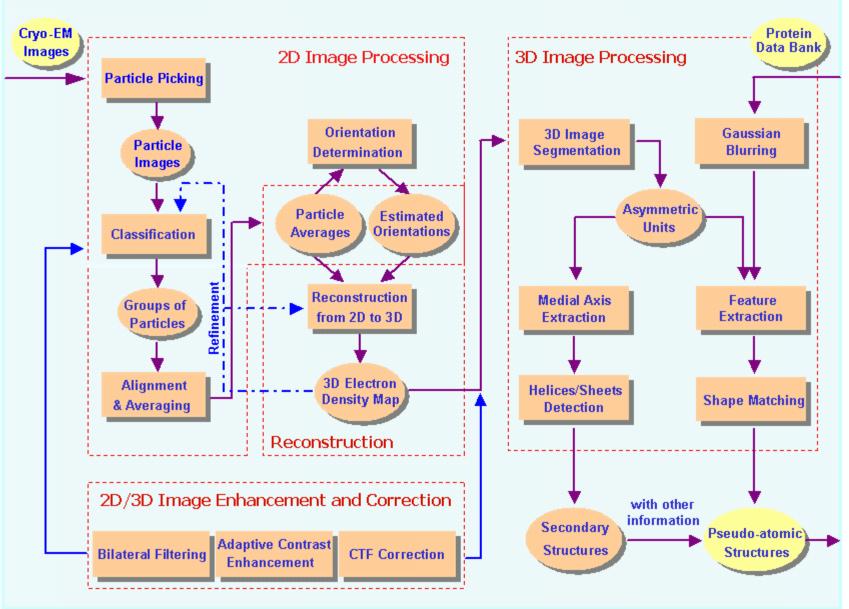

Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Sub-nanometer Structure Elucidation from 3D Cryo-EM

Cryo-EM \rightarrow FFT based 3D Reconstruction \rightarrow Anisotropic and Vector Diffusion Filtering \rightarrow Structure Segmentation \rightarrow Quasi-Atomic Modeling \rightarrow Visualization

**Sponsored by NSF-ITR, NIH

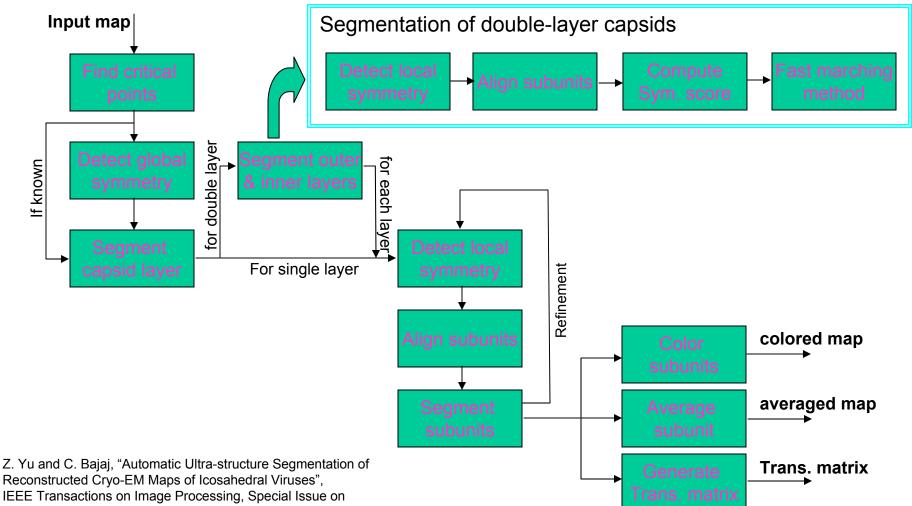


Center for Computational Visualization

Institute of Computational and Engineering Sciences Department of Computer Sciences (Collaborators: Wah Chiu,NCMI, Baylor College of Medicine, Andrej Sali, UCSF)

University of Texas at Austin

A Structure Determination Pipeline for single particle cryo-EM



Center for Computational visualization

Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Structure Elucidation for Icosahedral Viruses

Cellular/Molecular Imaging, 14(9), pp. 1324-1337, 2005.

Center for Computational Visualization

Institute of Computational and Engineering Sciences Department of Computer Sciences

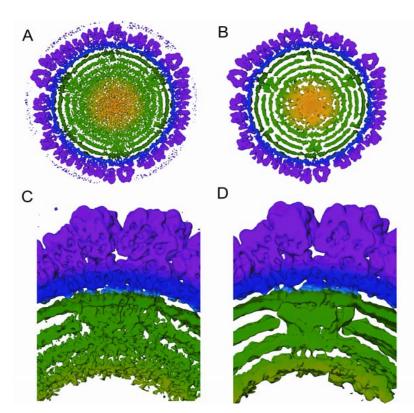
University of Texas at Austin

Structure Elucidation 1(A)

- Adaptive contrast enhancement
- Bilateral filtering

$$h(x,\xi) = e^{-\frac{(x-\xi)^2}{2\sigma_d^2}} \cdot e^{-\frac{(f(x)-f(\xi))^2}{2\sigma_r^2}}$$

- where σ_d and σ_r are parameters and f(.) is the image intensity value.
- Anisotropic diffusion filtering


$$\partial_t \phi - \operatorname{div}(a(|\nabla \phi_\sigma|) \nabla \phi) = 0$$

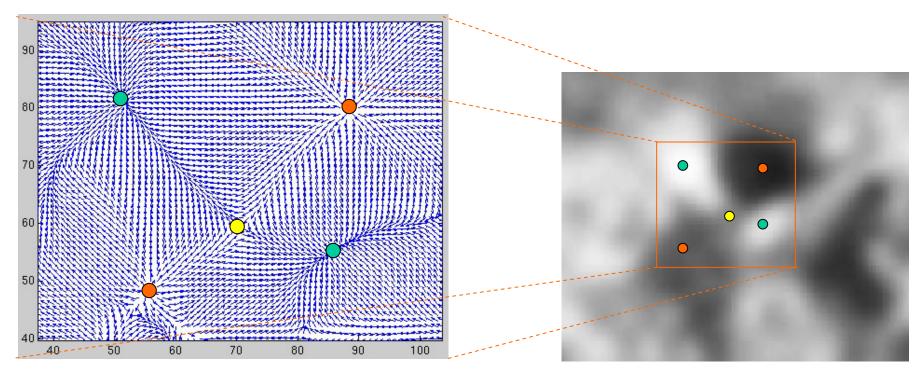
where **a** stands for the diffusion tensor determined by local curvature estimation.

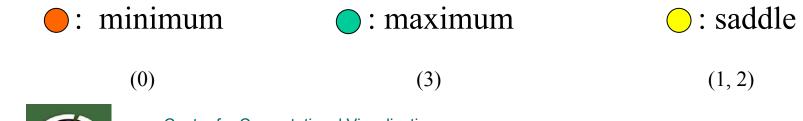
• Anisotropic gradient vector diffusion

C. Bajaj, G. Xu, ACM Transactions on Graphics, (2003),22(1), 4 - 32.

- Z. Yu & C. Bajaj, Proc. Int'l Conf. Image Processing, 2002. pp. 1001-1004.
- Z. Yu & C. Bajaj, Proc. Int'l Conf. Computer Vision and Pattern Recognition, 2004. 415-420.

W. Jiang, M. Baker, Q. Wu, C. Bajaj, W. Chiu, Journal of Structural Biology, 144, 5,(2003),114-122




Center for Computational Visualization

Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Compute Critical Points Using AGVD

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Anisotropic Gradient Vector Diffusion (AGVD)

Isotropic Diffusion (Xu et al., 1998)

$$\frac{\partial u}{\partial t} = \mu \nabla^2 u - (u - f_x)(f_x^2 + f_y^2)$$
$$\frac{\partial v}{\partial t} = \mu \nabla^2 v - (v - f_y)(f_x^2 + f_y^2)$$

Where:

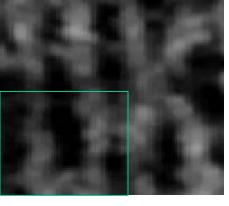
(u(t), v(t)) stands for the evolving vector field; μ is a constant;

f is the original image to be diffused;

 $(f_x, f_y) = (u(0), v(0)).$

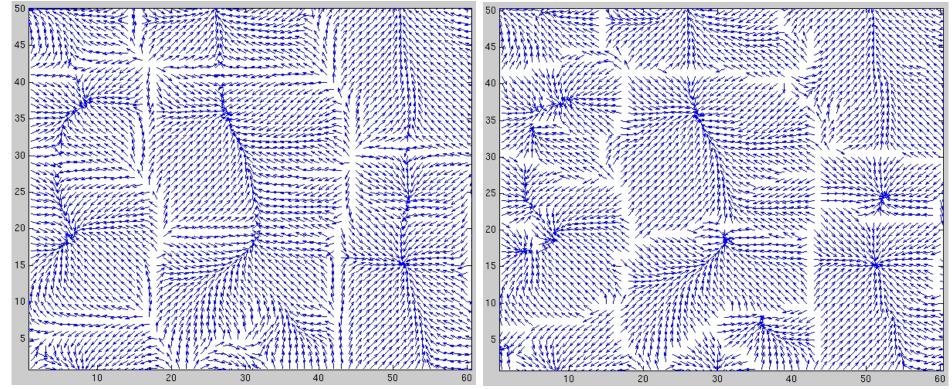
Anisotropic Diffusion (Yu & Bajaj ICPR'02) $\begin{cases}
\frac{\partial u}{\partial t} = \mu \nabla (g(\alpha) \cdot \nabla u) - (u - f_x)(f_x^2 + f_y^2) \\
\frac{\partial v}{\partial t} = \mu \nabla (g(\alpha) \cdot \nabla v) - (v - f_y)(f_x^2 + f_y^2)
\end{cases}$

Where


(u(t), v(t)) stands for vector field; μ is a constant; $(f_x, f_y) = (u(0), v(0))$. *f* is the original image to be diffused; g(.) is the angle between two vectors

Center for Computational Visualization

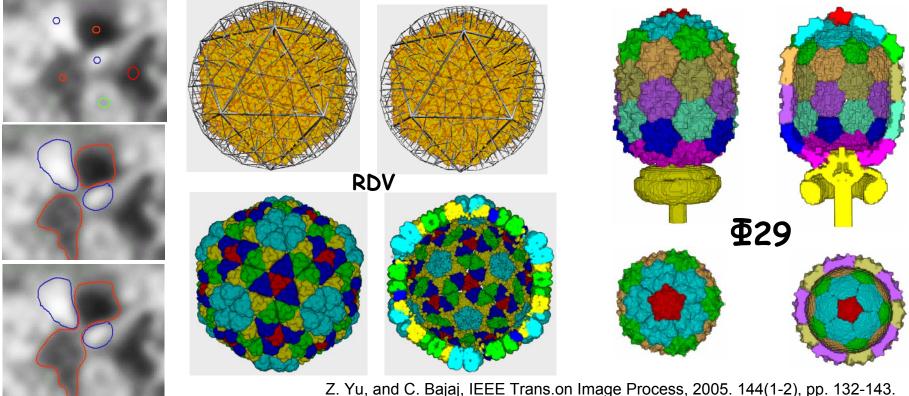
Institute of Computational and Engineering Sciences Department of Computer Sciences


University of Texas at Austin

GVD v.s. AGVD

Isotropic diffusion

Anisotropic diffusion

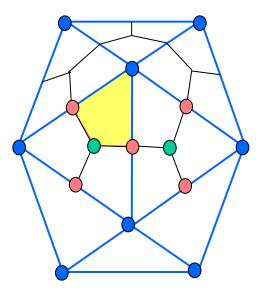

Center for Computational Visualization

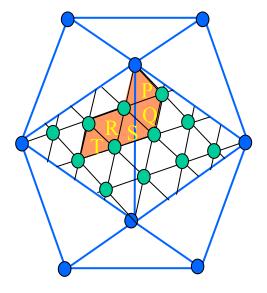
Institute of Computational and Engineering Sciences Department of Computer Sciences

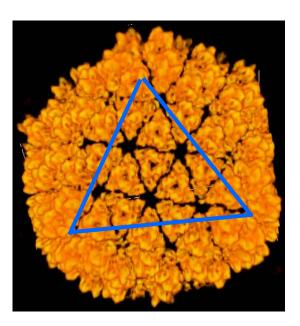
University of Texas at Austin

Structure Elucidation 1(B)

- Multi-seed Fast Marching Method
 - Classify map critical points as seeds based on local symmetry.
 - Each seed initializes a contour, with its group's membership.
 - Contours march simultaneously. Contours with same membership are merged, while contours with different membership stop each other.






Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

Global and Local Symmetry

• Automatic structure unit identification in a 3D Map

Two-fold vertices
 Three-fold vertices
 Five-fold vertices

Example: RDV

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

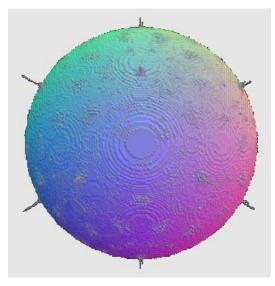
Symmetry Detection: Correlation Search

$$C(\theta, \varphi) = \sum_{\vec{r} \in V} f(\vec{r}) f(R_{(\theta, \varphi, 2\pi/5)} \cdot \vec{r})$$

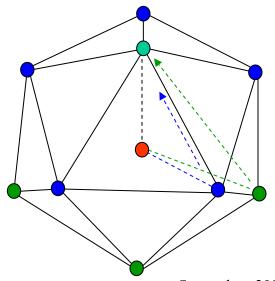
- Algorithm: *detect 5-fold rotation symmetry*
 - Compute the scoring function
 - For every angular bin B_j, compute θ_j,φ_j { For every critical point C_i {

$$\vec{r}_{k}(C_{i}, B_{j}) = R_{(\theta_{j}, \phi_{j}, 2k\pi/5)} \cdot C_{i}, \quad k = 0, 1, 2, 3, 4$$
$$Dev(C_{i}, B_{j}) = \frac{1}{5} \sum_{k=0}^{4} (f(\vec{r}_{k}) - \bar{f}) \}$$

$$SF(B_j) = \frac{1}{p} \sum_{i=0}^{p} Dev(C_i, B_j)$$

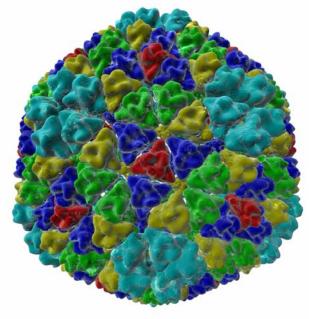

- Locate the symmetry axes
 - The 12 peaks
- Refine the symmetry axes
 - In order to locate a perfect icosahedron

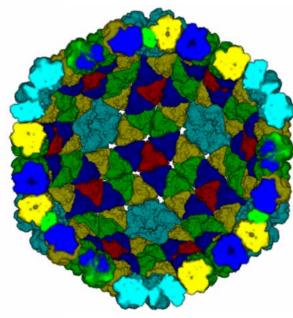
(rotate the axes by 0^0 , 63.43⁰, 116.57⁰, 180⁰)



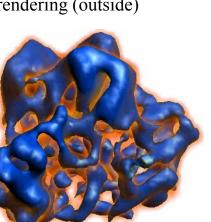
Center for Computational Visualization Institute of Computational and Engineering Sciences

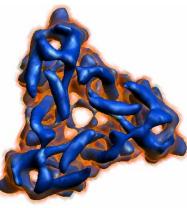
Department of Computational and Engineering Scier


Inverted and normalized SF(Bj)

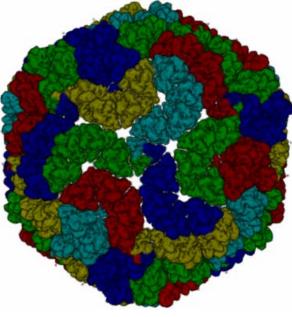

University of Texas at Austin

September 2005

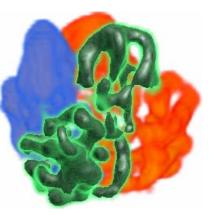

Structure Elucidation Results: RDV (Bakeoff)



surface rendering (outside)



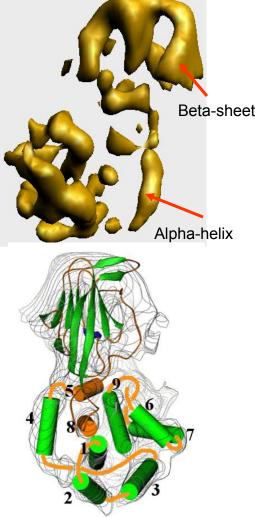
volume rendering (inside)



averaged trimer (bottom)

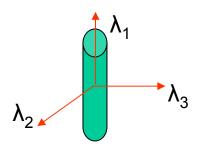
volume rendering (asymmetric unit)

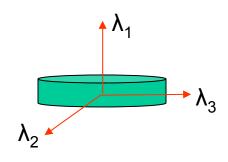
segmented monomers


University of Texas at Austin

September 2005

averaged trimer (side) Center for Computational Visualization Institute of Computational and Engineering Sciences **Department of Computer Sciences**


Structure Elucidation 1(C): Secondary Structure Identification



 $G_{\sigma} * \begin{pmatrix} I_x^2 & I_x I_y & I_x I_z \\ I_x I_y & I_y^2 & I_y I_z \\ I_x I_z & I_y I_z & I_z^2 \end{pmatrix}$

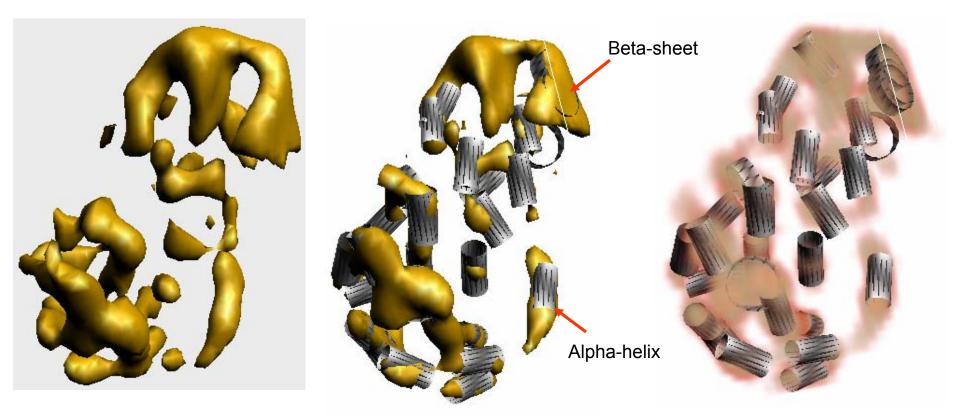
The eigenvectors of the local structure tensor give the principal directions of the local features:

Line structure (alpha-helix)

 $\lambda_2 \approx \lambda_3 >> \lambda_1 \approx 0$

plane structure (beta-sheet)

 $\lambda_1 >> \lambda_2 \approx \lambda_3 \approx 0$

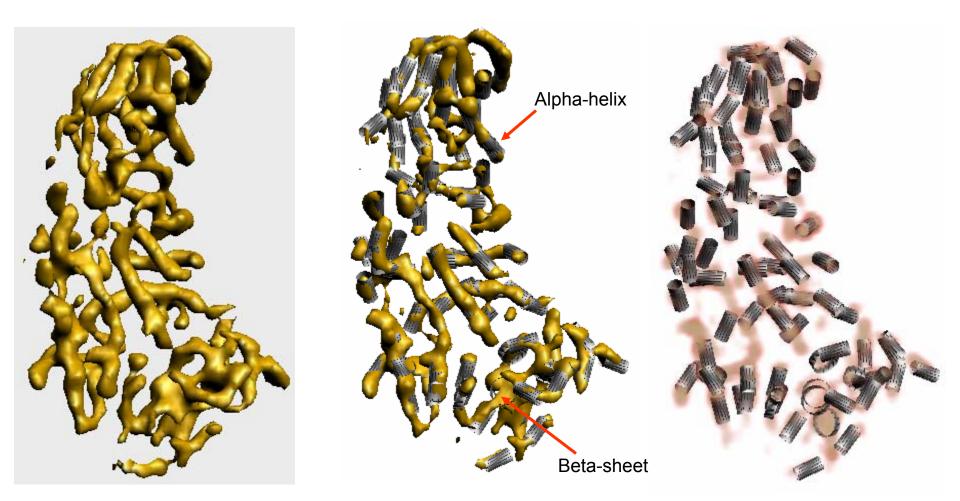


Center for Computational Visualization

Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

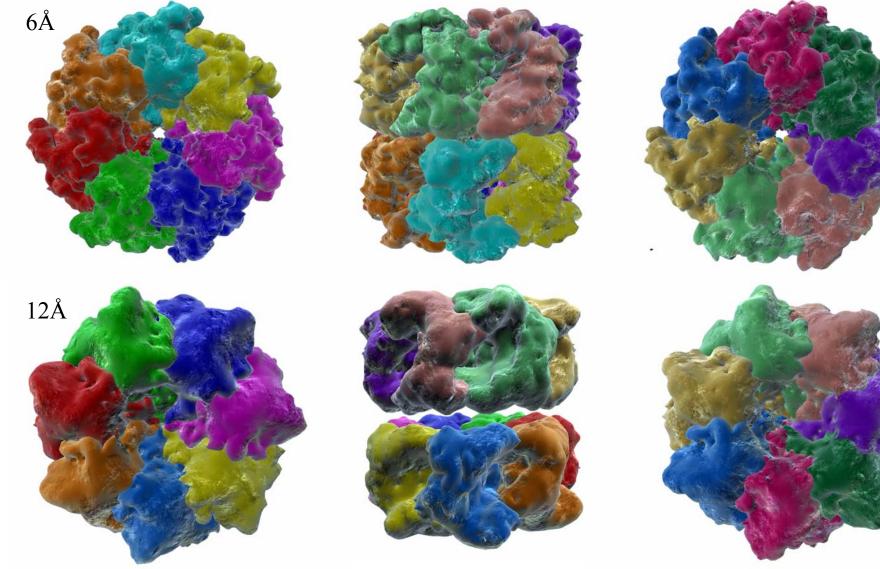
Monomeric Unit of Outer Capsid of RDV



Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

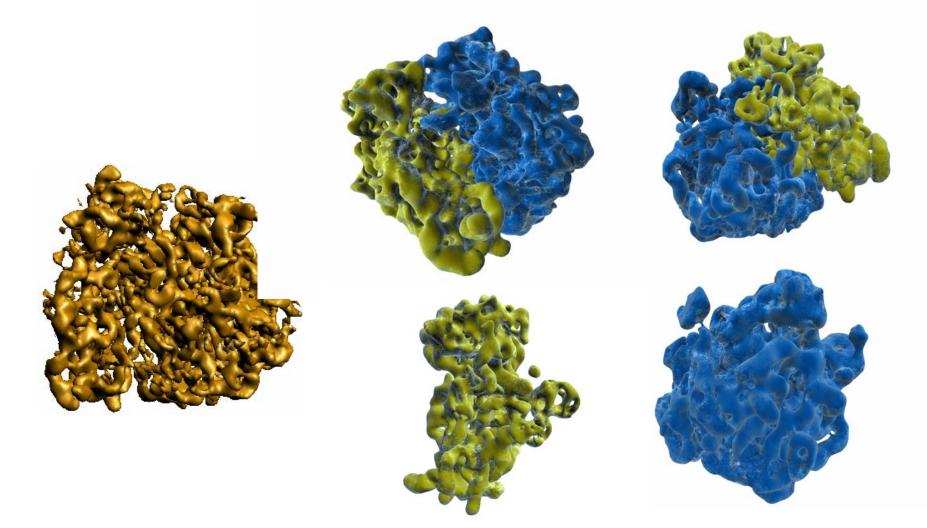
Monomeric Unit of Inner Capsid of RDV



Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Structure Elucidation Results: GroEL (Bakeoff)

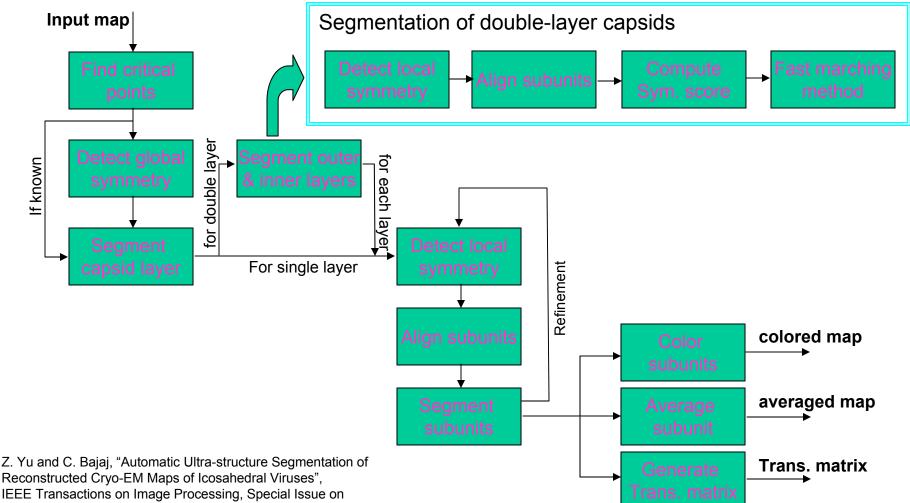


Center for Computational Visualization Institute of Computational and Engineering Sciences **Department of Computer Sciences**

Data courtesy: Dr. Wah Chiu University of Texas at Austin

Segmentation Results: Ribosome (Bakeoff)

70S ribosome from E. coli complex. 70S-tRNAfMet-MF-tRNAPhe. Data courtesy: EBI & J.Frank



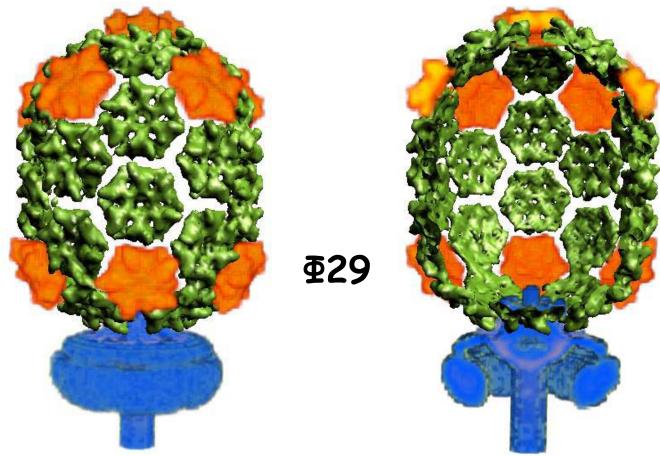
Center for Computational Visualization

Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Structure Elucidation for Symmetric Capsid Viruses

Cellular/Molecular Imaging, 14(9), pp. 1324-1337, 2005.



Center for Computational Visualization

Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Subunit alignment (1): averaging

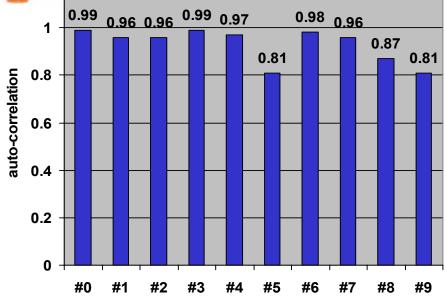
The above two pictures (left: outer; right: inner) show the averaged capsid layer, calculated from one 5-fold subunit (orange) and one 6-fold subunit (green). The tail structure (blue) is augmented after the averaging.

Center for Computational Visualization

Institute of Computational and Engineering Sciences Department of Computer Sciences

Data courtesy: Tim Baker

University of Texas at Austin



• Cross-correlation

	#0	#1	#2	#3
#0	1	0.95	0.95	0.34
#1	0.95	1	0.96	0.31
#2	0.95	0.96	1	0.31
#3	0.35	0.31	0.32	1

ſ		#4	#5	#6	#7	#8	#9
		<i></i>					
	#4	1	0.79	0.95	0.94	0.87	0.88
	#5	0.79	1	0.79	0.78	0.77	0.79
	#6	0.95	0.79	1	0.96	0.88	0.88
	#7	0.94	0.78	0.96	1	0.89	0.88
	#8	0.87	0.77	0.88	0.89	1	0.94
	#9	0.88	0.79	0.88	0.88	0.94	1

~ 9

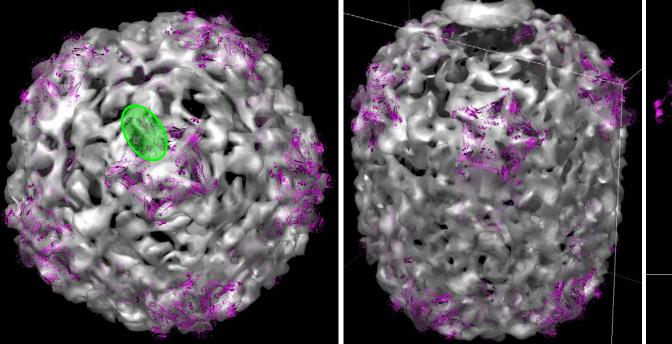
29

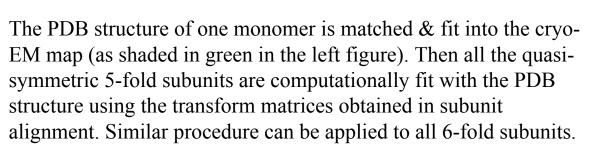
8-

1.2

segmented subunit Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

Structure Elucidation Results: **Ф29**

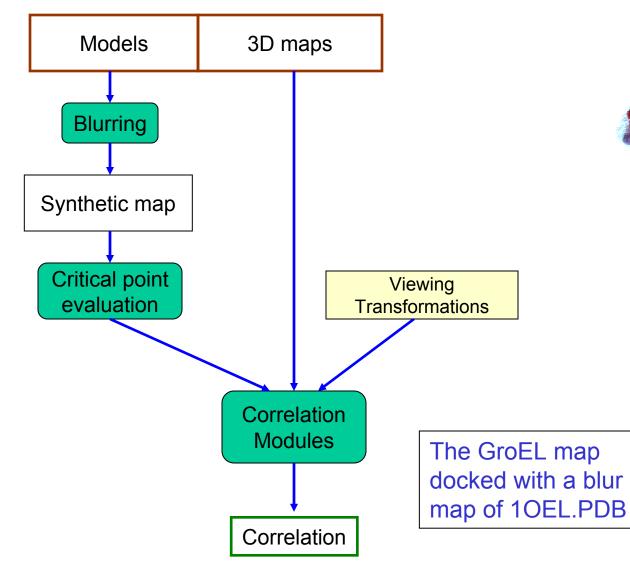


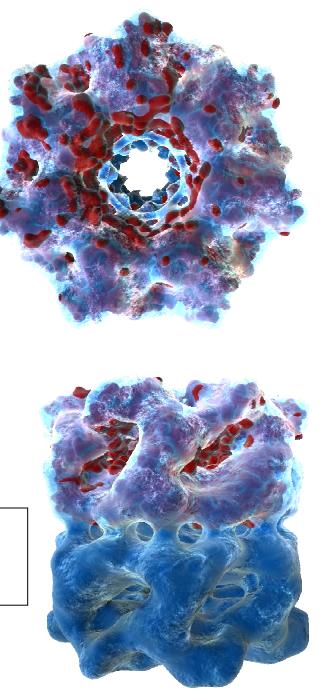


Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

Data courtesy:Tim BakerUniversity of Texas at AustinSeptemb

Subunit alignment (2): Fitting


Center for Computational Visualization


Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

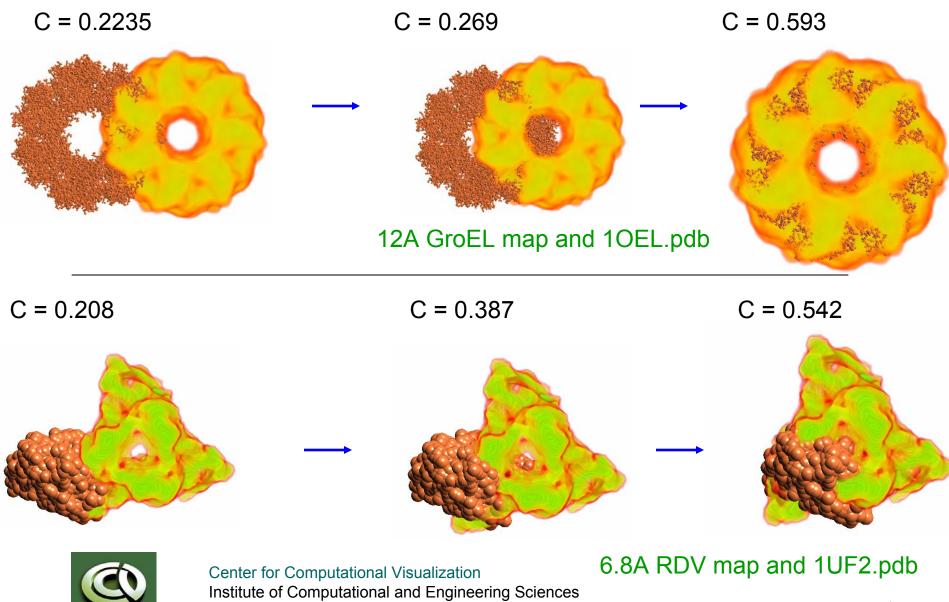
"Interactive" Fitting

Center for Computational Visualization

Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Gro-EL: X-ray structures docked in Cryo-EM



Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Interactive Correlation Analysis

Department of Computer Sciences University of Texas at Austin

Approximate Correlation Analysis

$$score = 1 - \frac{\sum_{i=1}^{N} |f(c_i) - g(c'_i)|}{\sum_{i=1}^{N} \max(f(c_i), g(c'_i))}$$

Where *f* is the normalized density function of the blurred crystal structure;

g is the normalized density function of the cryo-EM map;

 c_i , i=1,2,...N, are the critical points of the blurred crystal structure;

 c'_i , i=1,2,...N, are the transformations of the critical points.

Center for Computational Visualization

Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Multi-resolution Molecular Surfaces

Center for Computational Visualization

Institute of Computational and Engineering Sciences Department of Computer Sciences

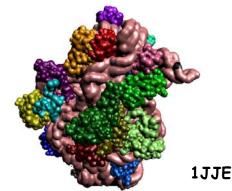
University of Texas at Austin

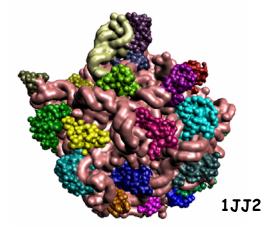
Blurring I

• For a molecule with M atoms, we can define a 3D electron density map as

$$f_{elec_dens}(\vec{\mathbf{x}}) = \sum_{i=1}^{M} G_i(\vec{\mathbf{x}}) \quad \mathbf{x} \in \mathbf{R}^3$$

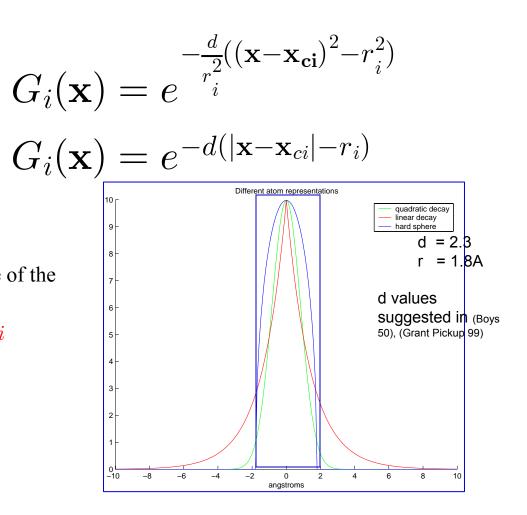
• For quadratic decay kernels, $A_i = e^d$:


$$f_{elec_dens}(\mathbf{x}) = \sum_{i=1}^{M} A_i e^{-\frac{d}{r^2} \mathbf{x}^2} \delta(c_i)$$


• For linear decay kernels, $A_i = e^{dri}$:

$$f_{elec_dens}(\mathbf{x}) = \sum_{i=1}^{M} A_i e^{-d|\mathbf{x}|} \delta(c_i)$$

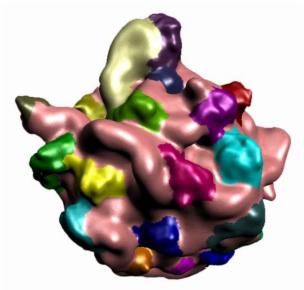
Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences



University of Texas at Austin

Atomic Shape Parameters

- Isotropic Quadratic Kernel
- Isotropic Linear Kernel
 - ➢ where
 - The decay d controls the shape of the Gaussian function.
 - \succ The van der Waals radius is r_i
 - > The center of the atom is \mathbf{x}_{c} .
- Anisotropic Kernels


Center for Computational Visualization

Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Blurring II

- For quadratic decay kernels, $A_i = e^d$: $f_{elec_dens}(\mathbf{x}) = \sum_{i=1}^M A_i e^{-\frac{d}{r^2}\mathbf{x}^2} \delta(c_i)$
- For linear decay kernels, $A_i = e^{dri}$: $f_{elec_dens}(\mathbf{x}) = \sum_{i=1}^{M} A_i e^{-d|\mathbf{x}|} \delta(c_i)$

• For above kernels G:

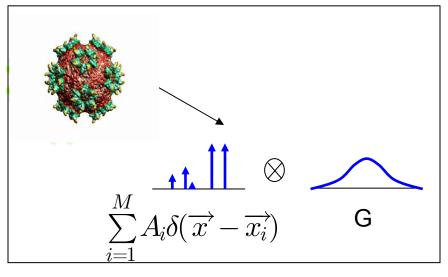
$$f_{elec_dens}(\mathbf{x}) = G \otimes \sum_{i=1}^{M} A_i \delta(c_i)$$

Center for Computational Visualization

Institute of Computational and Engineering Sciences Department of Computer Sciences $\sum_{i=1}^{M} A_i \delta(\overrightarrow{x} - \overrightarrow{x_i}) \qquad \mathbf{G}$

University of Texas at Austin

FFT Solutions & Approximations


- Use the convolution theorem.
 - Convolution in spatial domain = multiplication in frequency domain.
- The 3D electron density map is a convolution of a Kernel with delta functions at the atom centers

 $- f_{elec_dens} = FFT^{-1}(FFT(Kernel) \times FFT(atom centers))$

 Accuracy with Speed Tradeoff:

 The kernels are smooth functions. Hence only the first few frequencies need to be computed to obtain the summation. Also, convolution is a smoothing operator.

> - We can use an approximate FFT algorithm to calculate the low frequencies of atom centers to a high accuracy at a lower cost than a full FFT.

Center for Computational Visualization

Institute of Computational and Engineering Sciences Department of Computer Sciences

Evaluation of 3D Electron Density Map

Evaluation of the Electron Density of an M atom molecule at multiple points N

(typically $N \sim 100^* M$)

[Naiive Algorithm]

For each of the output points N, calculate the summation due to each of the M atomic kernels

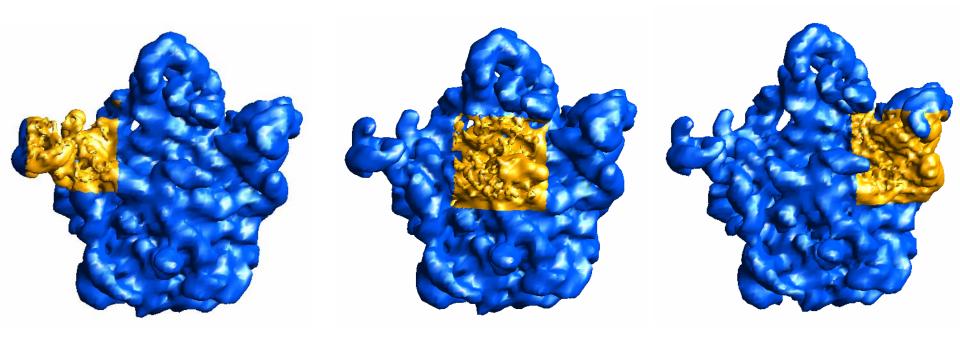
• **Cost**: $O(NM) \rightarrow$ very high!

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Fast Approximate FT Solution

-*f*_{elec_dens} = *FFT*^-1 (*FFT*(Kernel) x *FFT*(atom centers))


- Space complexity:
 - -O(M+N)
- Time complexity:
 - Irregularly spaced output evaluation points
 - O(MlogM + N) with larger constants
 - Regularly spaced output evaluation points
 - $O(M\log M + N \log N)$ with small constants

Multi resolution Molecular Surfaces (Bakeoff)

1PNX.PDB

1PNY.PDB

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Interrogative Scalable Visualization

Techniques

- Surface/2D Textures/3D Texture based rendering exploit hardware acceleration
- Multi-dim Transfer Functions for Regions of Interest
- Multi-resolution processing
- Compressed data processing
- Parallelism (back-end PC cluster)

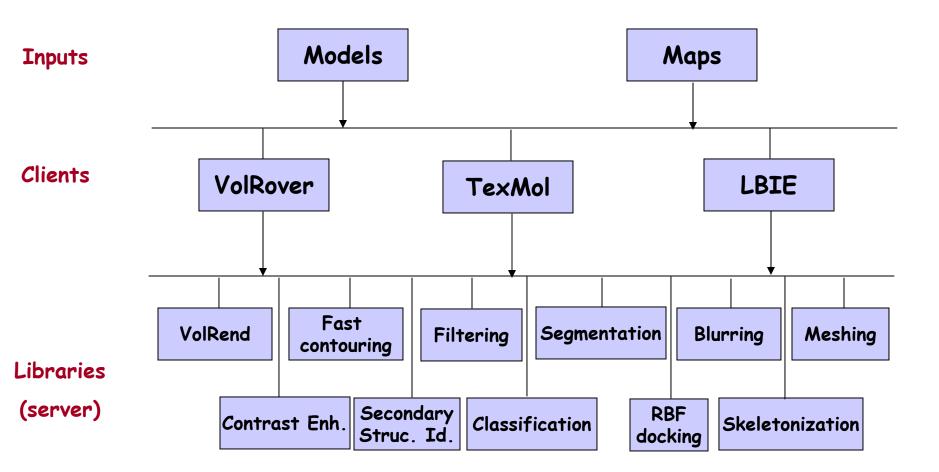
C.Bajaj, I. Ihm, S. Park, ACM Trans. on Graphics, 20, 1, 10-28, 2001

C Bajaj, P Djeu, V Siddavanahalli, A Thane, IEEE visualization, 2003. 243-250.

C. Bajaj, J. Castrillon-Candas, S. Vinay, A. Xu, Structure, 13, 3, 2005, 463-471

X. Zhang, C. Bajaj, IEEE Symp. On Parallel, Large Data Visualization, 2001, 51-58

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

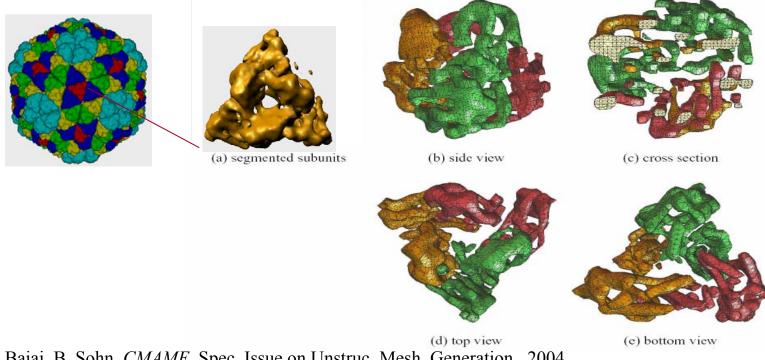


Communication & Education: Beyond silent movies!

University of Texas at Austin

Molecular Visualization and Processing (MVP) Environment

Open Source/Public Domain under LGPL (http://ccvweb.csres.utexas.edu/software/)


Center for Computational Visualization

Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Modeling 2(A): Finite Element Meshing

• LBIE : also supports Integral/Derivative Property computations (areas, volumes, curvatures)

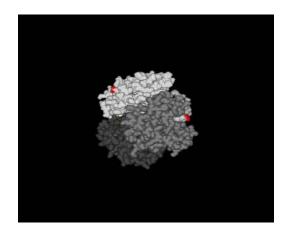
- •Y. Zhang, C. Bajaj, B. Sohn, CMAME, Spec. Issue on Unstruc. Mesh. Generation., 2004
- •Y.Zhang, C.Bajaj, G. Xu, 14th Intl Meshing Roundtable, San Diego2005.
- •Y. Zhang, C. Bajaj, CMAME,2005 (in press)

Center for Computational Visualization

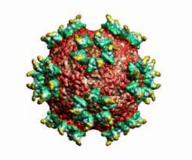
Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Summary: Algorithms & Tools


- Structure elucidation: filtering, contrast enhancement, segmentation, skeletonization, subunit identification
- Structure Modeling: finite element meshing, spline representations(Aspline,RBF representations) for structural fitting & complementary docking
- Visualization: multi-dimensional transfer functions, surface and volume texture rendering, wavelet compression, hierarchical representations, cluster based parallelism

C. Bajaj, Chap in Modeling Biology, MIT Press 2005


C. Bajaj, Z. Yu, Chap in

Handbook of Comp. Mol. Bio, Center for Computational And Engineering Sciences Department of Computer Sciences

VolRover

TexMol

University of Texas at Austin

The CVC Team and Collaborators

Personnel

- Inderjit Dhillon (Assoc. Director)
- Albert Chen (CS, Ph.D)
- Katherine Clarridge (MBE,M.S.)
- KL Chandrasekhar (ME, Ph.D.)
- Tamal Dey (OSU) **
- Samrat Goswami (PostDoc, CS)
- Rick Hankins (Res. Scientist)
- Insung Ihm (SNU, S. Korea)**
- Sangmin Park (CS, Ph.D.)
- Bong-June Kwon (CS, M.S.)
- Bong-Soo Sohn (Stanford U)**
- Jason Sun (Res. Scientist)
- John Wiggins (Res. Scientist)
- Vinay Siddahanavalli (CS, Ph.D.)
- Guoliang Xu (AS,China)**
- Zeyun Yu (CS, Ph.D)
- Xiaoyu Zhang (CSU)**
- Jessica Zhang (PostDoc, ICES)
- Wenqi Zhao (ICES, Ph.D.)

- Senior Collaborators
 - Manfred Auer (LBL)
 - Nathan Baker (Wash. U.)
 - Helen Baker, Cathy Lawson (Rutgers U)
 - Tim Baker (UCSD)
 - Tom Bartol (SALK)
 - Luis Caffarelli (ICES)
 - Wah Chiu, Matt. Baker (Baylor)
 - Leszek Demkowicz (ICES)
 - Gregory Gladish, J. Hazle (MD Anderson)
 - Tom Hughes (ICES)
 - Andy McCammon (USCD)
 - Tinsley Oden (ICES)
 - Art Olson, M. Sanner, D. Goodsell, Charlie Brooks, V. Reddy (Scripps)
 - Peter Rossky (ICES)
 - Andre Sali (UCSF)
- Funding
 - NIH: P20(planning), R01
 - NSF: ITR , DDDAS
 - Whitaker Foundation

Center for Computational Visualization

Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin