Computational study of the binding specificities of SH2 and SH3 domains

Wei Wang

Department of Chemistry and Biochemistry Center for Theoretical Biological Physics

UCSD

Modular design of protein-protein interactions:

Pawson and Nash, Science, 300, 445, 2003.

Identification of protein-peptide interactions is challenging:

- Issues with peptide library screening

 A. still challenging to identify interacting partners given the binding motif.
 B. may be biased by the artifacts of fixing peptides on the surface and/or the strong binding peptides not existing in the genome.
- 2. Issues with high throughput studies Domain-peptide interactions are under-represented as the interactions are weak and transient.
- **3. Calculation of binding free energy for domain-peptide complex is time consuming.**

- 1. Roughly estimate the binding affinities of thousands of peptides selected from the human proteome.
- 2. Classify these peptides into binder and non-binder categories based on sequence and binding affinity.
- **3. Build a Hidden Markov Model (HMM) from binders and search the human proteome.**
- 4. **Remove false positives using conservation**
- **5. Estimate the binding affinities of the top 100 candidates**
- 6. Repeat 1-5.

Bill McLaughlin

Advantages of the first approach:

- 1. Do not require very accurate binding affinity calculation and only need to separate two distributions.
- 2. Not biased by non-physiological strong binders All peptides present in the human proteome.
- **3. Take the structural information into account .**

- 1. Roughly estimate the binding affinities of thousands of peptides selected from the human proteome.
 - A. Model the complex structure from a known complex structure using a rotamer library;
 - **B. Optimize the complex structure using AMBER;**
 - **C. Estimate binding free energy using MM/PBSA.**

Known binder to the Grb2 SH2 domain

Sequence: Glu pTyr lle Asn Gln

The MM/PBSA (Molecular Mechanism/Poisson-Boltzmann Solvent Area) method

$$G = E_{MM} + G_{polar} + G_{non-polar} - TS$$

$$\Delta G_{bind} = G_{complex} - G_{protein} - G_{ligand}$$
$$= \Delta E_{MM} + \Delta G_{polar} + \Delta G_{nonpolar} - T\Delta S$$

The binders and non-binders have distinct distributions. (Select 1400 peptides from the human proteome + 15 known binders)

- 1. Roughly estimate the binding affinities of thousands of peptides selected from the human proteome.
- 2. Classify these peptides into binder and non-binder categories based on sequence and binding affinity.

<u>Clusters created using both sequence and energy for the Grb2</u> <u>dataset of peptides. Cluster "4" labeled as the binding cluster.</u>

1 357 1	2 13 0	3 262 0	4 118 14	5 425 0	6 225 0	Cont Rand Knov	Contents Random Peptides Known binders			
Sequence only				Ener	gy only	7				
1 1400 15	Ran Kno	dom wn		1 509 14	2 13 0	3 218 0	4 660 1	Random Known		

- 1. Roughly estimate the binding affinities of thousands of peptides selected from the human proteome.
- 2. Classify these peptides into binder and non-binder categories based on sequence and binding affinity.
- 3. Build a Hidden Markov Model (HMM) from binders and search the human proteome.

•Using only the 15 known binders
•Using peptides in the binding cluster
•Using known binders plus peptide sequences from the nonbinding clusters

Grb2 SH2 binding sequence motifs (majority rule given by the HMMs)

Experimental motif from peptide array

...**Υ**ΦΝΦ..

Motif from known binders

dpeYvNvts

Add binding cluster peptides

Add nonbinding cluster peptides

Database screening:

•Extract 174,604 peptides with xxxYxxxx sequences from the human proteins in SWISS-PROT

•Score all of the peptides using each of the HMMs

Known binders motif search

Search with binding motif (HMM created with binding cluster peptide sequences)

HMM of known binders plus sequences from the non binding clusters

Grb2 HMMs search results summary

P-value of t-test comparing known binding ranks using binding cluster HMM and the control HMM = 0.032

Examine the top 100 hits of each search

- 1. Search with known binder HMM retrieved the known binders with little more.
- Search with binding cluster HMM retrieved many possible binders and one documented case (UFO, ranked 46 in our prediction but only 227 in Scansite output).
- **3. Search with control HMM retrieved no viable candidates**

- 1. Roughly estimate the binding affinities of thousands of peptides selected from the human proteome.
- 2. Classify these peptides into binder and non-binder categories based on sequence and binding affinity.
- 3. Build a Hidden Markov Model (HMM) from binders and search the human proteome.
- 4. Remove false positives using conservation

Examples of conserved peptides: UFO

Blast alignment for an example top hit: UFO protein

 Human:
 780
 ELNPQDRPSFTELREDLENTLKALPPAQEPDEILYVNMDEGGGYPEPPGAAGGADPPTQP
 839

 ELNP+DRPSF
 ELREDLENTLKALPPAQEPDEILYVNMDEGG
 + EP GAAGGADPPTQP

 Mouse:
 781
 ELNPRDRPSFAELREDLENTLKALPPAQEPDEILYVNMDEGGSHLEPRGAAGGADPPTQP
 840

Comparison to the Grb2 binding motif

Grb2 binding motif*->e.vYvNl.lE+Y N+UFO1E+YNMDE9

Examples of conserved peptides: Nebulin

Blast alignment for an example top hit: Nebulin protein

Human : 2356 KFSSPVDMLGVVLAKKCQELVSDVDYKNYLHQWTCLPDQNDVVQAKKVYELQSENLYKSD 2415 K++SPVDMLGVVLAKKCQ LVSD DY+NYLHQWTCLPDQNDV+QAKKVYELQSEN+YKSD

Mouse : 241 KYTSPVDMLGVVLAKKCQALVSDADYRNYLHQWTCLPDQNDVIQAKKVYELQSENMYKSD 300

Comparison to the Grb2 binding motif

Score = 2.1

Grb2 binding motif *->e.vYvNl.l<-* + +Y N+ + Nebulin 2380 1 DaDYRNYlH 9

- 1. Roughly estimate the binding affinities of thousands of peptides selected from the human proteome.
- 2. Classify these peptides into binder and non-binder categories based on sequence and binding affinity.
- 3. Build a Hidden Markov Model (HMM) from binders and search the human proteome.
- 4. **Remove false positives using conservation**
- **5. Estimate the binding affinities of the top 100 candidates**

The HMM captures both sequence and energy features

Binding energy (kcal/mole)

known binders (black), 100 random peptides in binding cluster (gray), top 100 predictions (white)

- 1. Roughly estimate the binding affinities of thousands of peptides selected from the human proteome.
- 2. Classify these peptides into binder and non-binder categories based on sequence and binding affinity.
- 3. Build a Hidden Markov Model (HMM) from binders and search the human proteome.
- 4. **Remove false positives using conservation**
- **5. Estimate the binding affinities of the top 100 candidates**
- 6. Repeat 1-5.

Evaluation of the top hits using sequence and energy (binding cluster is Cluster 5)

Clustering of top one hundred candidates plus original dataset

1	2	3	4	5	< assigned to cluster
270	13	510	503	104	Random peptides
0	0	0	1	14	Known binding
0	0	0	0	100	Top 100 from search

Cluster probabilities for the top ten candidates

Instance Clus1	Clus2	Clus3	Clus4	Clus5	
0	0	0	0	0	1
1	0	0	0	0	1
2	0	0	0	0	1
3	0	0	0	0	1
4	0	0	0	0	1
5	0	0	0	0	1
6	0	0	0	0	1
7	0	0	0	0	1
8	0	0	0.00001	0	0.99999
9	0	0	0	0	1
10	0	0	0	0	1

The second approach:

- 1. Computational point mutation to generate a Position Specific Scoring Matrix (PSSM) Better consideration of conformational flexibility
- 2. Scan the database using this PSSM.

The second approach:

1. Computational point mutation to generate a Position Specific Scoring Matrix (PSSM)

A. mutate each residue to other 19 amino acids
B. calculate the binding free energy using MM/PBSA
C. take the free energy difference between the mutated and the template peptides as the entry in the PSSM

2. Scan the database using this PSSM.

Residue	Position											
	P_*	P5		P4	P_3	P2	P1		P	P ₁	P ₂	P ₃
A	0.00	6.43	0.00	6.70	0.00	5.44	6.30	-0.37	2.56	5 1.75		
R	4.00	7.44	13.62	9.14	3.50	7.39	17.18	8.60	8.80	15.02		
Ν	2.00	2.90	1.40	2.32	0.79	5.16	6.15	6.57	4.98	3.29		
D	4.00	20.85	4.15	16.36	12.31	18.78	11.43	-0.50	2.30) 14.99		
С	0.00	4.41	-0.38	1.59	-0.46	3.41	6.26	-0.10) 1.92	2 3.45		
Q	0.00	18.36	0.69	3.29	13.63	2.77	11.28	1.18	1.32	2 1.34		
Е	4.00	20.69	8.56	11.99	13.68	27.11	14.18	6.55	6.62	2 10.71		
G	0.00	9.27	0.21	3.32	0.59	7.70	6.19	0.89	6.56	5 11.63		
Н	0.00	10.73	1.14	3.30	0.65	5.15	3.98	1.94	6.46	5 1.39		
Ι	0.00	10.84	1.13	1.53	4.28	6.23	6.88	5.40	0.33	5.50		
L	0.00	3.5 <mark>2</mark>	1.59	1.47	7.57	6.08	7.52	0.98	1.35	5 2.98		
K	4.00	5.26	11.44	9.14	8.14	5.63	20.98	8.58	13.7	1 15.21		
М	0.00	3.27	3.26	0.27	3.08	6.42	3.96	3.84	0.83	0.48		
F	0.00	3.32	2.70	-1.52	8.64	7.29	7.56	5.44	0.77	0.71		
S	0.00	8.80	1.09	5.01	0.12	-3.3	9.36	-1.51	5.25	6.45		
Т	0.00	5.22	-0.18	3.48	-0.94	7.53	4.57	1.02	2.30	5.24		
W	0.00	13.58	0.14	-2.12	7.39	3.63	1.39	1.87	1.56	5 1.63		
Y	0.00	3.44	3.98	0.00	3.37	-2.36	5.82	3.96	1.38	3 2.51		
V	0.00	2.00	0.52	3.26	2.44	-2.77	8.46	-0.18	3 1.71	3.80		
Р	0.00	0.00		-0.60	0.93	-0.21	0.00		0.00	0.00	0.00	0.00

Rank	Protein	Protein name	Start position	End position	Peptide	Score	Scansite Rank
1	RW1	RW1 protein [Fragment]	1521	1530	SPTPAS <u>P</u> SP <u>P</u>	-4.06	Not in the top 2000
2	WASF4 (SCAR2)	Wiskott-Aldrich syndrome protein family member 4	475	484	PPPPSSPSFP	-3.59	Not in the top 2000
3	TREX1	Three prime repair exonuclease 1	107	116	GPPPTVPPPP	-3.38	1194
4	ACRO (ACR, ACRS)	Acrosin [Precursor]	344	353	PPPPPSPPPP	-3.18	40
5	LRRN5 (GAC1)	Leucine-rich repeats neuronal protein 5 [Precursor]	22	31	VVPWHVPCPP	-2.94	Not in the top 2000
6	SEM6A (SEMA6A)	Semaphorin 6A [Precursor]	791	800	MPPMGSPVIP	-2.89	Not in the top 2000
7	HDAC4 (HD4)	Histone deacetylase 4	343	352	LPLYTSPSLP	-2.81	Not in the top 2000
8	EVL (RNB6)	Ena/vasodilator stimulated phosphoprotein-like	185	194	PPPPPVPPPP	-2.65	83
9	WASF1 (WAVE1, WAVE-1)	protein Wiskott-Aldrich syndrome protein family member 1	347	356	TPPPPVPPPP	-2.65	132
10	YLPM1 (ZAP3, ZAP113)	YLP motif containing protein 1	14	23	YPPPPVPPPP	-2.65	115

Summary:

- Computational approach and goal

 A. Identify binding motifs of modular domains
 B. Identify new physiological interacting partners
- 2. Readiness of the application to study biological complex
- **3. Bottleneck:**
 - **A. Domain-peptide complex structures**
 - **B. Experimental verification**
 - **C. Nomenclature (gene names different in databases)**

Acknowledgement

Ken Chen Han-Yu Chuang Jie Liu Tingjun Hou Bill McLaughlin Robert Shoemaker Phil Bourne Andy McCammon Bing Ren Yang Xu Chanfeng Zhao (Illumina)

http://wanglab.ucsd.edu