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Structure elucidation: filtering, 
contrast enhancement, segmentation, 
skeletonization, subunit identification

Structure Modeling:  finite element 
meshing, spline representations(A-
spline,RBF representations) for 
structural fitting & complementary 
docking

Visualization: multi-dimensional 
transfer functions, surface and volume 
texture rendering, wavelet compression, 
hierarchical representations, cluster 
based parallelism

Algorithms & Tools

VolRover

TexMol
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Sub-nanometer Structure Elucidation from 3D Cryo-EM

Cryo-EM FFT based 3D 
Reconstruction  

Anisotropic and Vector 
Diffusion Filtering 
Structure Segmentation 

Quasi-Atomic Modeling   
Visualization 

(Collaborators: Wah Chiu,NCMI, Baylor 
College of Medicine, Andrej Sali, UCSF)

**Sponsored by NSF-ITR, NIH

Rice Dwarf Virus 
(6.8A)
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A Structure Determination Pipeline for single particle cryo-EM
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Structure Elucidation for Icosahedral Viruses

Z. Yu and C. Bajaj, “Automatic Ultra-structure Segmentation of 
Reconstructed Cryo-EM Maps of Icosahedral Viruses”, 
IEEE Transactions on Image Processing, Special Issue on 
Cellular/Molecular Imaging, 14(9), pp. 1324-1337, 2005.
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Structure Elucidation 1(A)

• Adaptive contrast enhancement
• Bilateral filtering

where      and      are parameters and f(.) is 
the image intensity value. 

• Anisotropic diffusion filtering

where a stands for the diffusion tensor 
determined by local curvature estimation.
• Anisotropic gradient vector diffusion

2

2

2

2

2
))()((

2
)(

),( rd

fxfx

eexh σ
ξ

σ
ξ

ξ
−

−
−

−

⋅=

dσ rσ

W. Jiang, M. Baker, Q. Wu, C. Bajaj, W. Chiu, Journal 
of Structural Biology, 144, 5,(2003),114-122
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Z. Yu & C. Bajaj, Proc. Int’l Conf. Image Processing, 2002. pp. 1001-1004.
Z. Yu & C. Bajaj, Proc. Int’l Conf. Computer Vision and Pattern Recognition, 2004. 415-420.

C. Bajaj, G. Xu, ACM Transactions on Graphics, (2003),22(1),  4 - 32.
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Compute Critical Points Using AGVD

:  minimum                  : maximum                      : saddle 

(0)                                              (3)                                                  (1, 2)
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Anisotropic Gradient Vector Diffusion 
(AGVD)
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Where:   

(u(t), v(t)) stands for the evolving vector field;

µ is a constant; 

f is the original image to be diffused; 

(fx , fy) = (u(0), v(0)).

Isotropic Diffusion (Xu et al., 1998)
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Where   

(u(t), v(t)) stands for vector field;

µ is a constant; (fx , fy) = (u(0), v(0)).

f is the original image to be diffused; 

g(.) is the angle between two vectors

Anisotropic Diffusion (Yu & Bajaj 
ICPR’02)
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GVD v.s. AGVD

Isotropic  diffusion Anisotropic diffusion
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Structure Elucidation 1(B)
• Multi-seed Fast Marching Method 

– Classify map critical points as seeds based on local symmetry.    
– Each seed initializes a contour, with its group’s membership. 
– Contours march simultaneously. Contours with same membership are merged, while contours 

with different membership stop each other.

Z. Yu, and C. Bajaj, IEEE Trans.on Image Process, 2005. 144(1-2), pp. 132-143.

RDV

Φ29



Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences                               University of Texas at Austin September  2005

Global and Local Symmetry
• Automatic structure unit 

identification in a 3D Map

Two-fold vertices
Three-fold vertices
Five-fold vertices

P
Q

SR
T

Example:  RDV
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Symmetry Detection: Correlation Search  

• Algorithm: detect 5-fold rotation symmetry
– Compute the scoring function

• For every angular bin Bj, compute            {
For every critical point Ci {

}

}

– Locate the symmetry axes
• The 12 peaks

– Refine the symmetry axes
• In order to locate a perfect icosahedron

(rotate the axes by 00, 63.430, 116.570, 1800 )
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Structure Elucidation Results: RDV (Bakeoff)

surface rendering (outside)                       volume rendering (inside)              volume rendering (asymmetric unit)

averaged trimer (side)                averaged trimer (bottom)              segmented monomers
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Structure Elucidation 1(C): Secondary 
Structure Identification

Beta-sheet

Alpha-helix
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The eigenvectors of the local structure tensor give the 
principal directions of the local features:
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Monomeric Unit of Outer Capsid of RDV 

Beta-sheet

Alpha-helix
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Monomeric Unit of Inner Capsid of RDV  

Beta-sheet

Alpha-helix
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Data courtesy: Dr. Wah Chiu

Structure Elucidation Results: GroEL (Bakeoff)
6Å

12Å
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Segmentation Results: Ribosome (Bakeoff)

70S ribosome from E. coli complex. 70S-tRNAfMet-MF-tRNAPhe. Data courtesy: EBI & J.Frank
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Structure Elucidation for Symmetric Capsid
Viruses

Z. Yu and C. Bajaj, “Automatic Ultra-structure Segmentation of 
Reconstructed Cryo-EM Maps of Icosahedral Viruses”, 
IEEE Transactions on Image Processing, Special Issue on 
Cellular/Molecular Imaging, 14(9), pp. 1324-1337, 2005.
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Subunit alignment (1): averaging

The above two pictures (left: outer; right: inner) show the averaged capsid layer, 
calculated from one 5-fold subunit (orange) and one 6-fold subunit (green). The tail 
structure (blue) is augmented after the averaging. 

Data courtesy: Tim Baker

Φ29
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Structure Elucidation 1(C): Subunit Alignment

• Symmetry score
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Data courtesy:  Tim Baker

Structure Elucidation Results: Φ29
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Subunit alignment (2): Fitting

The PDB structure of one monomer is matched & fit into the cryo-
EM map (as shaded in green in the left figure). Then all the quasi-
symmetric 5-fold subunits are computationally fit with the PDB 
structure using the transform matrices obtained in subunit 
alignment. Similar procedure can be applied to all 6-fold subunits.
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“Interactive” Fitting

Models 3D maps

Synthetic map

Blurring

Critical point
evaluation
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Gro-EL: X-ray structures docked in Cryo-EM
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Interactive Correlation Analysis
C = 0.2235 C = 0.269 C = 0.593

C = 0.208 C = 0.387 C = 0.542

12A GroEL map and 1OEL.pdb

6.8A RDV map and 1UF2.pdb
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Where f is the normalized density function of the blurred crystal structure; 
g is the normalized density function of the cryo-EM map; 
ci , i=1,2,…N, are the critical points of the blurred crystal structure;
c’i , i=1,2,…N, are the transformations of the critical points. 

Approximate Correlation Analysis
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Multi-resolution Molecular Surfaces

Models

User controlled parameters

Fast summation 1

Roving cube position

Convert Non uniform 
Gaussian basis to 
uniform B-Spline

basis of smaller extent

Rates of decay

Isovalue

Fast summation 2

B-Spline Convolution

Adaptive Isocontouring

Precomputation Update
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Blurring I

• For a molecule with M atoms, we can define a 3D 
electron density map as

∑
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• For quadratic decay kernels, Ai=ed:

• For linear decay kernels, Ai=edri:
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Atomic Shape Parameters

• Isotropic Quadratic Kernel 

• Isotropic Linear Kernel

where
The decay d controls the shape of the 
Gaussian function.
The van der Waals radius is
The center of the atom is xc.
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Blurring II

• For quadratic decay kernels, Ai=ed:

• For linear decay kernels, Ai=edri:

• For above kernels G:
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P

i=1
M Aie

à
r2
dx2

î(ci)

felec_dens(x) =
P

i=1
M Aie

àd|x|î(ci)

felec_dens(x) = GêP
i=1
M Aiî(ci)

GP
i=1

M

Aiî(x
→à à xi

→à )



Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences                               University of Texas at Austin September  2005

FFT Solutions & Approximations

• Use the convolution theorem.
– Convolution in spatial domain = multiplication in frequency 

domain.
• The 3D electron density  map is a convolution of a Kernel 

with delta functions at the atom centers

– felec_dens = FFT-1(FFT(Kernel) x FFT(atom centers))

• Accuracy with Speed Tradeoff:
– The kernels are smooth
functions. Hence only the first 
few frequencies need to be 
computed to obtain the summation. 
Also, convolution is a smoothing
operator.

– We can use an approximate FFT 
algorithm to calculate the low 
frequencies of atom centers to a 
high accuracy at a lower cost than 
a full FFT.

GP
i=1

M

Aiî(x
→à àxi
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Evaluation of 3D Electron Density Map

Evaluation of the Electron Density of an M atom 
molecule at multiple points N  

(typically N ~ 100* M)
[Naiive Algorithm]

For each of the output points N, calculate the 
summation due to each of the M atomic kernels

• Cost: O(NM) → very high!
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Fast  Approximate FT Solution

• Space complexity:
– O(M+N)

• Time complexity:
– Irregularly spaced output evaluation points

• O(MlogM + N ) with larger constants

– Regularly spaced output evaluation points
• O(MlogM + N log N ) with small constants

–felec_dens = FFT^-1 (FFT(Kernel) x FFT(atom centers))
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Multi resolution Molecular Surfaces (Bakeoff)

1PNX.PDB

1PNY.PDB
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Interrogative Scalable Visualization

• Techniques

– Surface/2D Textures/3D 
Texture based rendering 
exploit hardware acceleration 

– Multi-dim Transfer Functions 
for Regions of Interest 

– Multi-resolution processing 
– Compressed data processing 
– Parallelism (back-end PC cluster)

C.Bajaj, I. Ihm, S. Park, ACM Trans. on Graphics, 20, 1, 10-28, 2001

C Bajaj, P Djeu, V Siddavanahalli, A Thane, IEEE visualization, 2003. 243-250.

C. Bajaj, J. Castrillon-Candas, S. Vinay, A. Xu, Structure,13,3,2005,463-471

X. Zhang, C. Bajaj, IEEE Symp. On Parallel, Large Data Visualization, 2001, 51-58

Communication & 
Education: Beyond silent 

movies!
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Molecular Visualization and Processing (MVP) Environment
Open Source/Public Domain under LGPL

(http://ccvweb.csres.utexas.edu/software/)

Clients

Inputs

Libraries

(server)

Models Maps

VolRover TexMol LBIE

VolRend Segmentation MeshingFilteringFast 
contouring Blurring

ClassificationContrast Enh. RBF
docking SkeletonizationSecondary

Struc. Id.
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Modeling 2(A): Finite Element Meshing
• LBIE : also supports Integral/Derivative  Property 

computations  (areas, volumes, curvatures)

•Y. Zhang, C. Bajaj, B. Sohn, CMAME, Spec. Issue on Unstruc. Mesh. Generation., 2004

•Y.Zhang, C.Bajaj, G. Xu, 14th Intl Meshing Roundtable, San Diego2005.

•Y. Zhang, C. Bajaj, CMAME,2005 (in press) 
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Structure elucidation: filtering, 
contrast enhancement, segmentation, 
skeletonization, subunit identification

Structure Modeling:  finite element 
meshing, spline representations(A-
spline,RBF representations) for 
structural fitting & complementary 
docking

Visualization: multi-dimensional 
transfer functions, surface and volume 
texture rendering, wavelet compression, 
hierarchical representations, cluster 
based parallelism

Summary: Algorithms & Tools

VolRover

TexMol

C. Bajaj, Chap in Modeling 
Biology, MIT Press 2005

C. Bajaj,  Z. Yu, Chap in
Handbook of Comp. Mol. Bio,    
Chapman&Hall/CRC Press, 

(2005).
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