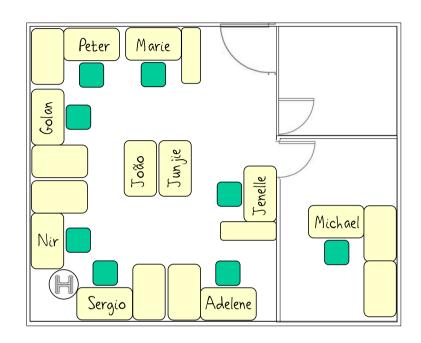
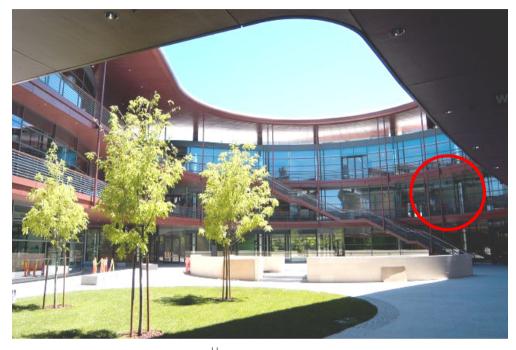
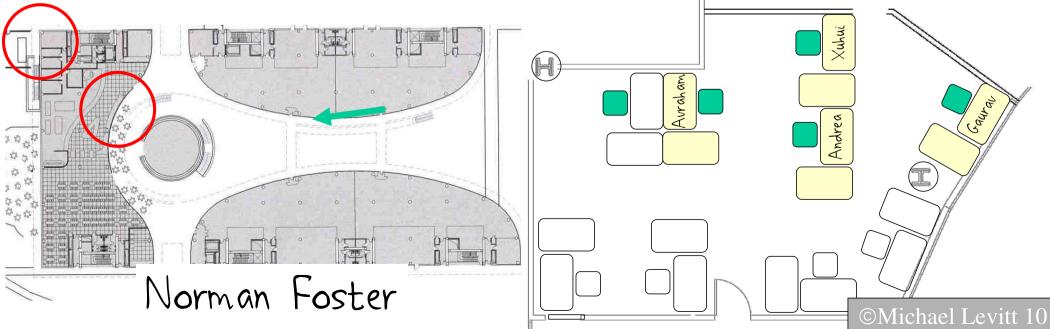
MESOSCALE MODELING OF MACROMOLECULAR MACHINES

Michael Levitt, Structural Biology & Computer Science, Stanford http://csb.stanford.edu/levitt

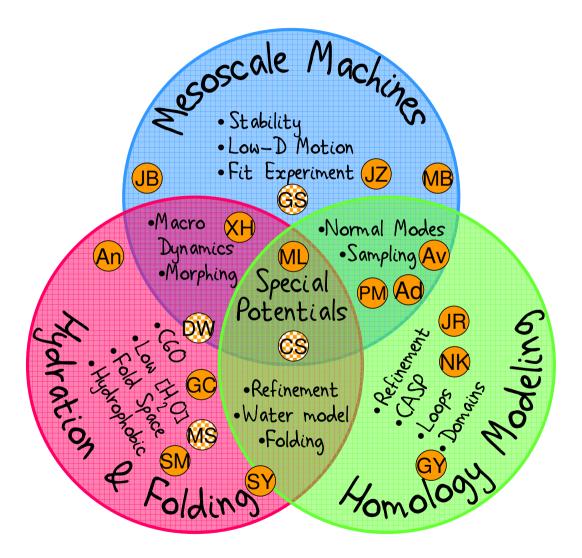
MINI RESEARCH CENTER (MRC)

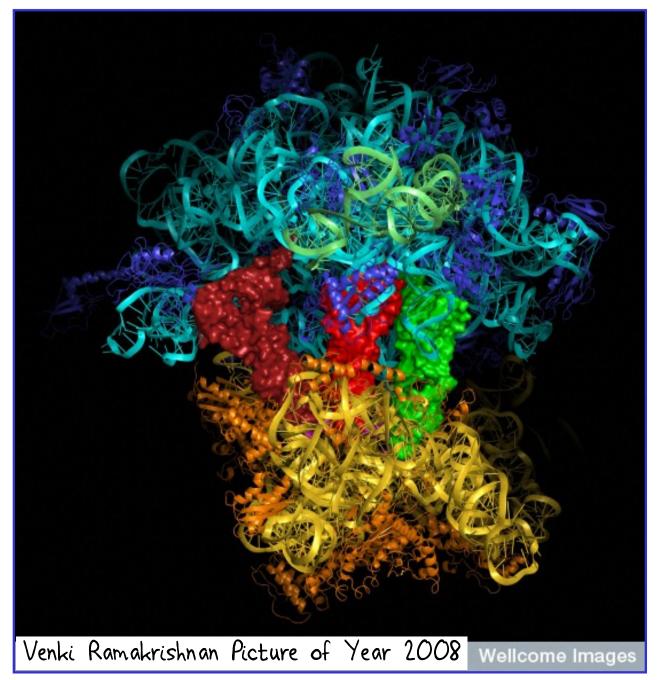






RESEARCH FOCUS





• The ribosome is a molecular machine.

- It has 56 chains
 50 protein
 6 RNA
- It has 10559
 residues
 6065 protein
 4494 RNA

OUTLINE

- Few normal modes simulate suggestive motion.
- Knowledge-based potentials work for refinement.
- ·Simplified models are same as all-atom models.
- ·Simulate suggestive motion of cellular machinery.
- •Knowledge-based potentials give stability & modes.
- •The chain order paradox.
- Special solution of generalized eigenvalue equation.

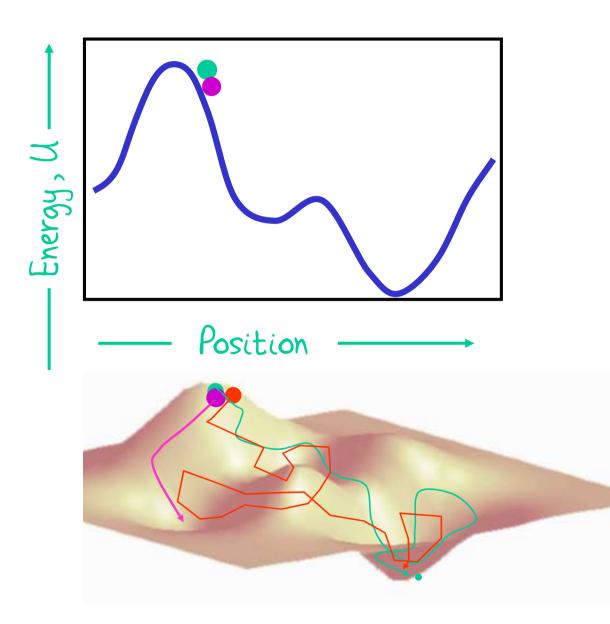
Molecular Motion

TWO ESSESTIAL REQUIREMENTS

·Potential Energy Surfaces.

•Methods to Move Over Surface.

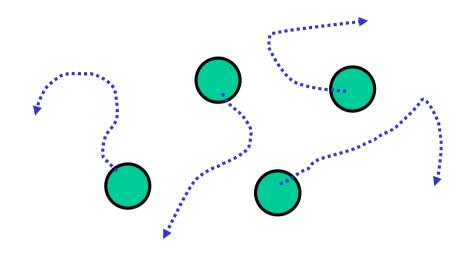
MOVING OVER ENERGY SURFACE



- Energy Minimization drops into local minimum.
- Molecular Dynamics uses thermal energy to move smoothly over surface.
- Monte Carlo Moves are random. Accept with probability $exp(-\Delta U/kT)$.

MOLECULAR POTENTIAL ENERGY Ĩb $U = \sum_{a}^{1} K_{b} (b - b_{a})^{2} - \sum_{a}^{1} K_{a} (0 - 0_{a})^{2}$ All Bonds All Angles + $\sum K_{\phi} [1 - \cos(n\phi + J)]$ All Torsion Angles $+ \sum \epsilon [(r_{\%})^{12} - 2(r_{\%})^{12}]$ All nonbonded pairs Simple sum + 2 3329i9j/r All partial charges over many terms ©Michael Levitt 10

MOLECULAR DYNAMICS THEORY



- •All atoms move together.
- Forces between atoms change with time.
- Analytical solution to give x(t)
 and v(t) is impossible.
- Numerical solution is trivial.

$$\begin{aligned} \mathbf{x}(\mathbf{t}+\mathbf{at}) &= \mathbf{x}(\mathbf{t}) + \mathbf{v}(\mathbf{t}) \mathbf{at} + \begin{bmatrix} 4\mathbf{a}(\mathbf{t}) - \mathbf{a}(\mathbf{t}-\mathbf{at}) \end{bmatrix} \mathbf{at}^{2}/\mathbf{c} \\ \text{New position} & \text{Old position} & \text{Old velocity} & \text{Acceleration} \\ \mathbf{v}(\mathbf{t}+\mathbf{at}) &= \mathbf{v}(\mathbf{t}) + \begin{bmatrix} 2\mathbf{a}(\mathbf{t}+\mathbf{at}) + \mathbf{5}\mathbf{a}(\mathbf{t}) - \mathbf{a}(\mathbf{t}-\mathbf{at}) \end{bmatrix} \mathbf{at}/\mathbf{c} \\ \text{New velocity} & \text{Old velocity} & \text{Acceleration} \\ \text{New velocity} & \text{Old velocity} & \text{Acceleration} \\ \mathbf{v}(\mathbf{t}+\mathbf{at}) &= \mathbf{v}(\mathbf{t}) + \begin{bmatrix} 2\mathbf{a}(\mathbf{t}+\mathbf{at}) + \mathbf{5}\mathbf{a}(\mathbf{t}) - \mathbf{a}(\mathbf{t}-\mathbf{at}) \end{bmatrix} \mathbf{at}/\mathbf{c} \\ \text{Acceleration} & \text{Time step}, \\ \text{Acceleration} & \text{Temperature} \\ \mathbf{u}_{\mathbf{kinetic}} &= \frac{1}{2} \sum_{i} \mathbf{m}_{i} \mathbf{v}_{i}(\mathbf{t})^{2} \\ = \frac{1}{2} n \mathbf{k}_{\mathbf{g}} \\ \text{Boltymann's} \\ \text{Constant} \\ \text{Total energy} (U_{\text{potential}} + U_{\text{kinetic}}) \\ \text{must not change with time}. \end{aligned}$$

Normal Modes

• In regular Molecular Dynamics, we solve the <u>exact</u> equations of motions <u>approximately</u>.

• In Normal Mode Dynamics, we solve the <u>approximate</u> equations of motion <u>exactly</u>.

BASIC THEORY

What are normal modes?

A string attached at both ends:

Get a standing wave of frequency $v = kv_0$ Amplitude is proportional to 1/vEach mode can be excited independently.

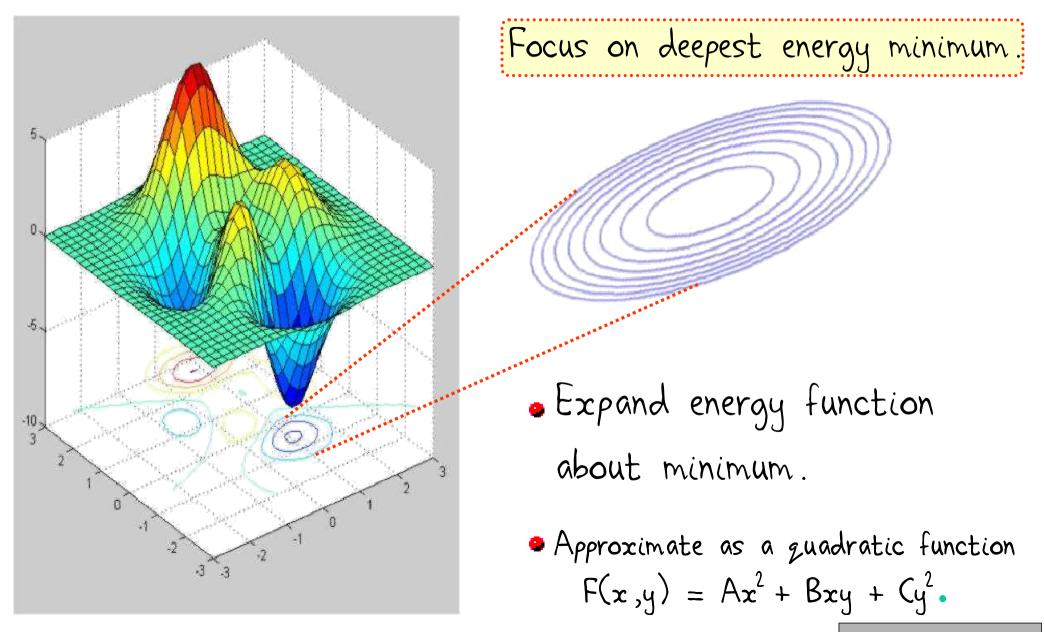
r

©Michael Levitt 10

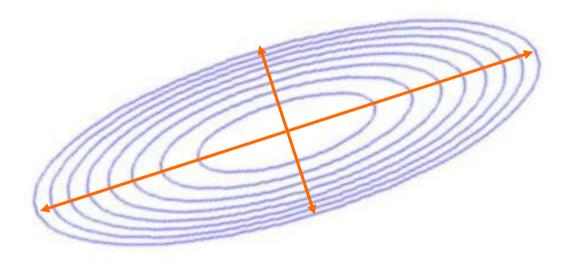
• Discrete point masses: $U(x) = \frac{1}{2}Cx^{2}. \text{ Now } F = ma = -Cx \text{ or } m \frac{d^{2}x}{dt^{2}} = -Cx$ Solution is $x(t) = a\cos(\omega t + \sigma)$, with $\mathbf{w} = sqrt(C/m)$

Get amplitude, a, by the equipartition theorem: $\langle E_{potential} \rangle = 1/2 \langle x^2 \rangle = 1/2 \ \text{kb} T$ $\langle x^2 \rangle \text{ is the mean}$ value of x^2 . Thus, a = sgrt(2kbT/C) as $\langle x^2 \rangle = 1/2 \ a^2$ for a cosine wave.

NORMAL MODES IN HIGH DIMENSION



NORMAL MODES IN HIGH DIMENSIONS



- The normal mode directions are the major and minor axes of the ellipse.
- All other motion is a linear combination of these basic motions.
- Solving for the modes requires a matrix that is N X N, where N in number of degrees of freedom.

MOLECULAR POTENTIAL ENERGY $U = \sum_{a} \frac{1}{b} \left(b - b_{o} \right)^{2} + \sum_{a} \frac{1}{b} \left(e - \theta_{o} \right)^{2}$ All Bonds All Angles + $\sum K_{\phi} [1 - \cos(n\phi + J)]$ All Torsion Angles $+ \sum \epsilon [(r_{\%})^{2} - 2(r_{\%})^{2}]$ All nonbonded pairs Eliminate the 1 + $\sum 3329i9j/r$ All partial charges strongest springs. ©Michael Levitt 10

POTENTIAL ENERGY IN TORSION SPACE

 $U = \sum K_{\phi} [1 - \cos(n\phi + J)]$

All Torsion Angles

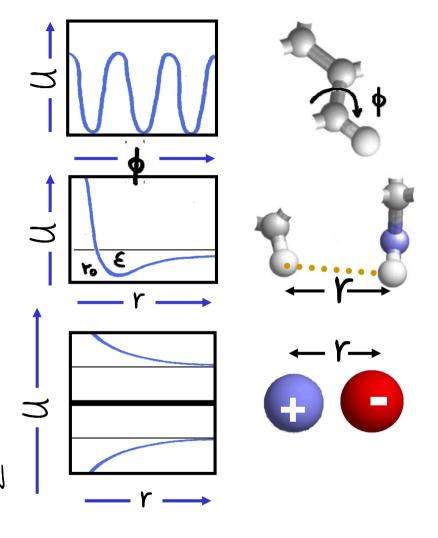
 $+ \sum \epsilon [(r_{\%})^{12} - 2(r_{\%})^{12}]$

All nonbonded pairs

 $+\sum 332q_iq_i/r$

All partial charges

A protein with N residues has about 4N (φ,ψ, χ) single bond torsion angles.
The same protein has about 50N Cartesian coordinates (x,y,z).



THEORY OF NORMAL MODES I

• Assume Potential energy, V, is guadratic function of ϕ .

$$V = \frac{1}{2} \sum_{i,j} V_{ij} (\phi_i - \phi_i)(\phi_j - \phi_j)$$

This means that $V_{ij} = \frac{d^2 V}{d\phi_i} d\phi_j$

• Assume Kinetic energy, T, is guadratic function of $d\Phi/dt$.

$$T = \frac{1}{2} \sum_{i,j} T_{ij} (\frac{d\phi_i}{dt}) (\frac{d\phi_j}{dt})$$

• This means that Tij = $d^2T/d(d\phi_i/dt)d(d\phi_i/dt)$

THEORY OF NORMAL MODES II

• Solve for $\Psi(t)$ using Lagrangian approach.

$$\sum T_{ij} \left(\frac{d^2 \phi_j}{dt^2} \right) = \sum V_{ij} \Delta \phi_j$$

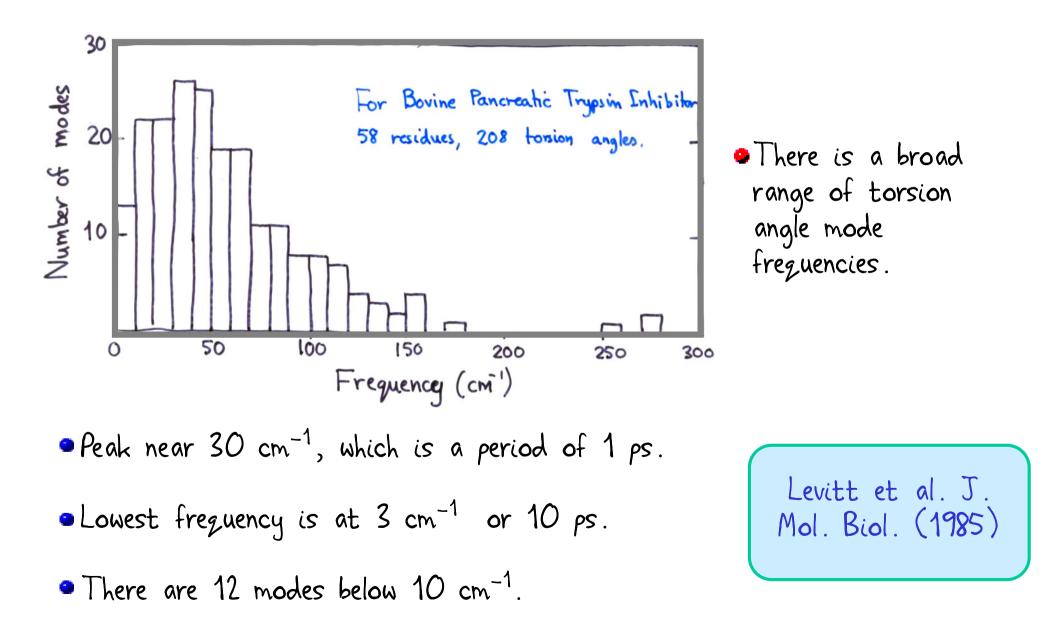
• Try a periodic function for $\Psi(t)$: $\Delta \Psi_{j}(t) = \sum A_{ij} \cos(\omega_{i}t)$ $d^{2}\Psi_{j}(t)/dt^{2} = \sum A_{ij} \omega_{i}^{2} \cos(\omega_{i}t)$

• In Matrix notation the Lagrangian equation is: $TA \omega^2 = VA$ equa

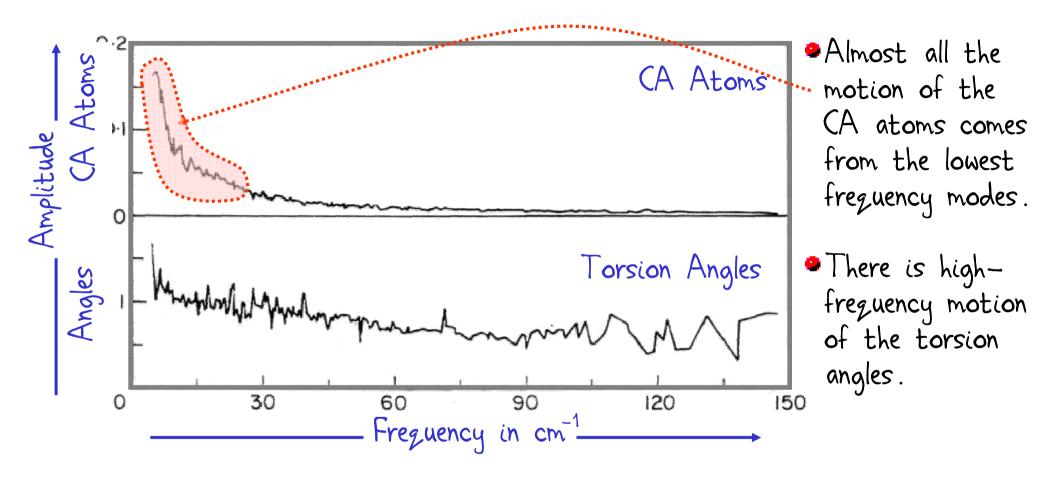
This is Eigenvalue equation that is easily solved.

Suggestive Motion

RATES OF VIBRATION



AMPLITUDES OF VIBRATION



- The CA Amplitude is the RMS movement of all CA atoms as a result of activating the particular mode.
- The Torsion Angle Amplitude is the RMS movement of all torsion angles as a result of activating the particular mode.

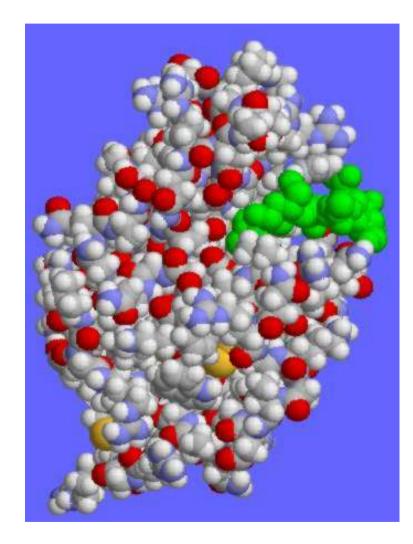
BPTI NORMAL MODES AT HIGH TEMPERATURE

Bovine Pancreatic Trypsin Inhibitor

Three of the four lowest modes,

the thirtieth mode and a combination of the eight lowest modes

LYSOZYME MODES



An inhibitor, which is colored in green, is bound in the active site. The inhibitor is not included in the normal mode calculations.

LYSOZYME NORMAL MODES AT HIGH TEMPERATURE

Hen Egg White Lysozyme

The two lowest modes

Knowledge-Based Potentials

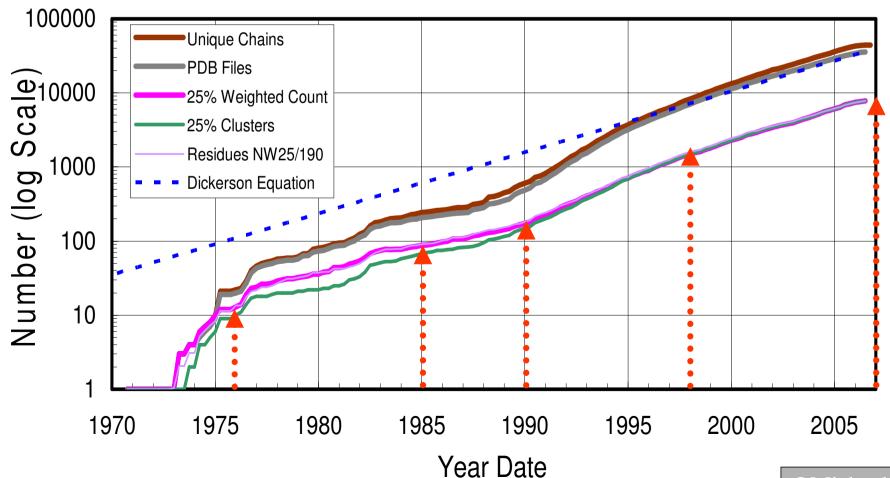
1976 Tanaka & Scheraga	Contacts, 20 types
1985 Miyazawa & Jernigan	Contacts, 20 types
1990 Sippl	20 types Distance-Dependent (DD)
1998 Samudrala & Moult	DD, 167 types
2007 Summa & Levitt	DD, 167, Continuous

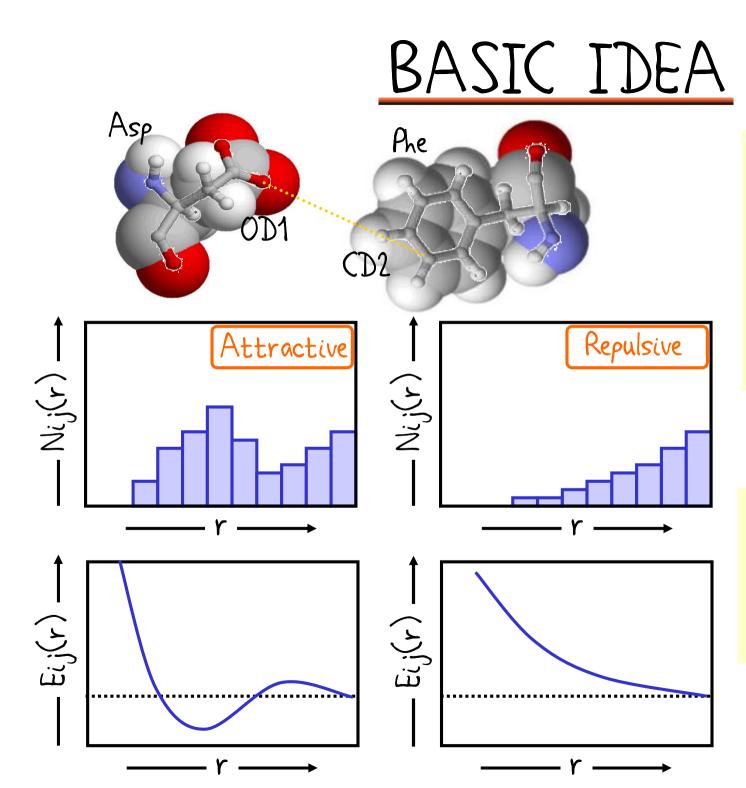
POWERED BY PDB GROWTH

 1976: Tanaka & Scheraga (10)
 1985: Miyazawa & Jernigan (100)

 1990: Sippl
 (120)
 1998: Samudrala & Moult (1200)

 2007: Summa & Levitt (10000)

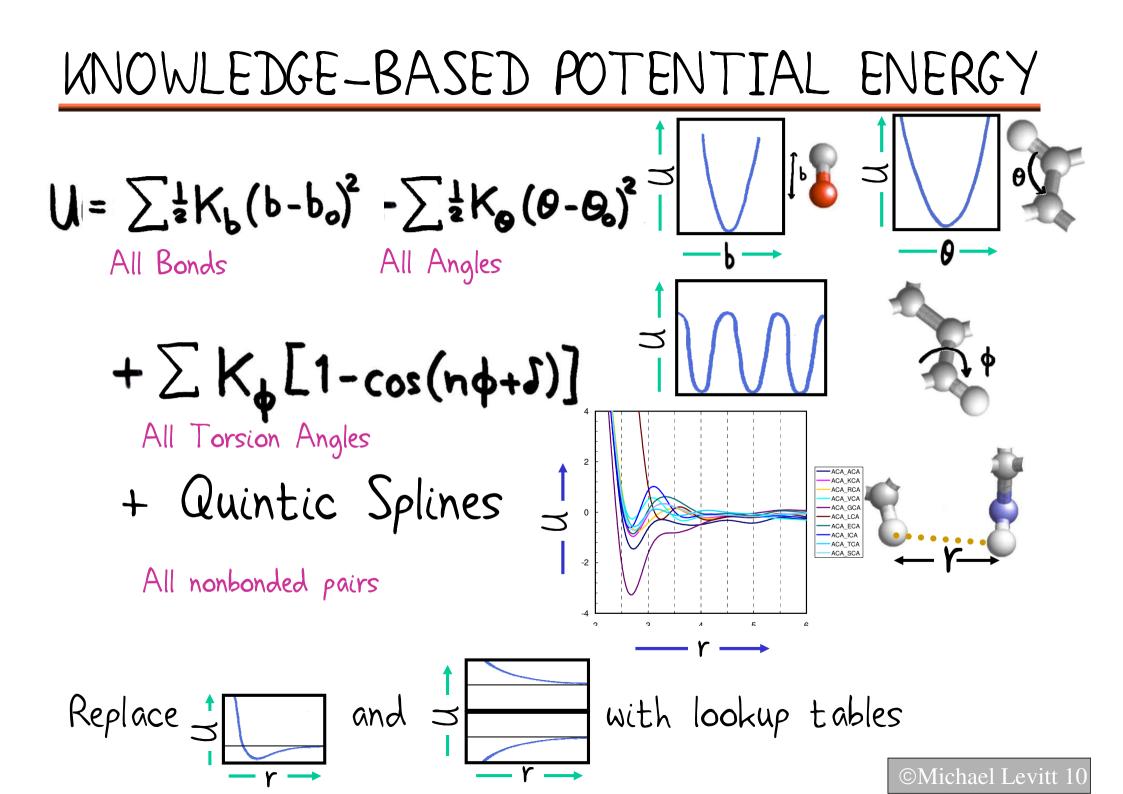




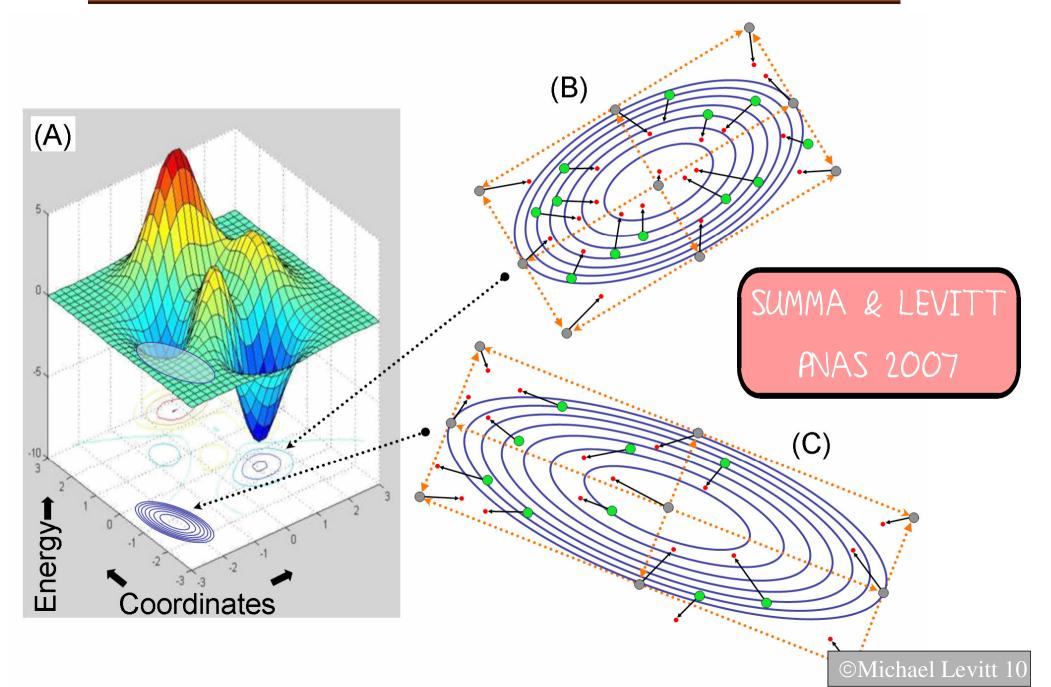
 Get distribution of distances between pairs of atom centers of a particular type, e.g. D-OD1...F-CD2.

 Normalize and take log to get Energy score:
 Eij(r)=log(N(rij)/M(rij))

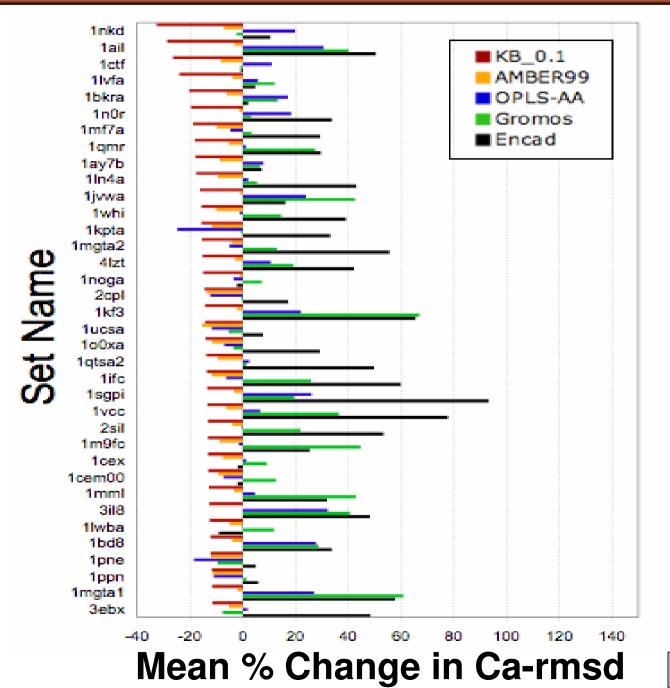
Refine Proteins



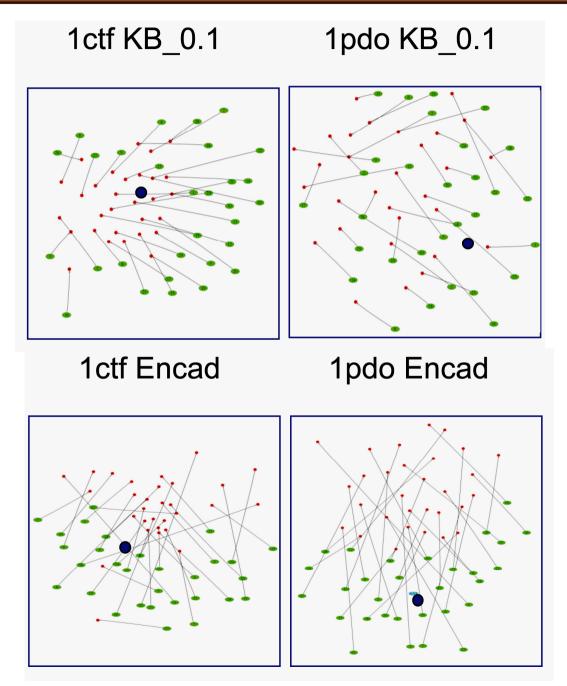
CARTOON OF REFINEMENT TEST



SUCCEEDS IN REFINING PROTEINS

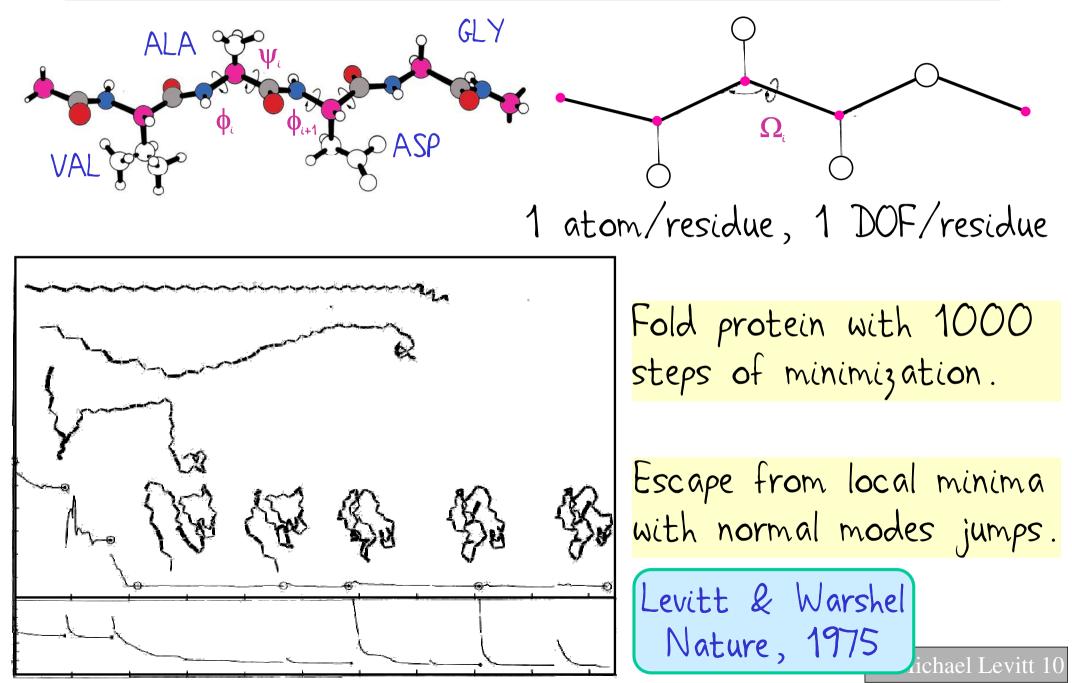


SHIFTS MAP ENERGY SURFACE



Reduced Models

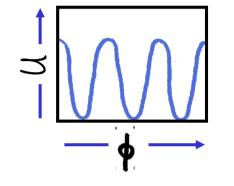
NEEDED THEN, MORE USEFUL NOW

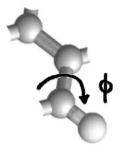


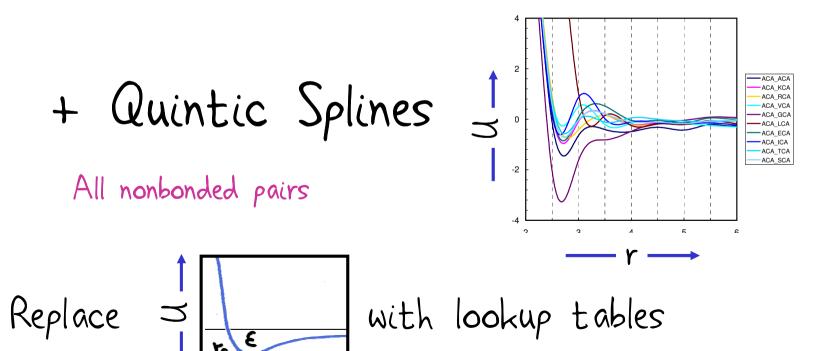
KNOWLEDGE-BASED ENERGY IN TORSION SPACE

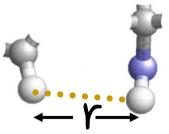
 $U = \sum K_{\phi} [1 - \cos(n\phi + S)] =$

All Torsion Angles



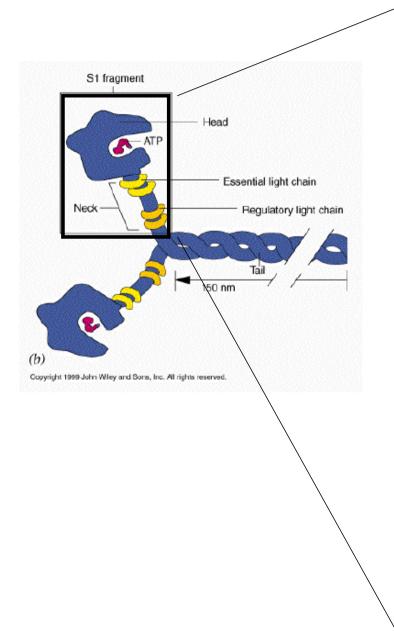


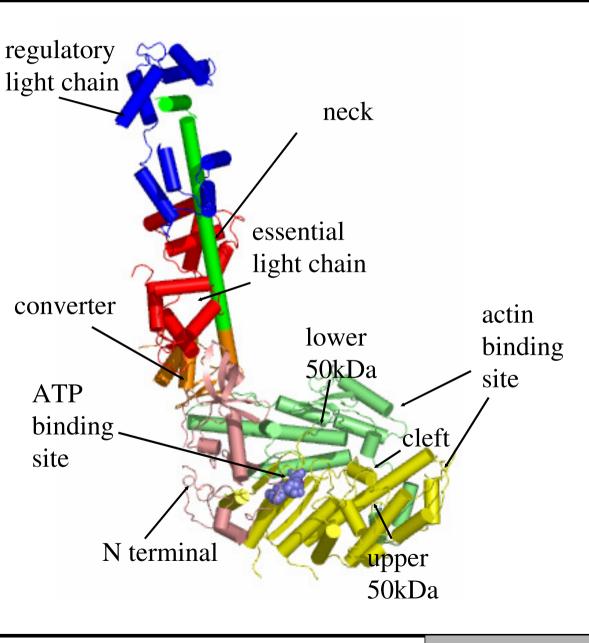




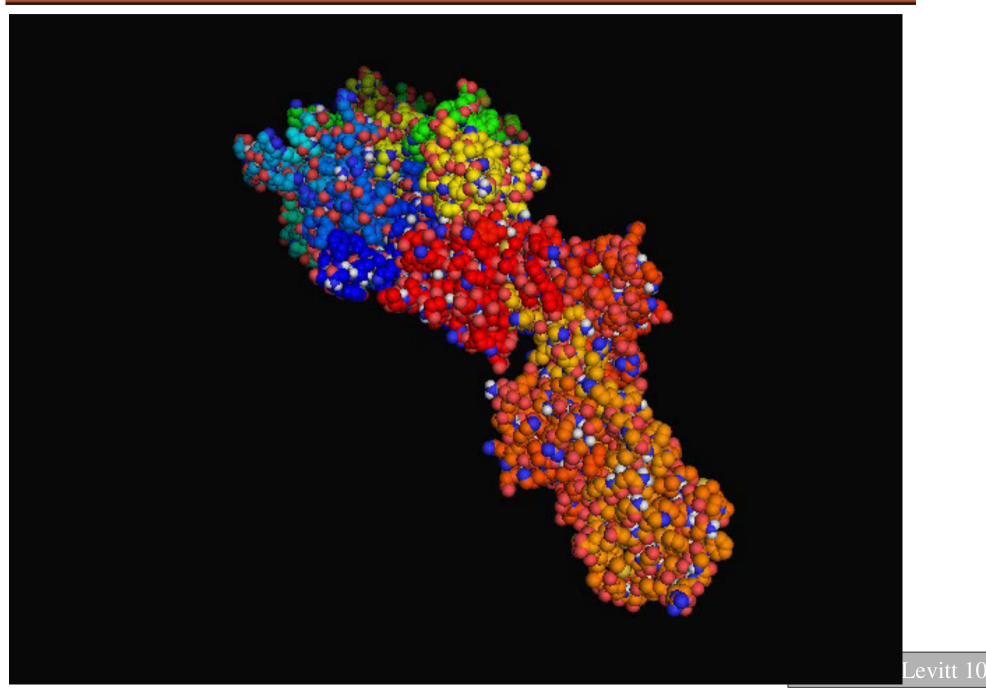
Myosin Motor

MYOSIN STRUCTURE

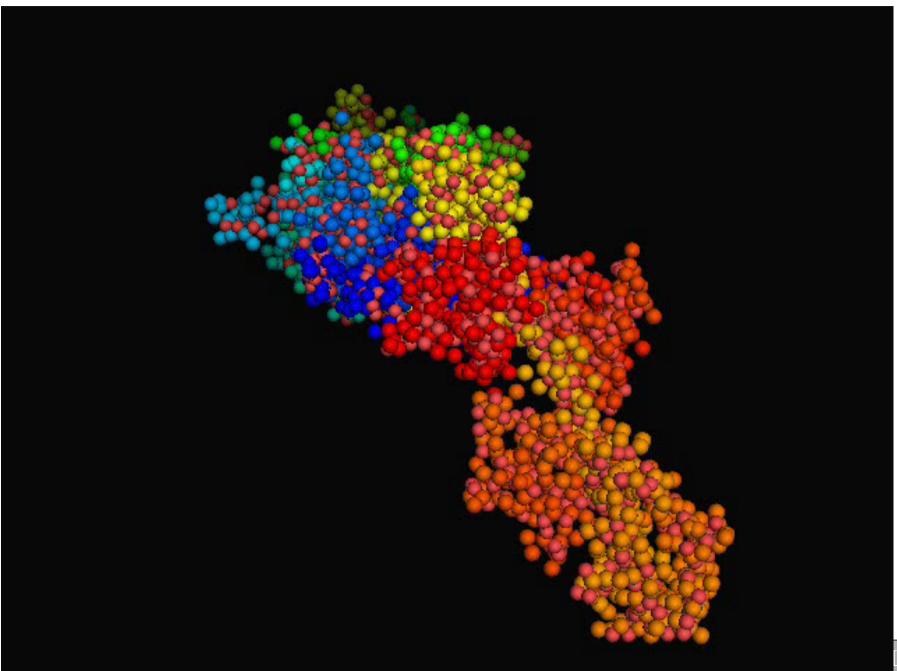




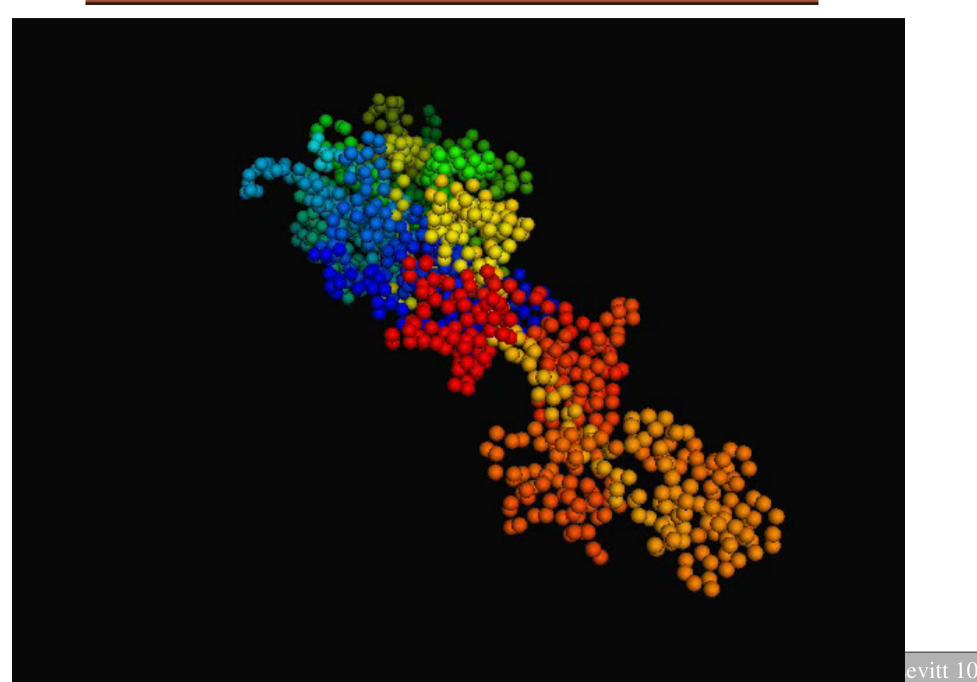
MYOSIN ALL-ATOM NORMAL MODE 1



MYOSIN 3PT NORMAL MODE 1

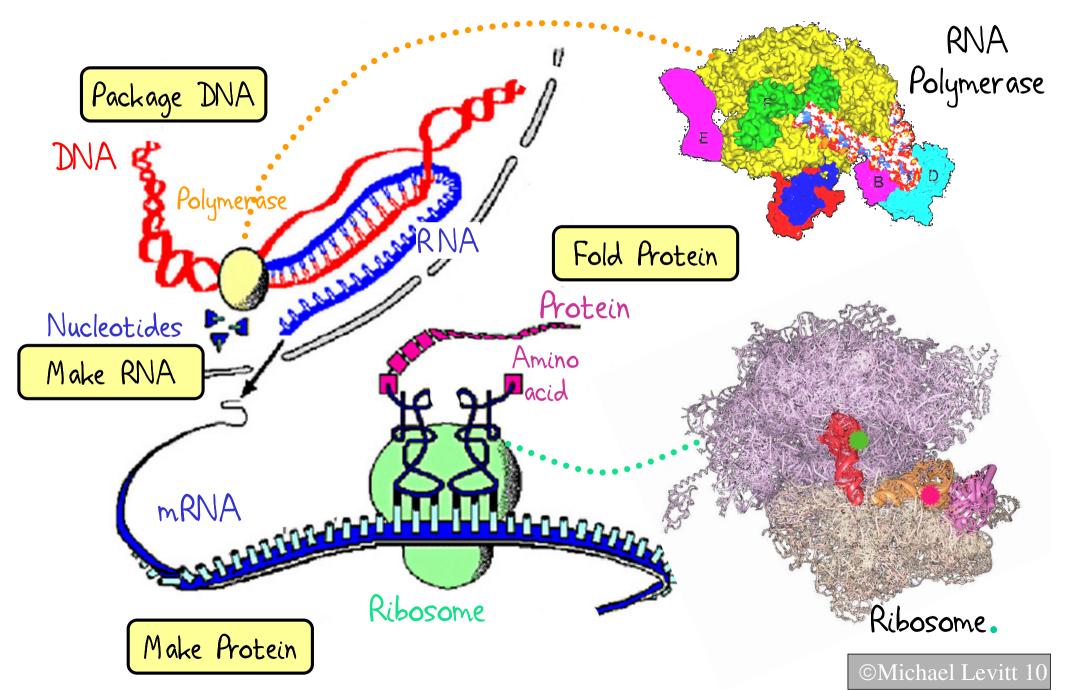


MYOSIN 1PT NORMAL MODE 1

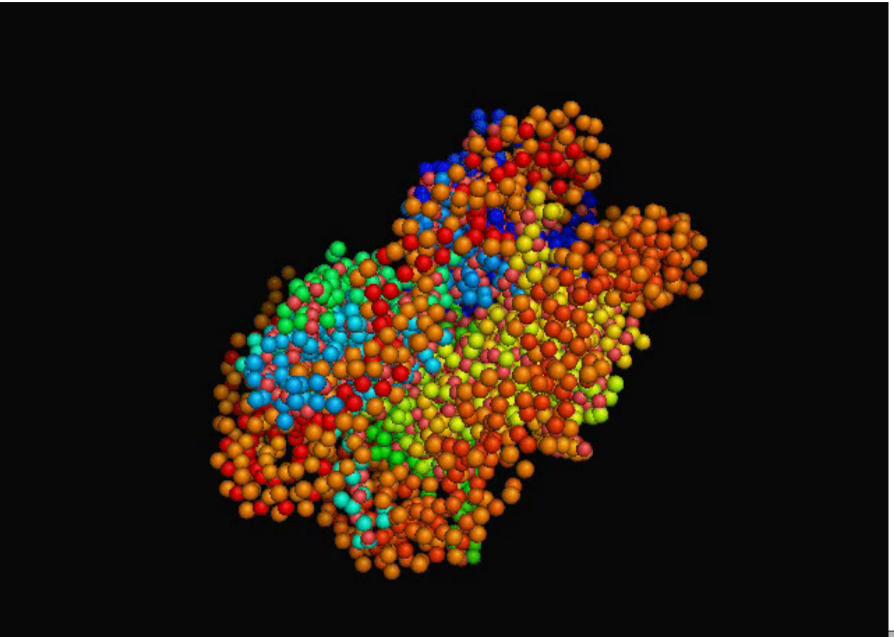


Cellular Machinery

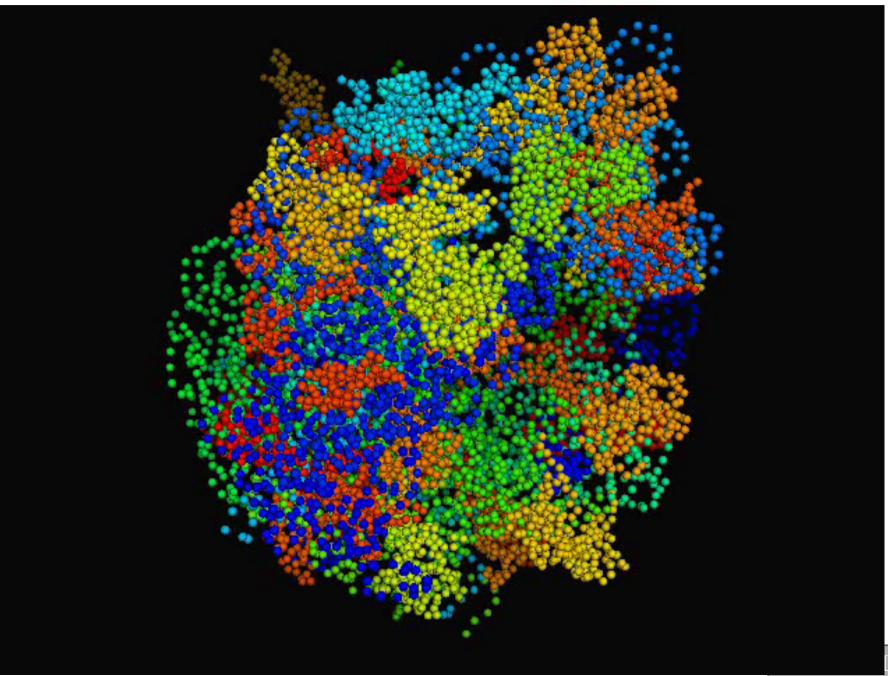
THE CORE MACHINERY OF LIFE



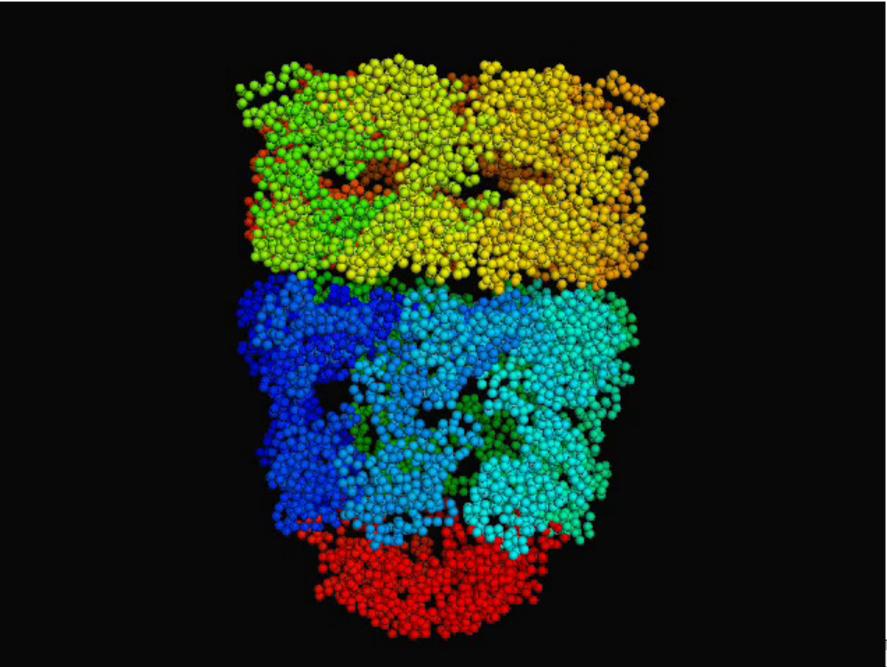
NUCLEOSOME NORMAL MODE 2



70S RIBOSOME NORMAL MODE 2

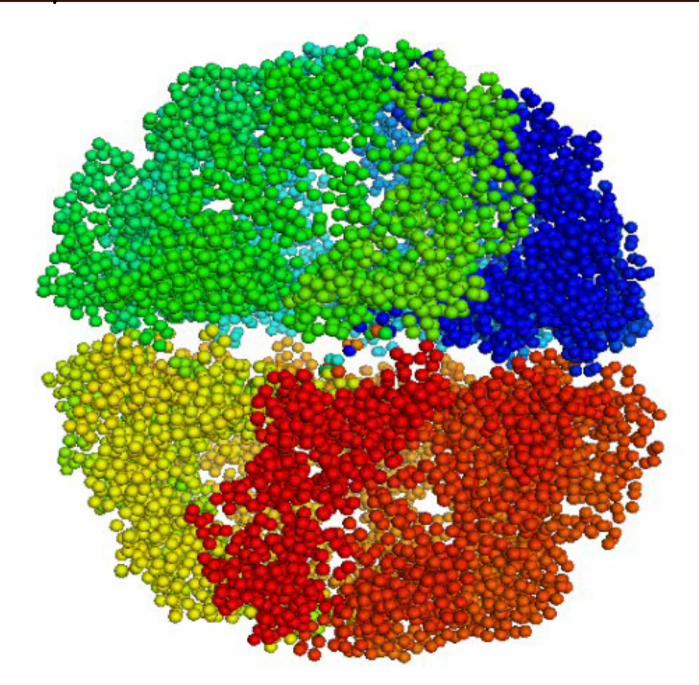


Chaperonin Bac NORMAL MODE 2



Levitt 10

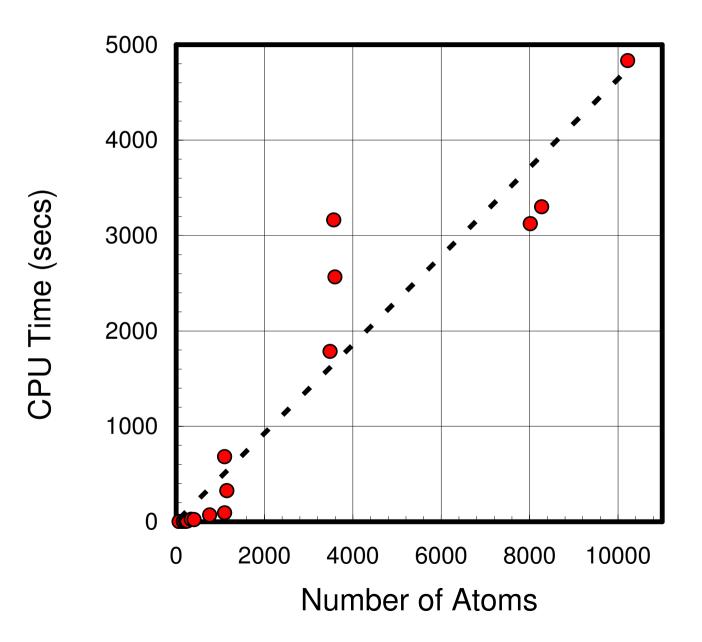
Chaperonin Eu NORMAL MODE 1



ALL 1PT NORMAL MODE RUNS SO FAR

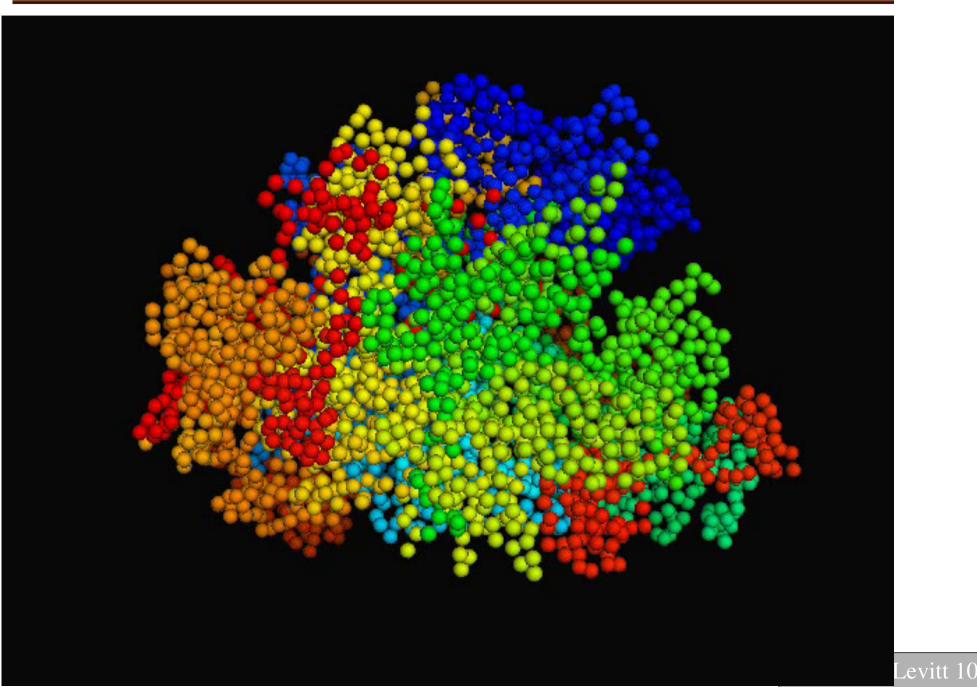
PDB_ID	NRES	%Prot	RMS(Á)
1CTF	74	100.0	1.08
1VBX	176	56.8	1.07
1QA6	250	53.6	1.79
1MFQ	364	65.1	3.82
1M5K	424	47.2	2.51
1AOI	1128	74.1	1.94
1KK7	1149	100.0	3.98
1SFO	4197	99.4	2.48
1Q3S	8768	100.0	2.21
70SR	10517	58.0	2.40

LINEAR CPU REQUIREMENTS



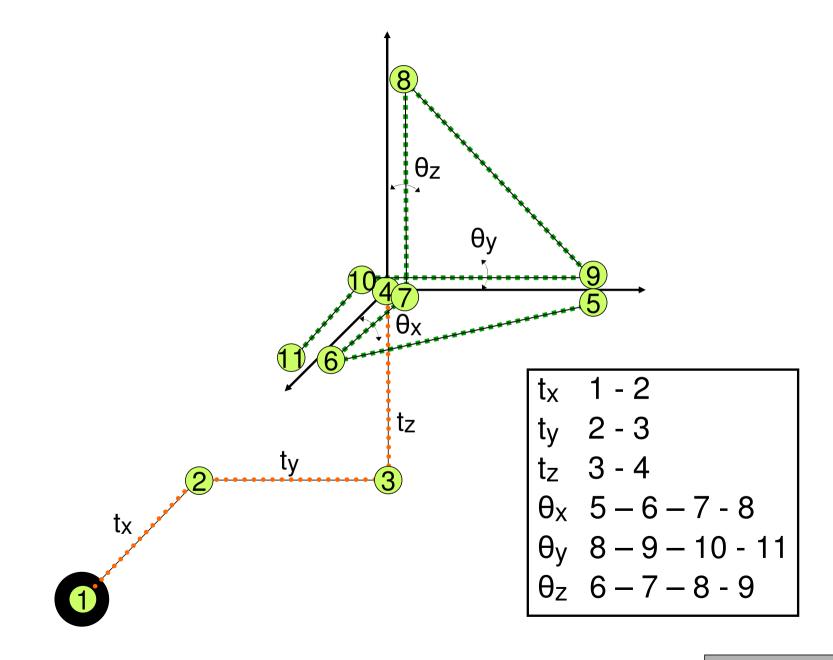
Problems

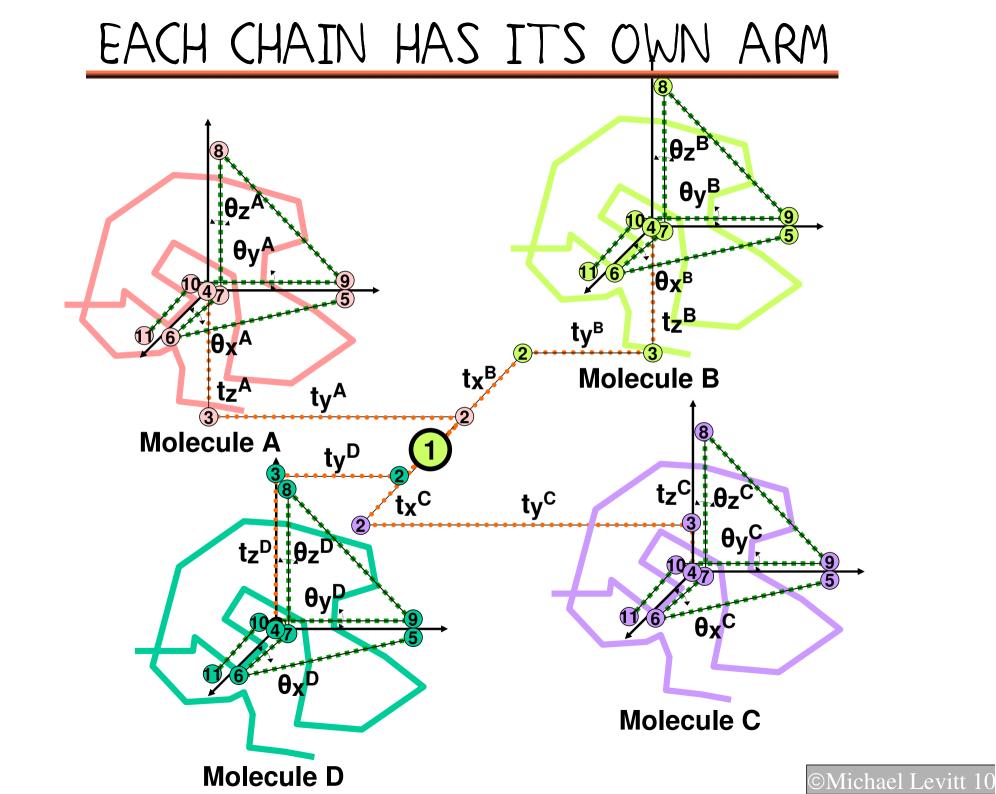
RNA POLYMERASE NORMAL MODE 1



USE GAPS TO MAKE ONE CHAIN 3) Start 4 End

USE ARM TO LINK TO FIXED POINT





GENERALIZED EIGENVALUE PROBLEM

$Vx = \lambda Tx$

• V (Potential Energy) matrix is singular.

• T (Kinetic Energy) matrix is singular.

EIGENVECTORS LOOK WRONG

Different recommended methods give different

eigenvectors.

RGG (QZVEC) from EISPACK

DDGEVX from LAPACK

FO2AEF from Harwell (NAG)

What is correct?

Solution

SOLVE TWO NORMAL EIGENVALUE PROBLEMS

 $VX = TX\Lambda$ V and T are real, symmetric but singular.

First solve $TZ = Z\Omega$ to give $T = Z\Omega Z^{T}$.

Now calculate the square root of the generalized inverse of **T**. $\mathbf{T}^{-1/2} = \mathbf{Z} \mathbf{\Omega}^{-1/2} \mathbf{Z}^{\mathbf{T}}$ where $\mathbf{\Omega}_{ii}^{-1/2} = 0$ if $\mathbf{\Omega}_{ii}$ is 0. Transform the original eigenvalue equation as follows: $VX = TX\Lambda$ or $VT^{-1/2}T^{1/2}X = T^{1/2}T^{1/2}X\Lambda$ as $T^{-1/2}T^{1/2} = 1$ and $T^{1/2}T^{1/2} = T$ (T is real and symmetric). Multiply both sides by $T^{-1/2}$ to get $(\mathbf{T}^{-1/2}\mathbf{V}\mathbf{T}^{-1/2})(\mathbf{T}^{1/2}\mathbf{X}) = (\mathbf{T}^{-1/2}\mathbf{T}^{1/2})(\mathbf{T}^{1/2}\mathbf{X})\Lambda$ or $\mathbf{H}\mathbf{Z} = \mathbf{Z}\Lambda$ where $H = T^{-1/2}VT^{-1/2}$. Solve for Z and A, calculate $X = T^{-1/2}Z$, and test by $X^TVX = \Lambda$ and $X^TTX = 1$. ©Michael Levitt 10

NOW ALL WORKS

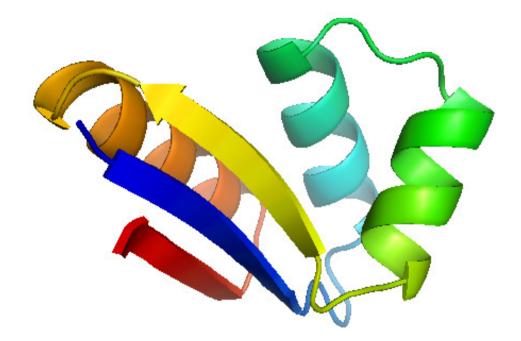
•The eigenvectors are always real.

·Solutions are always obtained.

• Insensitive to singularities.

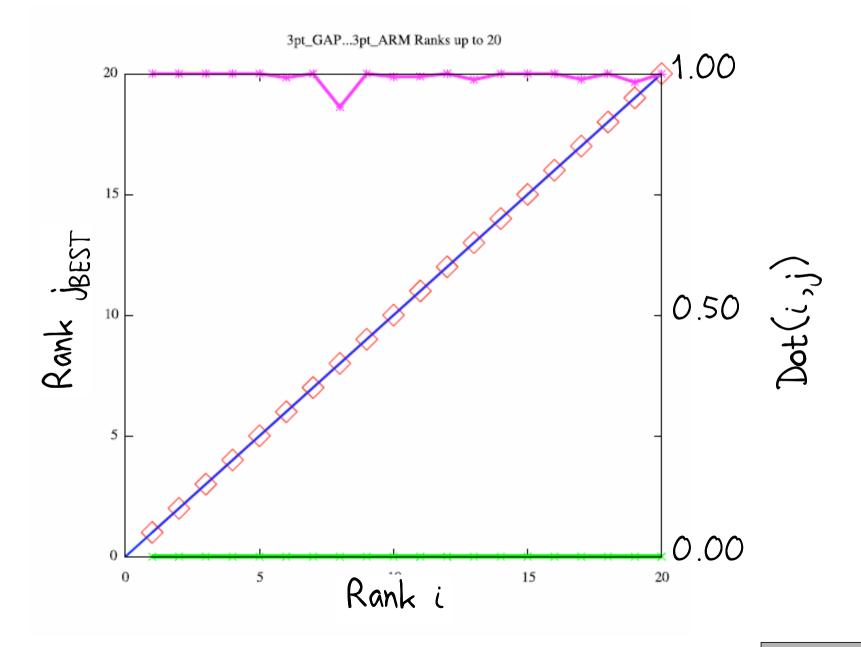
• Insensitive to round-off error in V or T.

1CTF A VERY EASY TEST

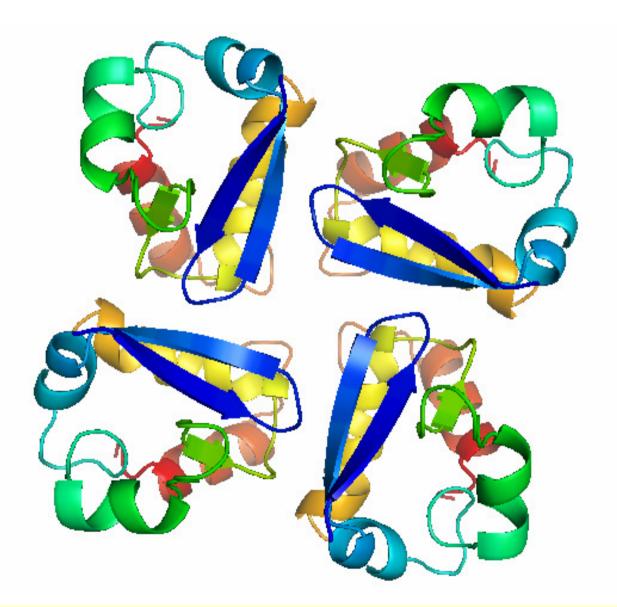


One chain with 54 residues

ARM HAS NO EFFECT ON MONOMER

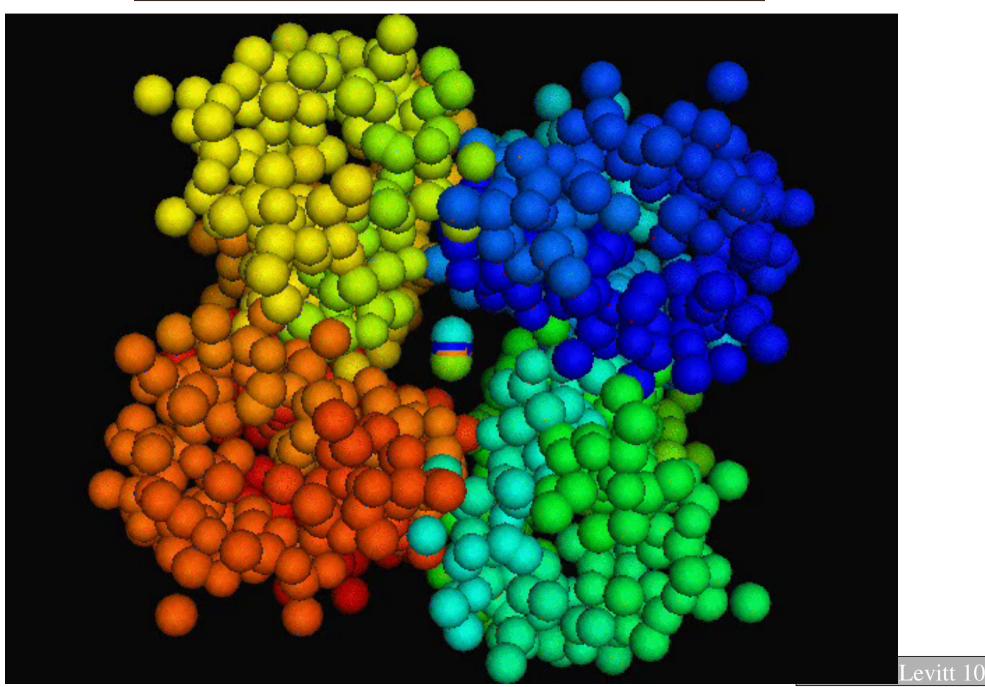


MODEL SYSTEM: TETRAMER 1A68

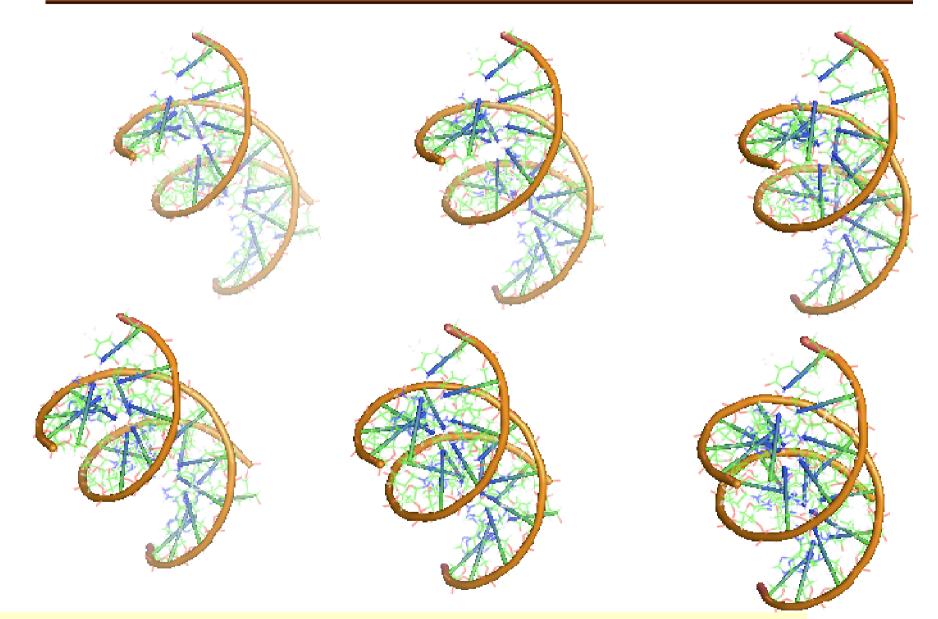


Four chains in small tetramer (87 each)

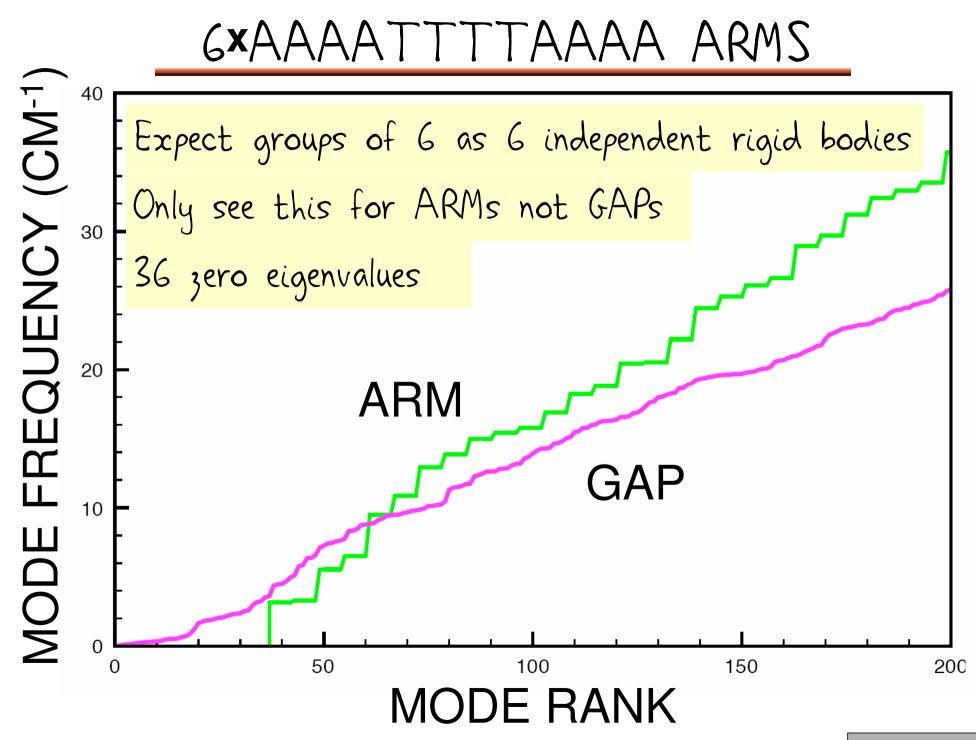
MODE O1 IS SYMMETRIC



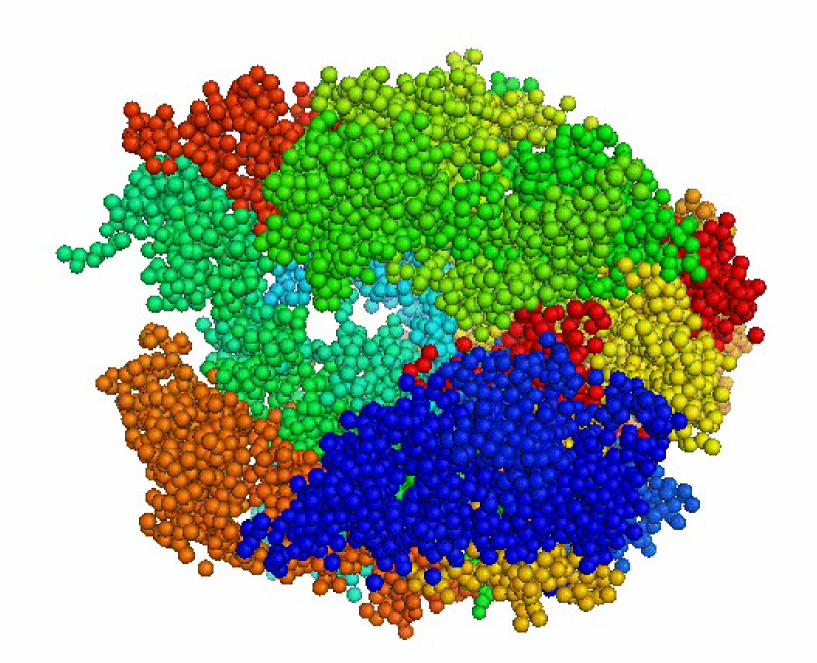
MODEL SYSTEM: 6×AAAATTTTAAAA



Twelve chains in 6 independent molecules



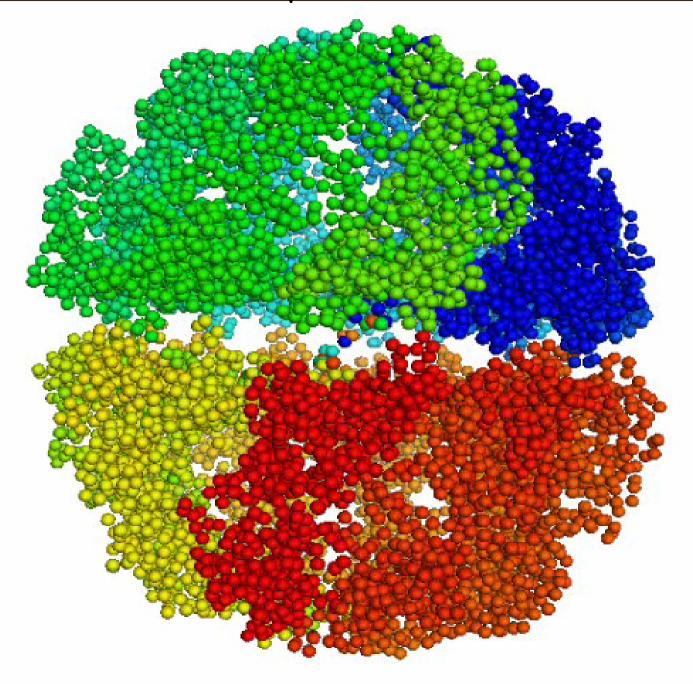
RNA POLYMERASE NORMAL MODE 1



METHODOLOGICAL TESTS

- A unique part of the present work is the calculation of real normal modes of large complexes in torsion angle space. Others have used quasi elastic modes (Tirion modes) in Cartesian space to look at similar systems.
- Test done to establish the advantages of our method include:
 Is energy more harmonic with torsion angle variables?
 - Do Tirion modes with torsion angle differ from normal modes?
 - How important is damping?
 - Are results better with 3pt and all-atom KB functions?
 - Does number of degrees of freedom matter?

Chaperonin Mn-cpn NORMAL MODE 1



Chaperonin Mn-cpn NORMAL MODE 4

evitt 10

OUTLINE

- •Few normal modes simulate suggestive motion.
- •Knowledge-based potentials work for refinement.
- •Simplified models are same as all-atom models.
- •Simulate suggestive motion of cellular machinery.
- •Knowledge-based potentials give stability & modes.

•The chain order paradox.

·Solution in solution of generalized eigenvalue equation.

GENERAL ACKNOWLEDGMENTS

- Sergio MorenoPeter Minary
- · Gaurav Chopra
- · Avraham Samson
- Nir Kalisman
- Adeline Sim

- Golan Yona
- Marie Brut
- · Jenelle Bray
- Joao Rodrigues
- Junjie Zhang
- Andrea Scalewicz

Simon Ye

NIH (NIGMS, NCBC, NDC); NSF (Computer); HFSP

http://csb.stanford.edu/levitt {Papers Lectures PhD Thesis

alklets ©Michael Levitt

The End