
EUROGRAPHICS 2007 / D. Cohen-Or and P. Slavík
(Guest Editors)

Volume 26 (2007), Number 3

High-speed Marching Cubes using Histogram Pyramids

Christopher Dyken1,2 and Gernot Ziegler3

1 Department of Informatics, University of Oslo, Norway
2 Centre of Mathematics for Applications, University of Oslo, Norway

3 Max-Planck-Institut für Informatik, Germany

Abstract
todo

Categories and Subject Descriptors (according to ACM CCS): Todo

1. Introduction

Marching cubes is an efficient method for extracting iso-
surfaces from 3D scalar fields. It is used in all fields of vol-
ume visualization, and in mathematical applications which
require levelset extraction (e.g. methods for fluid simula-
tion). Recently, it has received competition from volume ray-
casting, but up to now, volume raycasting is not able to per-
form the same kind of normal shading and sub-voxel inter-
polation that makes marching cube meshes appealing and
thus easier to grasp in daily interaction.

The contribution of this paper is a novel, yet well-
investigated approach to marching cubes on both SM3 and
SM4 graphics hardware. It outperforms the known SM4
geometry-shader approaches, yet takes hardly more effort to
implement.

The main element of our approach is the HistoPyramid,
a hierarchical data structure recently introduced in GPU
programming. The local nature of its associated algorithms
allow for parallell data expansion and compaction, a task
which is traditionally seen as hard on stream processors.
Here, it is put to use for volume analysis and, in some of
the presented algorithm variants, for generating the output
geometry - all on graphics hardware.

We begin by describing the general strategy of Histogram
Pyramids in Section 4, and continue with approaches to
an OpenGL implementation on Shader Model 3 (SM3)
hardware (hardware prior to the introduction of geome-
try shaders) and on Shader Model 4 (SM4) [LB] hardware
(hardware with geometry shaders).

We describe the HistoPyramid technique for data com-
paction and expansion of 2D textures, and therefore use the

term texel for single data elements. As already pointed out
in [ZTTS06], this does not restrict the algorithm to be used
on 2D data arrays: With the according mapping, arrays of
any dimensionality can be processed. In this particular sit-
uation, we process a 3D array of voxels by mapping them
into the 2D domain, where they are temporarily regarded as
texels.

2. Previous and related work

Isosurface extraction algorithms on stream processor archi-
tectures (like the GPU) have been a topic of intensive re-
search in the last years.

In the early days, it has been easiest to use the marching
tetrahedra (MT) algorithm, since triangle-specific operations
are not possible on the GPU, and a backface-ignoring MT
implementation only generates 0, 1 or 2 triangles for every
tetrahedron examined.

A prime example of this technique is [KSE04], which ren-
ders vertex arrays and peaks 7.7 million tetrahedras per sec-
ond, rendering on an ATI Radeon 9800 Pro.

[KW] improved upon this by observing that edges are
shared inbetween tetrahedra, and thus should be used as the
basic data structure in the evaluation.

[?] used multiple stages and vertex texture lookups in-
stead to reduce redundant calculations.

All of the presently mentioned algorithms suffer from the
fact that the GPU cannot easily create geometry. Therefore,
they stream the maximum of one quad per tetrahedra to the
GPU, and let its vertex shader stage degenerate quads to tri-

submitted to EUROGRAPHICS 2007.



2 C. Dyken & G. Ziegler / Histopyramid Marching Cubes

pijk
0

pijk
1

pijk
3pijk

2

pijk
4 pijk

5

pijk
7

pijk
6

[pi jk
1 ,pijk

5 ]

[pi jk
4 ,pijk

5 ]

[pi jk
5 ,pijk

7 ]

i

j

k

pijk
0 = (i, j,k) pijk

4 = (i, j,k +1)
pijk

1 = (i+1, j,k) pijk
5 = (i+1, j,k +1)

pijk
2 = (i, j +1,k) pijk

6 = (i, j +1,k +1)
pijk

3 = (i+1, j +1,k) pijk
7 = (i+1, j +1,k +1)

Figure 1: Labelling of the corners of the cubic cell (i, j,k).

angles, or even discard them by reducing them to a single
point.

This produces drastic amounts of unnecessary vertex pro-
cessing. [] tries to reduce this vertex processing load by us-
ing a interval tree to identify the volume regions which pro-
duce geometry at all. However, this requires a CPU-based
pre-processing of the voxel data.

[?] circumvents this problem altogether with CPU-based
voxel classification for their Marching Cubes implementa-
tion. This way, the GPU is only fed with data if a voxel actu-
ally does generate geometry. However, the article mentions
that the CPU part eventually limits the processing speed.

Since the GPU is not able to create geometry, but only
to discard it using the vertex shader, none of the named al-
gorithms is actually able to generate a compact representa-
tion of the isosurface mesh in GPU memory. For every re-
rendering, especially in sparse cases, the GPU or CPU has
to process massive amounts of vertices, slowing down ren-
dering speed considerably.

In [ZTTS06], a first solution was presented to persistent
voxel classification and output compaction running solely on
the GPU. However, it only uses point clouds to visualize the
extracted result and could not yet create geometry based on
the voxel classification.

[DRS07] (comments missing)

3. Marching cubes

The Marching Cubes Algorithm [LC87] by Lorensen and
Cline is probably the most used algorithm for producing iso-
surfaces as triangle data from discrete scalar fields.

We are given a discrete 3D grid of Mi×M j ×Mk scalar
values representing the scalar field. We let 8 adjacent grid
points form corners of Mi−1×M j−1×Mk−1 cube-shaped
cells (or voxels). Then, the basic idea is to “march” through
all the cells one-by-one, and for each cell, produce a set
of triangles that approximates the iso-surface locally to that
particular cell.

It is assumed that the local iso-surface geometry is com-
pletely determined from classifying the eight corners of the
cell as inside or outside the iso-surface, see Figure 1. If we
let si jk

n be 1 if corner n of voxel (i, j,k) is inside the iso-
surface and 0 otherwise, we can determine the class of the
voxel,

cijk = sijk
0 +2sijk

1 +4sijk
2 +8sijk

3 +16sijk
4 +32sijk

5 +64sijk
6 +128sijk

7 .

For example, the voxel of Figure 1 has corner pijk inside the
iso-surface and the rest of the corners are outside, i.e.,

(s0, . . . ,s7) = (0,0,0,0,0,1,0,0),

and thus the corresponding class cijk = 32. There are in total
256 classes, which can be reduced to 14 patterns [LC87] due
to inherent symmetry.

The voxel class also determines which of the twelve edges
of the voxel that pierce the iso-surface. An intersection oc-
curs if one of the end-points of an edge is inside the iso-
surface while the other is outside. For example, in the voxel
of Figure 1, corner pi jk

5 is inside while the rest of the cor-

ners are outside, and thus the edges [pi jk
1 ,pijk

5 ], [pi jk
4 ,pijk

5 ], and

[pi jk
5 ,pijk

7 ] pierce the iso-surface. For every one of the 256
classes there is a corresponding triangulation of edge inter-
sections. Thus, when the class of the voxel has been deter-
mined, we simply look up the triangle geometry in a trian-
gulation table, and assign the vertex positions to where the
voxel’s edges pierce the iso-surface.

What remains is to determine the intersections of the
piercing edges. With a binary scalar field, which is com-
mon in e.g. segmented medical data, we can assume that
the intersection is in the middle of the edge. However, this
choice leads to “blocky” surfaces, see the left of Figure 2.
With a continuous scalar field, we can approximate the scalar
field along the edge with a linear polynomial and find the
zero-crossing of the polynomial. This gives a distinctively
smoother surface, see the right of Figure 2.

Our algorithm implements MArching Cubes as a se-
quence of data stream compaction and expansion operations,
with the input data being the voxel data set. The first stream
operation determines the class of each voxel, and consults

submitted to EUROGRAPHICS 2007.



C. Dyken & G. Ziegler / Histopyramid Marching Cubes 3

Figure 2: Difference between assuming that edges pierce the
iso-surface at the middle of an edge (right) or using an ap-
proximating linear polynomial to determine the intersection
(left).

the table of triangulations to determine the number of ver-
tices produced by every voxel. The stream is compacted
by discarding all voxels that doesn’t produce any geome-
try. Then an output stream is produced, where each element
in the compacted stream is expanded to the number of ele-
ments determined by the triangulation table. These elements
of the output stream is populated with edge-iso surface in-
tersections. The iso-surface is finally formed by connecting
three and three elements in the output stream to form a set of
triangles.

4. Histopyramids

The HistoPyramid and its algorithms perform the data com-
paction and expansion of Section 3 in parallell on the GPU.
To show the basic idea, we initially describe a 1D version
of the Histopyramid, and then continue to the 2D version,
which is used in the implementation.

4.1. 1D Histopyramids

The first step is to build the Histogram Pyramid. Refer to
the left part of Figure 3. The bottom of the pyramid is the
base layer, and contains the input sequence. In this case, the
input sequence is 1,1,0,3,0,1,1,0. The input elements (at
the base layer) determine the number of elemets to allocate
in the output. For example, the first input element produces
one element in the output (stream pass-through), while the
fourth produces three (stream expansion), and the third none
(stream compaction).

From this input layer, the 1D HistoPyramid is built
bottom-up, layer-by-layer, where each layer is half the size

7

5 2

2 3 1 1

1 1 0 3 0 1 1 0

7

5 2

2 3 1 1

1 1 0 3 0 1 1 0

Keys 0 1 2 3 4 5 6 7

Input sequnece indices 0 1 3 3 3 5 6 -

Key remainders 0 0 0 1 2 0 0 -

Figure 3: 1D Histopyramids. Left: Histopyramid build pro-
cess. Right: Example traversal for input key 3.

of the previous layer. An element in a given layer is the sum
of the two corresponding elements in the layer below. Thus,
the first layer is the sequence 2,3,1,1 and so on. The last
layer containing only one single element contains the total
count in the input sequence, in this case 7. This is also the
size of the output sequence. Since there are no dependen-
cies between elements in the same layer, all elements can be
calculated in parallel.

We then traverse the pyramid to extract the output se-
quence. We let the key be the output element’s index in the
output sequence. As an example, we produce the fourth el-
ement of the output sequence, with the key 3. We compare
the key to the top element. Since the key is less than 7, we
know that this element is part of the output sequence. Then
we go one level down. Here we interpret the two elements
as ranges. The first range is from 0 up to 5 exclusive, and
the second range is from 5 to 7. Which of the two ranges the
key falls into determines which of the two sub-pyramids we
should traverse into. In this case, it is the first range. Also,
each time we traverse one layer down in the pyramid, we
must adjust the key according to the beginning of the range.
In this case, this is zero, and no adjustment is necessary.
On the next level, we must compare the elements 2 and 3
which forms the ranges [0,2) and [2,5). In this case, the key
falls into the second range. We traverse into the second sub-
pyramid and adjust the key index by subtracting 2 (the be-
ginning of the second range). We do the same for the base
layer, and we end up at the fourth element of the input se-
quence and the remainder of the key is 1. Then, we know
that this output element is allocated by the element with in-
dex 3 in the input sequence, and this is the element with
index 1 (the key remainder) of the elements allocated by this
input element.

submitted to EUROGRAPHICS 2007.



4 C. Dyken & G. Ziegler / Histopyramid Marching Cubes

1 0 0 0

0 1 0 1

1 0 1 0

1 1 0 1

Base level

2 1

3 2

Level 1

8

Level 2

Figure 4: Bottom-up build process, adding four elements re-
peatedly. Top element contains the total number of cells in
the pyramid.

4.2. 2D Histopyramids

In practice, a 2D version of the HistoPyramid is used. On
the input siede, we map the 3D voxel domain into the 2D
domain, and thus can index the sequence using 2D texture
coordinates (texcoords). The output is also in 2D, but still
interpreted as a 1D sequence of data.

The 2D HistoPyramid is also built bottom up layer-by-
layer. The structure of a 2D histopyramid is identical to a
MipMap pyramid, where each level is a quarter the size of
the previous level.

The base layer is populated with the number of elements
to be allocated in the output stream. Then, the rest of the
layers are constructed by letting one texel in one level be the
sum of the four texels in the corresponding 2× 2-block of
texels in the level below. This is similar to construction of
MipMap pyramids, but we sum elements instead of taking
their average. For ease of implementation, we assume only
power-of-two textures, but an appropiate out-of-bound con-
dition allows padding in textures of other sizes.

The single top element of the Histogram Pyramid con-
tains the length of the output sequence. We extract all these
elements one by one, similar to what is done for the 1D
Histogram Pyramid. However, instead of inspecting two and
two adjacent elements to determine which sub-pyramid to
descend into, we inspect the four elements in the correspond-
ing 2× 2 block in the layer below, see Figure 5, and form
four ranges. We start with a texcoord corresponding to the
center of the level. We then adjust this index each time we
descend one level. When we reach the base layer, this texco-
ord points to the correct base layer element, and the remain-
der of the key contains the offset in the sequence of output
elements allocated by that partucular base level element.

For increasing key indices, the texture fetches at each

Input: Key indices

6 8 ×
3 4 5

0 1 2

Output: Point list

(0,3) (3,2) ×
(3,0) (2,1) (1,2)

(0,0) (0,1) (1,0)

1 0 0 0

0 1 0 1

1 0 1 0

1 1 0 1

Base level

2 1

3 2

Level 1

8

Level 2

Figure 5: Element extraction, interpreting partial sums as
interval in top-down traversal (Example: key index 4)

level of the histopyramid traces out something resembling
a space-filling curve like the Peano-curve. Also, the texture
fetches in each layer lies directly above the fetches in the
layer below. This makes the histopyramid extraction very
cache-friendly.

• construction of RGBA HistoPyramids -> bigger pyramids
within the texsize limits of OpenGL, read the 4 elements
pr. level in one texture fetch.

5. Marching cubes using HistoPyramids

Our idea is to implement the streaming view of the march-
ing cubes algorithm using HistoPyramids for the compaction
and expansion of the stream.

Texture fetches in the vertex shader was a new feature of
SM3.0. This feature makes it possible with HistoPyramid
extraction in the vertex shader, without an extra render-to-
vertex-buffer pass. Though, cards like the Nvidia GeForce 6
and 7 support only vertex shader texture fetches from TEX-
TURE_2D targets with 1 or 4 channels of FLOAT, and thus
restricts the type of the textures that can be used in the ex-
traction pass.

The algorithm needs for textures: the vertex count tex-
ture and the triangulation table texture, which are small pre-
computed static textures, and the function texture and the
HistoPyramid texture. The vertex count texture is a 1D table
containing the number of vertices needed for triangulating
each of the 256 voxel classes. The triangulation table texture
contains a 16 by 256 table where entry i j tells which voxel
edge intersection vertex i of a voxel of class j is. The func-
tion texture contains the scalar field from which we want
to extract an iso-surface. Since we need to sample this tex-

submitted to EUROGRAPHICS 2007.



C. Dyken & G. Ziegler / Histopyramid Marching Cubes 5

Scalar field
texture

Vertex count
texture

HistoPyramid
texture

Triangulation
table texture

Enumeration
VBO

Start
new frame

Update
scalar field

Build
HP base

HP
reduce

Vertex count
readback

Render
geometry

Iso-level

For each level

ture in the extraction pass, we create a large tiled 2D tex-
ture where each tile corresponds to a slice of the 3D volume,
known as a Flat 3D layout [HISL03]. The HistoPyramid tex-
ture is a 4-channel RGBA texture, keeping track of the num-
ber of vertices in the output stream needed to triangulate
each of the voxels. The performance of the HistoPyramid
algorithm is better the greater the amount of data, and thus
we use the Flat 3D layout also here, distributing the slices of
the 3D volume over the 2D base level.

The first stage of the algorithm is to populate the function
texture. The data can come from any source, for example,
one could either stream data from disc or let the texture be
the resulting calculation from a GPGPU pass.

The second stage is to build the base layer of the HistoPy-
ramid. We use an 4-channel RGBA-HistoPyramid and thus
each texel in the base layer corresponds to a tiny 2× 2× 1
chunk of voxels. These voxels are neighbours and share
some of the corners. We begin by fetching the 3×3×2 val-
ues from the function texture corresponding to the corners of
the voxels, and compare these values to the iso-value to de-
termine if the corner is inside or outside the iso-surface. Us-
ing these results, we can determine the class of the 4 voxels,
and using the class, we can consult the vertex count texture
to determine the number of vertices each of the voxels need
in the output stream. For texels corresponding to voxels out-
side the volume, we set the vertex count and class to 0. We
encode both the number of vertices needed and the class of
the voxel in a single scalar. We need the number of vertices
to build the HistoPyramid, and we need the voxel class in the
extraction stage.

The third stage is to build the rest of the HistoPyramid
using consecutive reductions. Each reduction is done us-
ing a GPGPU-pass, implementing the reduction described
in Section 4.2: The out is the sum of the four texels directly
below the current texel in the MipMap pyramid. The passes
are done as described in “render-to-texture loop with custom
mipmap generation” [?], though, instead of using one single
framebuffer object (FBO) for the HistoPyramid texture, we
use a separate FBO for each mipmap level, which we initial-
ize and validate in the initialization code. In our experiments,
this gave a significant increase in performance.

The fourth stage is extraction. Using the HistoPyramid
created in the previous step, we extract all the vertices that
forms the triangles of the iso-surface.

The first step is to read back the single texel in the top-
level of the HistoPyramid to host mem. The sum of the four
elements of this texel is the number of vertices in the iso-
surface Nv, which is three times the number of triangles.

Then, we begin rendering triangles and trigger processing
of Nv vertices. The vertices must be enumerated with indices,
and the only input attribute needed to the vertex shader is this
index. We trigger the vertices by rendering a VBO where the
x-coordinate of each vertex is the index. On SM4.0 hard-
ware, we can get this index directly from the driver via the
builtin gl_VertexID variable — unfortunately, since it is
completely impossible to convince OpenGL to process ver-
tices without providing any data, we have to provide a VBO
anyway.

The vertex shader traverses the HistoPyramid using the
vertex index as key. The position in the base texture where
the traversal terminates tells which voxel this vertex be-
longs to. And the key remainder tells which of that particular
voxel’s vertices this vertex is.

We used some of the bits of each element in the base level
of the HistoPyramid to cache the class of the voxel. With
the class and the key remainder, we consult the triangulation
table to determine which of the voxel’s edges we shall use.

Using the voxel position we determine where that edge
intersects the iso-surface. This is done by approximating the
scalar field with a linear polynomial along the edge. The zero
of this polynomial gives an approximate intersection, which
we use as the position of the vertex. The normal vector is
given by the gradient of the scalar field. We used a first-order
forward difference along each of the axes, which gave good
results.

An alternative is to let the intersection between the edge
and the iso-surface be approximated by the edge midpoint.
In this case, the actual shape of each triangle in the trian-
gulation table is directly given, and the normal vectors can
be pre-computed and stored in the triangulation table. Using
this scheme, we can avoid sampling the function texture at

submitted to EUROGRAPHICS 2007.



6 C. Dyken & G. Ziegler / Histopyramid Marching Cubes

Name Dimension Occupancy Triangles

Bunny
255×255×179 5% 1071342

127×127×89 8% 237166
63×63×44 13% 45464

CThead
255×255×112 4% 603008

127×127×55 7% 123072
63×63×27 10% 22540

Cayley
255×255×255 1% 313258
127×127×127 2% 79462

63×63×63 4% 20112

Table 1: Characteristics of the voxel volumes used in the
performance analysis.

all in the extraction shader (?? We discuss this in MC-chapter
as well??)

Another approach to extraction is to let the geometry
shader do the expansion. We then have to encode a count
of 1 if the class is neither 0 nor 255 or 0 otherwise when
constructing the HistoPyramid base layer. We then let the ge-
ometry shader traverse the histopyramid once per geometry-
producing voxel and emit the vertices of that voxel. This
reduces the number of HistoPyramid traversals from three
times per triangle in the output surface to one time per ge-
ometry producing voxel. However, as we see in Section 6,
the overhead of using an additional step in the pipeline (the
geometry shader) is considerably greater than the overhead
of multiple histopyramid traversals per voxel.

6. Performance analysis

The usual method for measuring performance of iso-surface
extraction implementations is to measure the number of vox-
els processed per second. However, this number alone does
not give a clear picture since the cost of processing a voxel
that produces geometry is usually higher than processing a
voxel that does not produce any geometry. We therefore in-
troduce the term occupancy, which is the percentage of vox-
els that produces any geometry. The occupancy is tied to the
complexity of the surface and the size of the voxel volume.
Complex surfaces and small voxel volums tend to have a
larger number of voxels that produce geometry.

We used three different datasets, see Figure 6, at various
resolutions. The Bunny and CThead datasets were obtained
from the the Stanford volume data archive [sta]. The Cayley-
dataset is a sampling over [−1,1]3 of the Cayley surface de-
fined by the implicit equation f (x,y,z) = 16xyz + 4(x + y +
z)− 1. Table 1 lists the occupancy and the number of trian-
gles in the resulting surface for the models.

We used three different Nvidia GeForce graphics cards: a
6600GT with 128mb ram, a 7800GT with 256mb ram, and
a 8800GTX with 768mb ram. The 6600GT ran on a Linux
workstation with an AMD Athlon 64 3500+ CPU at 2.2 Mhz

and 1 gb of ram, using the 97.55 release of the display driver.
The 7800GT and the 8800GTX ran on a Linux workstation
with an Intel Core2 CPU at 2.13 GHz and 1 gb of ram, using
the 97.51 release of the display driver.

Table 6 shows the results of our experiments. Section 2
gives the performance of alternative approaches. The entries
in the table is the number of voxels processed per second
suffixed with frames per second in paranthesises. We tested
expansion both using the vertex shader via the HistoPyramid
and the geometry shader on the 8800GTX. In addition, we
tested both using the midpoint of the edge as intersection and
determining the intersection by linear interpolation.

• Using the midpoint of the edge directly removes the need
for sampling the function in the extraction pass, see Sec-
tion ??. This could increse performance, but as the exper-
iments show, the increase is marginal, and definitiely not
worth the decreased visual quality.

• The 6600GT didn’t have enough ram to handle the largest
datasets, and thus, there are no numbers for these datasets.
Surprisingly, even though the performance of the 6600GT
is not that impressive compared to the 8800GTX, we see
that algorithm is usable on older low-end cards.

• The 6600GT and 7800GT is identical feature-wise, but
the 6600GT has only 5 vertex pipes at 500Mhz while the
7800GT has 7 at 400 Mhz. However, the 7800GT has
a 256-bit memory interface running at 1000Mhz, while
the 6600GT has a 128-bit memory interface running at
900Mhz.

• GeForce 6600 GT, 500Mhz clock, mem 128 bit @ 1 Ghz
giving 16 GB/s, 8 pixel pipes. GeForce 7800 GT, 400
MHz clock, mem 256 bit @ 1 GHz giving 32 GB/s, 20
pixel pipes. Geforce 8800 GTX. 575/1350Mhz clock, 1.8
Ghz mem, 384-bit mem intf. 86.4 GB/s mem transfer. 128
pixel pipes. (?? Where can I find data on the number of
vertex pipes ??)

• Using the geometry shader for expansion instead of the
vertex shader decreases the performance considerably,
which implies that the cost of enabling the GS-stage in
the pipeline is greater than the extra HistoPyramid traver-
sals needed for VS-extraction. (?? is GS-uint16 actually
needed, doesn’t give that much info... More info in letting
another arch try several types ?)

• Different sizes of volumes to see throughput of the al-
gorithm as a whole. Larger chunks of data means more
throughput.

• For the 8800, the storage type of the function data set
has relatively little impact. (?? Maybe add comparison of
float-uchar on 6600 and or 7800 as well ??)

7. Conclusion and future work

• Not necessarily restricted to 3D-grids, only need a quick
way to determine cell position from baselayer texpos.

• We tried implementing our algorithm in CUDA, where

submitted to EUROGRAPHICS 2007.



C. Dyken & G. Ziegler / Histopyramid Marching Cubes 7

Bunny CThead Cayley

Figure 6: Images of the voxel volumes used in the performance analysis.

Mid-edge intersection

VS expansion GS expansion

6600GT 7800GT 8800GTX 8800GTX 8800GTX 8800GTX
uint8 uint8 uint8 uint16 uint8 uint16

Bunny
255×255×179 - 409.1 (35.2) 408.0 (35.1) 82.2 (7.1) 82.2 (7.1)

127×127×89 5.4 (3.8) 228.5 (159.2) 227.4 (158.4) 45.0 (31.4) 45.0 (31.4)
63×63×44 4.2 (24.1) 120.3 (688.7) 120.4 (689.8) 28.4 (162.5) 28.5 (163.2)

CThead
255×255×112 - 399.7 (54.6) 398.4 (54.7) 86.7 (11.9) 86.7 (11.9)

127×127×55 7.2 (8.2) 278.7 (314.2) 277.9 (313.3) 54.1 (61.1) 54.0 (60.9)
63×63×27 4.9 (45.3) 87.2 (814.3) 86.2 (804.2) 31.2 (290.7) 31.3 (292.3)

Cayley
255×255×255 - 1107.7 (66.8) 1079.9 (65.1) 351.7 (21.2) 332.1 (20.0)
127×127×127 18.5 (9.0) 578.7 (282.5) 557.3 (272.1) 179.2 (87.5) 162.8 (79.5)

63×63×63 12.1 (48.5) 193.3 (773.0) 190.4 (761.5) 90.1 (360.5) 74.8 (299.0)

Intersection determined by linear interpolation

VS expansion GS expansion

6600GT 7800GT 8800GTX 8800GTX 8800GTX 8800GTX
float32 float32 float32 uint16 float32 uint16

Bunny
255×255×179 - 359.4 (30.9) 365.7 (31.4)

127×127×89 3.8 (2.7) 199.2 (138.8) 204.2 (142.2)
63×63×44 2.8 (16.3) 108.3 (620.4) 110.2 (631.3)

CThead
255×255×112 - 355.9 (48.9) 361.6 (49.7) 57.2 (7.9) 56.7 (7.8)

127×127×55 5.0 (5.6) 239.3 (269.8) 246.4 (277.8)
63×63×27 3.4 (31.4) 84.6 (790.3) 85.7 (799.7)

Cayley
255×255×255 - 973.1 (58.7) 1012.7 (61.1)
127×127×127 13.4 (6.5) 503.2 (245.7) 522.2 (254.9)

63×63×63 8.5 (33.8) 191.7 (766.5) 191.3 (765.3)

Table 2: Performance of the algorithm on different hardware and on different volume. The f32-suffix indicates that the voxel
volume was specified as 32-bits floating point numbers, and u16 indicates 16-bits unsigned integers.

submitted to EUROGRAPHICS 2007.



8 C. Dyken & G. Ziegler / Histopyramid Marching Cubes

both the voxel classification and the HistoPyramid con-
struction pass should benefit considerably from the shared
memory between threads. However, currently the output
from one CUDA computation can only be bound to a
1D buffer texture sampler without an additional copy, not
a 2D texture. This removes the advantage of the good
cache-behaviour of the HistoPyramid algorithm. Using a
more 1D-friendly layout, chunking the data into levels of
tiny HistoPyramids improved the performance almost to
that of our OpenGL implementation. However, we antic-
ipate that a CUDA approach will be quite efficient when
CUDA gets support for 2D textures.

References

[DRS07] DYKEN C., REIMERS M., SELAND J.: Real-
time gpu silhouette refinement using adaptively blender
bézier patches.

[HISL03] HARRIS M. J., III W. V. B., SCHEUERMANN

T., LASTRA A.: Simulation of cloud dynamics on graph-
ics hardware. Proceedings of Graphics Hardware 2003
(2003).

[KSE04] KLEIN T., STEGMAIER S., ERTL T.: Hardware-
accelerated reconstruction of polygonal isosurface repre-
sentations on unstructured grids, 2004.

[KW] KIPFER P., WESTERMANN R.: GPU construction
and transparent rendering of iso-surface.

[LB] LICHTENBELT B., BROWN P.: Gl_ext_gpu_shader4
extension specification.

[LC87] LORENSEN W., CLINE H. E.: Marching cubes:
A high resolution 3d surface construction algorithm.
Computer Graphics (SIGGRAPH 87 Proceedings) 21, 4
(1987), 163–170.

[sta] The stanford volume data archive. http://
graphics.stanford.edu/data/voldata/.

[ZTTS06] ZIEGLER G., TEVS A., TEHOBALT C., SEI-
DEL H.-P.: GPU Point List Generation through His-
togram Pyramids. Tech. Rep. MPI-I-2006-4-002, Max-
Planck-Institut für Informatik, 2006.

submitted to EUROGRAPHICS 2007.

http://graphics.stanford.edu/data/voldata/
http://graphics.stanford.edu/data/voldata/

