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Outline
• Domains 

– Cryo-EM Maps
– Tomographic
– PDB structures (shape), Properties (electrostatics, 

hydrophobicity)
• Techniques

– Image Processing (Scalar/Vector Filtering, Contrast 
Enhancement, Skeletonization, InPainting)

– Finite Element Meshing (Linear, Higher-Order)
– Analysis (Area, Volumes, Combinatorics, Topological)
– Compression (Hierarchical, Progressive)
– Visualization (Surface+Volume Rendering, Texture 

Rendering)
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Imaging to Structure to Modeling to 
Visualization

Cryo-EM Anistropic and 
Vector Diffusion 
Filtering Structure 
Segmentation Sub-
Atomic Modeling  
Functional Analysis 

Visualization
(Collaborators: Wah Chiu,NCMI, Baylor 
College of Medicine, A. Sali, UCSF)

**Sponsored by NSF-ITR



Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences                               University of Texas at Austin Oct  2003

Computational  Pipeline

2D Image Processing

Reconstruction

3D Image 
Processing/ModelingParticle PickingParticle Picking

ClassificationClassification

Cryo-EM
Images

Particle
Images

Estimated
Orientations

Alignment
& Averaging
Alignment

& Averaging

Groups of
Particles

3D Electron
Density Map

R
ef

in
em

en
t

Adaptive Contrast
Enhancement

Adaptive Contrast
EnhancementAdaptiveFilteringAdaptiveFiltering

2D/3D Image Enhancement and Correction

CTF CorrectionCTF Correction

3D Image 
Segmentation

3D Image 
Segmentation

Asymmetric
Units

Medial Axis 
Extraction

Medial Axis 
Extraction

Helices/Sheets
Detection

Helices/Sheets
Detection Shape MatchingShape Matching

Feature
Extraction

Feature
Extraction

Secondary
Structures

Pseudo-atomic
Structures

Gaussian
Blurring

Gaussian
Blurring

Protein
Data Bank

with other 
information

Orientation
Determination
Orientation

Determination

Particle
Averages

Reconstruction 
from 2D to 3D

Reconstruction 
from 2D to 3D



Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences                               University of Texas at Austin Oct  2003

Rice Dwarf  Virus
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Would Image Filtering Help 
Structure Determination ?

Original image After anisotropic diffusion
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Image Filtering: Gaussian vs
Bilateral
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Bilateral Filtering

• Weighting Function

where      and      are parameters and f(.) is the image intensity value. 
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Non-Linear Filtering (using PDEs)

• Diffusion Equation   ==Weighted Gaussian

where  g(.) is a decreasing scalar function, e.g., . 22 /1
1)(

λφ
φ

∇+
=∇g

0))div(g( =∇∇−∂ φφφt
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Bilateral Filtering 
(Wen Jiang et,al., JSB, 2003)
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Bilateral Filtering on RDV Map 
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Anisotropic Diffusion (AD) 
Filtering

• Diffusion Equation

where a stands for the diffusion tensor determined by local curvatures.

0))(div( =∇∇−∂ φφφ
σ
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Finite Element Method for Anistropic
Diffusion (Bajaj, Xu 2002,TOG)

a(x) is symmetric, positive definite matrix

∂tx(t)à div(a(x)∇M(t)x(t)) = 0

Variational form

))((

,0)),(()),(( )()()()(

tMC

txtx tTMtMtMtMt

∞∈∀

=∇∇+∂

θ

θθ

(f, g)M =
R
M fgdx, (þ,ψ)TM =

R
M þTψdx

where

• How to represent M(t) ?

• How to choose θ ?

Model
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• is symmetric and positive definite.

• is symmetric and nonnegative definite.

• is symmetric and positive definite.

The system is solved by a conjugate gradient method.

Solution of the linear system

• and      are sparse.Mn Ln

Mn

Ln

Mn + üLn

(Mn + üLn)C((n + 1)ü) = MnC(nü)

C(t) = [c1(t), á á á, cm(t)]Mn = (þi, þj)M(nü)

à ám
i,j=1

Ln = (∇M(nü)þi,∇M(nü)þj)TM(nü)

à ám
i,j=1
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Choice of Anisotropic Diffusion Tensor

Let                     be the principal curvature directions of

at point        

Then any vector

v(1)(x), v(2)(x), M(t)

x(t)

z = ëv(1)(x) + ìv(2)(x)

And define a, such that

az = g(k1)ëv
(1)(x) + g(k2)ìv

(2)(x)

where

g(s) =
2(1+

õ2
s2
)
à1

1 ,
ú s ô õ

s > õ,

is a given constant.õ > 0

N(x)Let             be the normal at that point.

+ îN(x)

+ îN(x)
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Rice Dwarf  Virus
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Anisotropic Gradient Vector Diffusion
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Where:   

(u(t), v(t)) stands for the evolving vector field;

µ is a constant; 

f is the original image to be diffused; 

(fx , fy) = (u(0), v(0)).

Isotropic Diffusion (Xu et al., 1998)
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Where   

(u(t), v(t)) stands for vector field;

µ is a constant; (fx , fy) = (u(0), v(0)).

f is the original image to be diffused; 

g(.) is the angle between two vectors

Anisotropic Diffusion (Yu & Bajaj 
ICPR’02)
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GVD v.s. AGVD

Isotropic diffusion Anisotropic diffusion
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How AGVD Helps Image Segmentation ?

• Fast Marching Method
– Initial seed points
– Stopping criterion

• Use AGVD to locate seed points
– Compute min/max critical points 

(discard saddle critical points)
– All such critical points are used as seeds
– Advantages: automatic, close to centers of homogenous regions,

robust to noise due to vector diffusion.   
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Compute Critical Points Using AGVD

:  minimum                  : maximum                      : saddle
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Stopping Criteria Using Multiple-Contour

• Multiple-Contour
– Group the critical points (for example, two groups as follows:

max. critical points         feature  &  min. critical points   background)
– Each seed initializes one contour, coupled with its group’s I.D.
– Contours march simultaneously. Contours with same I.D. are merged

while contours with different I.D. stop on their common boundaries 
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Boundary Segmentation after Filtering
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Inner shell (T=1)

540 Å in diameter
P3 (114kDa) 29% of total protein
2 isoforms (A/B)

A

B

P3 dimer

Boundary Segmentation of Inner Shell
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Volumetric Skeletonization/
InPainting

• Pre-Processing for Docking Structures  (Match & Fit)

Original Filtered 
Map Skeleton Map
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How GVD Helps Image Skeletonization ?

• Use GVD to locate critical points
– Include minimum/maximum/saddle critical points

• Start from saddle points; trace integral lines along the 
diffused gradient vector field           Morse graph

• Prune the Morse graph for more meaningful skeletons

• Advantages: 
– Robust to noise due to vector diffusion. 
– Critical points are on the “skeletons” of features even for “flat” 

regions.  
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3D Morse Complex
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Volume-rendering Isosurface Skeleton Skeleton with 
InPainting

RDV: P3 monomer
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Volume-rendering Isosurface Skeleton Skeleton with 
another isosurface

RDV: P8 monomer
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Volume-rendering Isosurface Skeleton Skeleton with 
InPainting

BacteriorRhodopsin/Lipid Complex (PDB: id=1c3w)
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Tomographic Imaging to Structure to 
Analysis & Visualization of Hearing 

Machinery

Tomographic Molecular 
Imaging Anistropic
Diffusion Filtering 
Classification, 
Segmentation,Skeletoniz
ation of 3D Density 
Maps  Quantitative  
Structure Analysis 

Visualization (Collaborator: Manfred Auer, 
Jim Hudspeth Rockefeller 
University and NYU Medical 
Sciences)
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Image Contrast Enhancement (contd.)

Tip structure of B280a   (Left: original    Right: enhanced)
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Skeletons of ActinBundle (B280a)

• 2D Electron tomogram 

Original image SMM (isotropic) 

SMM (anisotropic)

Skeletons >>
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Skeletons of ActinBundle (B280a)
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Segmentation of TipLink (B206a)
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Segmented Tip Link (B206) 

Bajaj, Zeyun, Auer, JSB, 
2003 to appear.
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Skletonization/InPainting

• 3D Electron Tomogram  

SkeletonsOverall volume Skeletons with density map
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Atomic Level Structure to Simulation to 
Analysis to Protein Function

PDB Finite Element 
Meshes with Properties 

Poisson Boltzmann
Calculations  
Flexible Docking 

Function Fingerprints

**Sponsored by NSF-NPACI-
Interaction Environments (Bio-Alpha)

(Collaborators:  N. Baker (Wash U),  D. 
Goodsell(Scripps),      A. McCammon (UCSD), 
A. Olson (Scripps), M. Sanner(Scripps))
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Compressed Volumetric Representations of 
Structures & Properties



Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences                               University of Texas at Austin Oct  2003

Volumetric Electron Density 
(Implicit Solvent Model)

ú(r;X) = N
R
dv0ψã(x;X)ψ(x;X)

The electron density in the unit volume at point r :

where x denotes the collection of electronic space and spin 
coordinates and X the collection of nuclear coordinates. 

Common approximation = the summation of individual 
atomic electron charge distributions:

úi(r) = exp(
R2

i

Bir
2 àBi)

where             is a blobby parameter and      is the van der Waals
radius of the atom

Bi < 0 Ri
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A common model for evaluating the molecules’ electrostatic 
properties is the Poisson-Boltzmann equation.

where         is the dielectric properties of the solute and 
solvent,      is the ionic strength of the solution and the 
accessibility of ions to the solute, and         is the distribution 
of solute atomic partial charges.

k2

ú(r)

ε(r)

à ∇ á [ε(r∇V(r)] + k 2(r)sinh(V(r)) = ú(r)

Volumetric Electrostatic Potential 
(Baker, McCammon 2002: APBS)
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Finite Element Models
– AcetylCholinesterase (257^3, 66MB)

The active site groove is inside 
the red box. Adaptive meshes 
are generated in order to keep 
the accuracy of the groove, 
and reduce the number of 
elements at the same time.

94847 vertices and 
497327 tetra

Zhang, Bajaj, Sohn, 
ACM Solid 

Modeling 2003
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Finite Element Meshing
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Electrostatic Potential on MACHE
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HIV-1 Reverse Transcriptase In Complex With 
A Polypurine Tract RNA (12,139 atoms)  
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HIV-1 Reverse Transcriptase In Complex With 
A Polypurine Tract RNA (12,139 atoms) 

Compression: 18.5:1   Error: 2.9%
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HIV-1 Reverse Transcriptase In Complex With 
A Polypurine Tract RNA (12,139 atoms) 

Compression: 49:1   Error: 6.9%
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Key idea: refinement

Background (Classical Wavelet 
Representations)

∑ −=
k

kxkhx )2(][)( 0 φφ

0 1 1/2 3/2 1 20 21

= + +

)(xφ )2(2
1 xφ )12( −xφ )22(2

1 −xφ
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{ }2
1

2
1

0 ,1,][ =khwith
Refinable functions are called scaling functions
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Wavelets are also linear combinations of 
scaling functions

Usual design criteria for          and       
– finite length => makes wavelet and scaling 

functions compactly supported
– Vanishing moments:

Wavelet Representations

∑ −=
k

kxkhx )2(][)( 1 φψ

][1 kh][0 kh

∫ = 0)( dxxx mψ
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2nd Generation Wavelets Based on Hierarchical 
Basis and a Lifting Scheme
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Original data set to be
Compressed by Linear
Hierarchal Basis

Original data set
To be
Compressed by
Haar Wavelets
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Linear Hierarchal Basis
Total Compression(TC):37

Haar Wavelets
TC:20
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Linear Hierarchal Basis
Total Compression:37

Haar Wavelets
TC:33
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Linear Hierarchal Basis
TC:70.8

Haar Wavelets
TC:70.8
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Linear Hierarchal Basis
TC:206.9

Haar Wavelets
TC:206.9
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Linear Hierarchal Basis
TC:571

Haar Wavelets
TC:571
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Visualization of  Hemoglobin Dynamics 
Interrogative Volumetric Video (VolVis2002)
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Rice Dwarf Virus(Smoothed)

Original
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Rice Dwarf Virus(Smoothed)

TC=31.6, PSNR =42.4dB
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Rice Dwarf Virus(Smoothed)

TC=120.3, PSNR =36.5dB
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Rice Dwarf Virus(Smoothed)

TC=328.3, PSNR =31.6dB
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Multi- Resolution Volume Exploratoration
(http://www.ices.utexas.edu/CCV/software/)

Volume Rover (CORBA client)
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Multi-Level  Visualization

Hemoglobin
Coloring
Vua Residues

Coloring via Secondary structures

Backbone chains

Volume 
Rendering

CPK
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Microtubule 
(Graphics Accelerated Texture-Impostors)
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(TAQT: Topology Analyses & Quantitative Tools)

The Contour Spectrum (IEEE Vis ’97)
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Quantitative Visualization of  Hemoglobin Dynamics
Interrogative Volumetric Video (VolVis2002)
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Time 1 Time 15 Time 30



Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences                               University of Texas at Austin Oct  2003

Static Contour Spectrum

Time = 1
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Static Contour Spectrum

Time = 15
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Static Contour Spectrum

Time = 30
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Time-Varying Contour Spectrum

hemoglobin surface area change (isoval:1.0)
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Hemoglobin Surface Area/Volume Change over Time
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Surface Area

time
t=1 t=15 t=30

Isovalue 17.44 is selected for isosurface rendering
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Volume

time
t=1 t=15 t=30

Isovalue 17.44 is selected for isosurface rendering
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Gradient Magnitude

time
t=1 t=15 t=30

Isovalue 17.44 is selected for isosurface rendering
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Time-Varying Contour Spectrum

hemoglobin interval volume change(isoval:0.5,10.0)
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Interval Volume Change over Time

Isovalue 0.5(outer surface) and 10.0(inner surface)

Interval Volume Crosssection
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Time-Varying Contour Spectrum

• Quantification around Heme Structure

Isovalue 0.5
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Time-Varying Contour Spectrum

surface area(isoval:1.0) change near one heme 
structure
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Isovalue is 1.0

Surface Area Volume

• Quantification around Heme Structure
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Analysis using the TIME CONTOUR  TREE

• Oxygenated Hemoglobin ( T=1 )

<isovalue = 31>
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Analysis using the TIME CONTOUR  TREE

• Intermediate step ( T=15 )

<isovalue = 31>
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Analysis using the TIME CONTOUR  TREE

• Deoxygenated Hemoglobin ( T=30 )

<isovalue = 31>
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Modeling, Analysis and Visualization Software
(http://www.ices.utexas.edu/CCV/software/)

• Desktop and Parallel 
Tools
– Isocontouring and 

volume rendering 
software on COTs

– Multi-Display 
Clients using 
programmable 
graphics hardware

– Integration with 
the Grid Underway 
for Remote 
Visualization 
Services
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Whats in the Future ?

• Computational Modeling for Nano-
Machines and Nano-Medicine
– Psuedo-atomic model generation for bio-molecular 

machines, and their  assemblage properties
– Mechanisms for capturing knowledge of 

macromolecular  flexibility and inferring functionality
– Understanding interactions between molecular 

assemblies, biological and synthetic through 
biochemistry/biophysics simulations
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Computational Visualization

•To identify and 
perceive information
for model calibration 
or scientific 
discovery

• Model Analysis, 
Visualization and 
interrogation with 
maximum fidelity

Modeling

Simulation

Perceptual
Visualization

Meshes,
Equations

Functions
(Functionals)

Imaging

Domain

Functions
(Datasets)

Analysis / Interrogation
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Molecular Electrostatics Visualization

Blue   positive

White  neutral

Red    negative

Isosurfaces of Electrostatics 
potential, and  rendered as a 
Function on an Isosurface of 
Electron Density
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Surface curvatures

The two main surface curvatures in differential geometry 
are the Mean Curvature H and the Gaussian curvature K.

Let kmin and kmax be the minimum and maximum curvatures 
at a point. Then,

H = ½(kmin + kmax) and
K = kminkmax
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Protein Kinase from Rat (1a06)

Mean curvature

Gaussian curvature
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Gaussian curvatures on Mouse AcetylCholinesterase
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Mouse AcetylCholinesterase

Gaussian curvatures
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Mouse AcetylCholinesterase

Mean curvatures
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Mouse AcetylCholinesterase

Mean curvatures


