
1.3 Image formation in electron microscopy 

 

This section will summarize the process of image formation in the electron microscope. It 

will be shown how the signal conveyed by the electron beam is subject to contrast 

inversion artifacts, information envelope functions, and noise corruption. A well rounded 

understanding of the image formation process is of fundamental importance in SPA.  

 

1.3.1 The weak phase/weak amplitude approximation 

 

A sound understanding of image formation in the electron microscope requires an 

appreciation of wave-optics, lens systems and quantum mechanics. Detailed summaries 

have been presented previously (Angert et al., 2000; De Graef, 2003; Erickson and Klug, 

1970; Frank, 1996; Zhu et al., 1997). Here the prevailing theory of image formation will 

be summarized in concise form. 

 

In transmission electron microscopy the incoming electron beam is described as a plane 

wave ψ(r) = eirz where z is the direction of the electron microscope column and r is the 

2D coordinate vector in orthogonal directions denoted by x and y. This plane wave is a 

solution of the Schrödinger equation (Tipler, 1991). In quantum mechanics the quantity 

P(r) ≡ ψ(r)•ψ*(r) is the probability distribution function of observing the wave ψ(r) at 

point r. The probability distribution P(r) of the electron beam at the point of its 

interaction with the image-recording device in the back focal plane of the electron 

microscope objective lens is the image formed and used as the basis of all image 

processing in SPA. 

 

The interaction of the incoming electron wave, denoted by ψi(r), with the 

macromolecules is described mathematically as a phase shift which is proportional to the 

three-dimensional Coulomb potential distribution within the sample. This interaction 

between the beam and specimen can be understood mathematically as 



 

 . (1.1) 



The wave transmission function at the exit surface of the specimen described in Eq. 1.1 is 

denoted by ψe(r). In Eq. 1.1 λ is the electron and U is the electrostatic potential of the 

specimen (Fig. 1.1A2) It is convenient to write  allowing the 

simplifying terminology, . In the well known weak phase 

approximation (WPA) the term  is approximated using a Taylor series 

expansion (Stewart, 1996) yielding 

 

 . (1.2) 

 

This truncation is based on the assumption that . The influence of second (and 

higher) order effects is mostly negligible in most experimental situations (Erickson and 

Klug, 1970). Eq. 1.1 can therefore be stated more simply as  

 

 . (1.3) 

 

Interestingly, Eq. 1.3 can be interpreted as the superposition of two waves, namely the 

unscattered or background wave and the scattered wave induced by the interaction with 

the Coulomb potential of the particle. To accommodate for absorption phenomena 

attributed to inelastic and multiple electron scattering, scattering outside the objective 

aperture and other effects (Wade, 1992) an amplitude attenuation term µ(r) (which is 

understood to be less than or equal to zero) is modeled into Eq. 1.3 which yields the 

modified wave description of the electron planar wave 

 

 . (1.4) 

 



The accuracy of this model of the electron beam wave structure has been experimentally 

confirmed in cryo-EM and negative stain conditions. (Angert et al., 2000; Toyoshima and 

Yonekura, 1993). We can normalize the incident (complex) plane wave ψi(r) with no loss 

of generality. This allows Eq. 1.4 to be written as  

 

 . (1.5) 

 

This result is known as the weak phase/weak amplitude approximation (Misell, 1978). 

Eq. 1.5 summarizes a quantum description of wave interference in the electron 

microscope due to specimen interaction and amplitude attenuation. The corresponding 

image at the exit stage surface of the specimen is revealed by measuring the associated 

probability distribution which is  

 

 . (1.6) 

 

Note that Eq. 1.6 is a theoretical description of the intensity distribution of the electron 

beam image at the A3 stage of illumination in Fig. 1.4A. 

 

1.3.2 Imaging defects associated with defocus and spherical aberration 

 

The spherical aberration of the objective lens and the degree of defocus each introduce 

significant aberrations to the electron plane wave traveling through the electron 

microscope. The phase shift attributed to defocus and lens aberrations will be denoted 

γ(s,θ), which is a function of 2D spatial frequency polar coordinates s and θ. The specific 

form of the lens aberration function will be discussed below in Section 1.3.3. For now we 

will focus on how these aberrations induce a frequency-dependent phase shift in the 

Fourier transform (Fourier transforms explained in Appendix IV and Appendix V) of the 

exit plane wave as described in Eq. 1.5, which is stated mathematically as 

 



 , (1.7) 
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Here F denotes the Fourier transform and δ(s,θ) (the Dirac delta function), Φ(s,θ) and 

M(s,θ) are the Fourier transforms of 1, and µ(r) respectively. Note that Φ(s,θ) is 

known as the structure factor of the particle. Similarly, Ψγ is the Fourier transform of the 

planar electron wave traveling through the microscope. We are interested in the effects of 

these aberrations on the final image, i.e. we wish to evaluate the probability distribution 

of the exit plane wave, defined as 

 

 , (1.9) 

 

where ψγ(r) is the inverse Fourier transform of Ψγ, (i.e. the quantum description of the 

electron plane wave after the convoluting influences of defocus and lens aberration have 

been accounted for). To evaluate this expression and gain a deeper insight into the 

measured image we take the inverse Fourier transform (denoted F-1) of Eq. 1.7 and make 

use of the convolution theorem to elucidate that 

 

 , (1.10) 
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Here the  symbol denotes the convolution operation. Using the description supplied by 

Eq. 1.11 to evaluate Eq. 1.9 and disregarding non linear terms (Misell, 1978) yields  

 

 . (1.12) 

 



Eq. 1.12 is a simplified description of the image formed in the back projection plane of 

the electron microscope, and describes the effects of the microscope aberration function. 

These effects are made more transparent in terms of the equivalent Fourier image, which 

is described as 

 

 

. 

(1.13) 

 

In Eq. 1.13 Iγ(r) is introduced to simplify terminology and represents the image measured 

at the appropriate illumination stage in the electron microscope (A4, Fig. 1.4A). Eq. 1.13 

can be simplified by removing the δ(s,θ) term, which only contributes for [s, θ] =[0,0] 

(i.e. the DC component of the Fourier transform) and represents the Fourier transform  of 

the (normalized) unscattered component of the incoming wave ψi(r). Also, the constant 

factor of 2 in Eq. 1.13 can be disregarded since, in practice, scaling factors are arbitrary.  

On the basis of these assumptions, Eq. 1.13 simplifies to  

 

 . (1.14) 

 

By introducing the term W(s,θ)= M(s,θ) / Φ (s,θ) and the commonly made assumption 

that W(s) is constant for all spatial frequencies, i.e. that W(s,θ)  W (Angert et al., 2000; 

Zhu et al., 1997) we arrive at a simplified form of Eq. 1.14,  

 

 . (1.15) 

 

The factor W is referred to as the amplitude contrast ratio which is of the order of 5-7% 

for biological samples imaged in cryogenic conditions (Angert et al., 2000; Toyoshima 

and Yonekura, 1993; Wade, 1992) and is of the order 35% for negative stain specimens 

(Wade, 1992). C(s,θ) is known as the CTF of the electron microscope. Eq. 1.15 is 

therefore a summary of the weak phase/weak amplitude approximation in its most 

concise form that is representative of the state of the electron beam at the A4 stage of 



illumination in Fig. 1.5A. The equivalent intensity distribution or image at this stage of 

illumination can be interpreted in real space as 

 

 , (1.16) 

 

where c(r) is the inverse Fourier transform of the C(s,θ), which is the known as the point 

spread function of the CTF in the electron microscope. Importantly, the framework 

presented in Eq. 1.15 and Eq. 1.16 does not destroy the linear relationship between the 

Fourier transform of the image and the projected potential of the specimen Φ(s,θ), which 

implies that the signal of the specimen is recoverable. This is a fundamental principle of 

SPA. 

 

1.3.3 The contrast transfer function  

 

In the absence of lens astigmatism the CTF, denoted C(s,θ) in Eq. 1.15, is isotropic. Thus 

the CTF can be expressed more simply as 

 

 . (1.17) 

 

That is, given that astigmatism has been studiously avoided by careful calibration of the 

lenses in the electron microscope, the effects of the CTF are solely dependent on the 

Fourier radial coordinate. This simplification will suffice for the discussion presented 

here, but it should be noted that as higher resolution reconstructions are sought in SPA 

the influence of lens astigmatism may become increasingly important, particularly if the 

degree of allowable astigmatism is small. For a more detailed description of the CTF in 

the presence of lens astigmatism see (De Graef, 2003; Frank, 1996). It can be shown 

using optics, geometry and diffraction theory (De Graef, 2003) that the phase shift 

attributed to defocus and lens aberrations is given by 

 



 
, 

(1.18) 

 

where Cs is the spherical aberration constant of the objective lens in the electron 

microscope (usually of the order ~10-3 m), ΔZ is the defocus of the microscope (usually 

of the order ~10-6 m) and λ is the relativistic wavelength defined as 

 

 . (1.19) 

 

In Eq. 1.19 E is used to describe the operating voltage of the electron microscope (in 

volts) and the resulting wavelength is given in picometers. The parameter of Eq. 1.18 

most varied by the human operator is the defocus. This is because the spherical aberration 

is a physical parameter of the microscope that cannot be changed and the operating 

voltage (which changes the electron wavelength) is usually kept constant. As the defocus 

of the microscope is increased, the oscillations of the CTF become more rapid as shown 

in Fig. 1.6A, which depicts the CTF incurred for two commonly used defocus values 

Fig.1.x panels C and D). The effect of the CTF is literally to scale Fourier components by 

a number on the interval [-1,1]. Scaling by a negative number in complex space is 

equivalent to phase shifting by 180°, which is referred to as the phase-flipping effect. As 

the inverse Fourier transform reveals that a real function is a sum of (cosine) sinusoidal 

signals, phase flipping can be interpreted as real space contrast inversion, and can be  

ultimately understood as the inversion of cosine waves. Hence the CTF induces both 

contrast inversion and amplitude attenuation artifacts. 

 

The amplitude attenuation constant W (Eq. 1.17) can be understood as a phase shift of the 

CTF and examples are shown in Fig. 1.6B for different amplitude constants. Note that a 

non-zero, positive amplitude contrast value will cause phase flipping in the lowest 

frequency domain. It is therefore imperative in practice that the amplitude contrast be 

known or approximated. The CTF is one of the principal causes of Coulomb projection 



corruption in the electron microscope and occurs schematically at the A4 stage, as 

indicated in Fig. 1.4A. 

 

The amplitude attenuation constant W (Eq. 1.17) can be understood as a phase shift of the 

 
Figure 1. 1. The influence of the CTF on image formation: A. The CTF plotted in surface representation 
to show its dependence on the defocus. In this figure the electron wavelength corresponds to an operating 
voltage of 200 kV and a spherical aberration of 2.2 mm is used. B. Increasing the amplitude attenuation 
term (W) essentially shifts the CTF and incurs additional phase shifting in the low frequency range. C. The 
CTF profile resulting from a defocus setting of 2 µm. D. The CTF profile resulting from a defocus setting 
of 0.1 µm. E. The result of applying the CTF depicted in C to the pure projection data in F. F. Pure 
projection data of the GroEL model, generated from the published 6 Å structure (Ludtke et al., 2004). G. 
The result of applying the CTF depicted in D to the pure projection data in F. 
 

CTF and examples are shown in Fig. 1.6B for different amplitude constants. Note that a 

non-zero, positive amplitude contrast value will cause phase flipping in the lowest 

frequency domain. It is therefore imperative in practice that the amplitude contrast be 

known or approximated. The CTF is one of the principal causes of Coulomb projection 

corruption in the electron microscope and occurs schematically at the A4 stage, as 

indicated in Fig. 1.4A. 

 

Operating an electron microscope with a spherical aberration of 2.0 mm at an operating 

voltage of 200 kV and a defocus of 2 µm yields the CTF profile shown in Fig. 1.6C. 

Changing the defocus to 0.1 µm yields the CTF profile in Fig. 1.6D. The main difference 

between these two profiles is that a defocus of 2 µm incurs many more CTF oscillations, 



but also has higher low frequency amplitude values which assist in particle detection. 

Indeed, the nature of the CTF dictates that its oscillation become more compressed 

towards the origin as the defocus is increased (Fig. 1.6A). This has important 

implications. For example, while the CTF has remained completely positive for the 

defocus setting of 0.1 µm, the transfer of information at low spatial frequencies is highly 

retarded. This is observed directly in Fig. 1.6D and is shown by example in Fig. 1.6G, 

which reveals the convolution of the pure projection data in Fig. 1.6F with the frequency-

scaling profile in Fig. 1.6D. In Fig. 1.6G observe that mostly high spatial-frequency 

information remains and that low frequency information is largely unobservable. Note 

also that the differences between the raw (Fig. 1.6F) and the convoluted image (Fig. 

1.6G) are attributed solely to amplitude scaling effects, as described in Fig. 1.6D (no 

phase flipping occurs). It can therefore be understood that, on its own, the amplitude 

corruption aspect of the CTF produces significant mass displacements. As an example of 

the consequence of using a greater defocus, the convolution of the 2 µm defocus profile 

(Fig. 1.6C) with the data in Fig. 1.6F is shown in Fig. 1.6E. While it can be readily 

observed that low frequency spatial information is more clearly preserved for the higher 

defocus setting (Fig. 1.6E), it is also apparent that the signal has undergone significant 

corruption (Fig. 1.6E), which is related to both CTF phase flipping and CTF amplitude 

attenuation (Fig. 1.6C) Even though a greater amount of defocus incurs more CTF 

oscillations, in practice this can be the preferred option because stronger transmission in 

the low frequency domain makes particle selection easier. Note also in Fig. 1.6B,C & D 

that the CTF intersects the frequency axis  implying zero information transfer. This 

causes some frequency information to be completely removed from the transmitted 

signal. To accommodate this in practice it is imperative that images are recorded at 

varying degrees of defocus. 
 

In early attempts to reconstruct single particles, contrast inversion artifacts were 

accounted for by low-pass filtering the data to remove all frequency-flipped information 

beyond the first zero crossing of the CTF. This approach limited the resolvability of the 

structure to the realm of 20 Å. In modern SPA, the phase flipping nature of the CTF is 

corrected by the simple operation of multiplying the affected regions in Fourier space by 



negative one. This is equivalent to undoing the contrast inversion induced by the CTF 

and is referred to as phase CTF correction. To achieve this, the power spectrums of the 

raw micrographs (or cropped, averaged subfiles) are calculated and the CTF zero 

crossing estimated to determine the parameters of Eq. 1.15. While there has been some 

progress toward the automation of CTF parameter determination  (Huang et al., 2003; 

Mallick et al., 2005; Mindell and Grigorieff, 2003; Sander et al., 2003) it is still common 

to perform manual fitting. In addition to phase correction, compensation for the 

amplitude attenuation of the CTF can also be made (amplitude CTF correction). This 

usually occurs in conjunction with a Wiener filtering operations but depends on the 

software package being used (Grigorieff, 2007; Ludtke et al., 1999; Zhu et al., 1997). 

 

1.3.4 Imaging defects attributed to the microscope envelope functions 

 

In this section the known envelope functions of the electron microscope will be 

summarized, the combined effects of which can be reasonably approximated as a single 

envelope function, denoted e(r) in real space and E(s,θ) in Fourier space. These 

imperfections of the electron microscope imaging system convolute the signal conveyed 

in the electron beam and blur spatial information.  

 

Envelope effects can be understood in Fourier space as a modified form of Eq. 1.15 

which is summarized as 

 

 . (1.20) 

 

Here Iγ,e(r) denotes the intensity distribution of the electron beam, as influenced by the 

contrast transfer and envelope functions of the electron microscope (recall Φ(s,θ) is the 

structure factor, C(s,θ) is the CTF and E(s,θ) is the newly modeled envelope function). 

Three separate envelope functions of the electron microscope have been theorized and 

experimentally confirmed. These will be summarized here based on previously presented 

work (De Graef, 2003; Frank, 1996; Zhu et al., 1997). The first envelope function relates 



to the partial coherence of the electron beam (Frank, 1973) and is defined formally in 

Fourier polar coordinates as 

 

 

. 

(1.21) 

 

In Eq. 1.21 s and λ are as previously defined and the constant qo is related to the source 

size associated with the illumination system and is generally of the order 1 x 108 m1/2 (De 

Graef, 2003; Frank, 1976). The simplifying approximation made in Eq. 1.21 is valid 

when sλ << 1, which is true for operating voltages and sampling rates typical of current 

cryo-EM (100-300 kV). The lack of dependence on the Fourier coordinate angle θ 

dictates that this envelope function is isotropic in Fourier space. Eq. 1.21 reveals the 

dependence of Epc on both the operating voltage (which affects the electron wavelength 

λ) and the defocus (ΔZ) of the instrument. In particular, Eq. 1.21 predicts that the fall-off 

of information transfer in the high frequency domain will be less pronounced if the 

defocus is decreased or operating voltage is increased, as depicted in Fig. 1.7A and Fig. 

1.7B respectively. This demonstrates why higher operating voltages are often preferred in 

practice, because the resulting boost in information transfer in the high frequency domain 

improves the chances of recovering high resolution data in the final 3D reconstruction. 

Even though Fig. 1.7B predicts that increased defocus settings reduce high frequency 

coherence in the electron beam, in practice higher defocus settings are often preferred 

because they ensure a strong transmission of low frequency information. This is based on 

the dependence of the CTF on the defocus as depicted in Fig. 1.6. 

 

In addition to the partial coherence of the beam, the information content of the signal is 

affected by an energy spread envelope function, defined in polar coordinates as 

 

  (1.22) 

 

In this equation δz is a parameter relating to the defocus variation associated with the 

energy spread of the electron microscope and is independent of the actual defocus used 



(De Graef, 2003; Frank, 1976; Zhu et al., 1997). Similar to the partial coherence envelope 

function as described in Eq. 1.21, the energy-spread function is strongly dependent of the 

operation voltage and will exhibit characteristics similar to those shown in Fig. 1.7A. 

 

Finally, it is possible to summarize the effects of specimen drift, vibration, and multiple 

inelastic-elastic scattering events in a single envelope function (Kenney et al., 1992) 

defined as 

 

 . (1.23) 

 

Here u is a constant relating to the vector amplitude of the sample vibration and drift and 

is generally of the order 1x10-10 m (i.e. ~ 1 Å) . The convoluting influence of sample drift 

and/or vibration is independent of the operating voltage. Instead, it reflects the stability of 

the specimen in the microscope. In addition, drift can occur in specific directions in 

which case the isotropic assumption in Eq. 1.23 fails. Although theory can accommodate 

for direction specific drift in a straight forward fashion, the simplifications embedded in 

Eq. 1.23 will suffice for the discussion presented here.  

 

 
Figure 1. 2. The partial coherence envelope function. This illustrates the behavior of the partial 
coherence envelope function of the microscope as the defocus (A) and operating voltage (B) changes.  For 
these figures the constant qo was specified as 5x107 and the full form of the partial coherence envelope 
function was used, as defined in Eq. 1.21. 
 



In Fourier space the effects of the three envelope functions mentioned above will be 

cumulative. Thus we can gain an expression for the all encompassing envelope function 

Etotal describing the experimental conditions in the electron microscope by evaluating 

Fourier products, i.e.,  

 

   

 . (1.24) 

 

In Eq. 1.24 the constant value  has been replaced by B (which has the 

simple units of Ǻ2) and the assumption that λ « 1 has been used to simplify the 

expression. Importantly, Eq. 1.24 reveals that, in the absence of drift and/or specimen 

vibrations, Etotal is dominated by the partial coherence envelope function (Eq. 1.21) and 

implies that operating voltage and defocus will influence the image-recording process 

precisely as shown in Fig. 1.7. In addition, Eq. 1.24 demonstrates that the combined 

effects of the individual envelope functions can be adequately described as a single 

envelope having the functional form of a Gaussian (Huang and Penczek, 2004; Ludtke et 

al., 1999). 

 

In practice, it is difficult to characterize the parameters of all of the envelope functions 

contributing in a given cryo-EM experiment and therefore it is common to make use of 

simplifying approximations as in Eq. 1.24, where the attenuation of high resolution 

information transfer can be described as a single numerical  B-factor, which is generally 

in the range of 50-400 A2 (Ludtke et al., 2001; Saad et al., 2001). This simplified 

approach also provides a convenient means of comparing SPA data derived from 

different electron microscopes.  The application of several envelope functions using two 

different B-factors is shown Fig. 1.8, in combination with a CTF corresponding to a 1 µm 

defocus. The projection images in Fig. 1.6 reflect the state of the transmitted projection 

data in varying experimental conditions, as described explicitly in Eq. 1.20, and show 

how an increased B-factor corresponds to an increase in the overall blurring. It is 

therefore critically important that the envelope functions of a given electron microscope 



be studied and described accurately, as the exponential decay of information transfer can 

significantly reduce the expected resolution in the final 3D reconstructions, as will be 

shown in sections to come. In reference to Fig. 1.4, the combined effects of the CTF and 

envelope functions as described in Eq. 1.20 can be conceptually understood to describe 

the state of the projection data at the A4 stage of illumination. 

 

 
Figure 1. 3. Illustration of the combined effects of CTF and envelope functions. The top row depicts 
pure projection of the GroEL structure published at 6 Ǻ (Ludtke et al., 2004) . The second row depicts how 
these projections change when the CTF of the microscope, imaged at 1 µm defocus, is applied. The third 
row depicts how the CTF-corrupted images in the second row are in turn blurred by the envelope functions 
when the experimental B-factor is 100. The last row is equivalent  to the third row except the B-factor is 
400, which causes greater blurring. 
 

At this point it should also be noted that the modulation transfer functions (MTFs) of 

scanning devices (Roseman and Neumann, 2003; Typke et al., 2005), electron 

microscopy film (Zhu et al., 1997) and CCD cameras (Booth et al., 2004; Sander et al., 

2005) have been well characterized and are known to cumulatively blur SPA data in a 

manner identical to the nature of envelope functions.  However, in the context of the 

microscope envelope functions their influence is comparatively modest.  For the purposes 

of most SPA software packages the effects of the cumulative MTFs of the recording 

devices are simply included in one global, modeled form of the overall experimental 



envelope function, i.e. as embodied in Eq. 1.24 and described by heuristic parameters 

such as the B-factor.  

 

1.3.5 The influence of noise 

 

Noise in the electron microscope is attributed to random statistical variation in the 

number of incident electrons on the image recording medium, inherent noise related to 

the use of film which has non-uniform grain sizes, shot noise, and quantum noise related 

to elastic and inelastic scattering (Brink and Chiu, 1994; Downing and Hendrickson, 

1999; Huang et al., 2003; Zhu et al., 1997). The contribution of noise in a given 

projection image obtained in an electron microscope is difficult to directly quantify due 

to its random, poorly characterized nature (Pantelic et al., 2006). In real space the noise in 

an individual pixel is approximated well by a (random) Gaussian distribution. In 

frequency space the noise profile, as revealed by the power spectrum, is much stronger at 

low spatial frequencies and diminishes as the frequency is increased. Therefore, in 

Fourier space the amplitude of the noise component is related to the Fourier radial 

coordinate and will presumably be evenly distributed about the mean radial noise value 

(in polar coordinate representation). Due to the random nature of noise in real space, the 

Fourier noise component will have completely random phase. Thus in real space and in 

Fourier space, with sufficient averaging the influence of the noise tends towards zero. 

 

An important assumption made in image formation in electron microscopy is that the 

interference induced by the specimen by its interaction with the electron beam does not 

incur any directly related noise events as it travels through the electron microscope 

column. That is, noise recorded in the final image can be treated independently from the 

image formed by the weak phase/weak amplitude approximation (i.e., it is an additive 

superposition). This is embodied as a modification of the Fourier image described in Eq. 

1.20 which now becomes 

 

 , (1.25) 



 

where N(s,θ) is the newly modeled noise function and Iγ,e,n(r) is the description of the 

measured image formed as a result of the interaction of electrons with the specimen, 

which is convoluted by the CTF and envelope functions and influenced (now) by the 

additive background noise. Random pixel fluctuations attributed to noise are independent 

of the signal of the specimen and therefore contribute incoherently to the measured 

image. Due to its inherent variation, it is simpler to characterize the noise function in 

terms of its power spectrum profile (Section 1.4.1), which is estimated using polar 

integrals (rotational averaging) and denoted N2(s). The functional form employed by 

many groups (Huang et al., 2003; Ludtke et al., 1999; Mallick et al., 2005) contains four 

heuristic parameters and is of the form similar to, or identical to, 

 

 . (1.26) 

 

This empirical description of the noise profile has been robust enough to approximate the 

noise contribution for most data sets in general (Ludtke et al., 1999; Mallick et al., 2005; 

Zhu et al., 1997). In practice, the parameters (n1-4) of this (or a similar) equations are 

approximated interactively using graphical user interfaces or by the application of some 

automated algorithm (Ludtke et al., 1999; Mallick et al., 2005; Mindell and Grigorieff, 

2003; Saad et al., 2001; Sander et al., 2003; Zhu et al., 1997). As a demonstration of the 

accuracy of the model described in Eq. 1.25, a noise profile typical of cryo-EM is applied 

to the projection data, corrupted by CTF and envelope artifacts as in the left term in Eq. 

1.25  (top row of Fig. 1.9), the results of which are shown in the second row (Fig. 1.9). 

The images shown in the middle row of Fig. 1.9 therefore summarize the image 

formation process as described in Eq.  1.26 and reflect the image measured at the A5 

(final) stage in Fig. 1.4. Also shown are real cryo-EM data (bottom row, Fig. 1.9) for 

qualitative comparison with modeled data (middle row). In essence, details of the original 

projection image are entirely obscured by the additive noise component, making the 

direct interpretation of structural information from cryo-EM data practically impossible. 

This motivates the subsequent use of averaging procedures. 

 



 
Figure 1. 4. Noise in the electron microscope. This figure shows how noise is modeled in the image 
formation process.  Noise in the electron microscope is understood to contribute to the final image (middle 
row) independently of the signal which is corrupted by the CTF and envelope functions (top row), Hence 
random noise is literally added to the projection data in the top row, based using a typical noise profile of 
an electron microscope as described in Eq. 1.26, as shown in the middle row. The bottom row shows a 
selection of randomly selected (real) GroEL particles, cropped out from data distributed by the Scripps 
Research Institute (http://ami.scripps.edu/prtl_data/) and shows how models of image formation agree well 
with real experimental data. 
 

Because SPA is most clearly understood in Fourier space, it is difficult to justify the use 

of denoising procedures that have no direct interpretation in Fourier space. As an 

example, one of the simplest denoising techniques, namely averaging, can be understood 

directly in Fourier space. Let Iv denote the vth projection image in a group of n particles 

classified based on similarity, i.e. in a class. Proceeding on the assumption that the 

particles in the class are translationally and rotationally aligned, we generate the Fourier 

class average F{CA} by evaluating 

 

 
. 

(1.27) 

 

Here the signal of the particle (Φ(s,θ)) in the orientation of the class average is identical. 

Because the phase of the noise is random and its amplitude is evenly distributed, with 

sufficient averaging the right term becomes zero, leaving the signal-boosted Fourier class 

average 

 



 
. 

(1.28) 

 

This demonstrates that basic averaging can be understood to cancel the effects of noise in 

Fourier space, thereby facilitating the recovery of the true signal, Φ(s,θ). The convoluting 

influence of variable CTF and envelope functions as seen in Eq. 1.28 must be accounted 

for by other means, which will be elaborated upon later.  

 

This concludes the theory of image formation in electron microscopy. The most 

significant result presented in this section has been Eq. 1.25, which is the most 

fundamental description of SPA data, and will be the basis for various image processing 

tools introduced in the following sections.   

 

1.4 Important image processing concepts in single particle analysis 

 

1.4.1 The rotationally averaged power spectrum and the contrast transfer, envelope, 

and noise functions 

 

Generating the rotationally averaged power spectrum is a widely used technique that 

facilitates estimation of parameters for the CTF (C(s)), the envelope function (E(s)) and 

the noise component (N(s,θ)) of the image as defined above in Eq. 1.25 above. To 

proceed we first introduce the simplifying notation M(s,θ) = F{Iγ,e,n(r)} to denote the 

Fourier transform of the measured image on the objective lens back focal plane of the 

electron microscope (Fig. 1.4A5). The rotationally averaged power spectrum of electron 

microscopy image data, denoted M2(s), is formulated as a rotational integral and defined 

as 

 

 
, 

(1.29) 

 



 
. 

(1.30) 

 

Here the |.| notation denotes the amplitude of the complex number, which is obtained by 

taking the square root of the product of the complex number and its conjugate. The 

amplitude is thus a real (non complex) number. The squared amplitude is by definition 

the power of the Fourier component. To simplify Eq. 1.30 we first expand the integral to 

write  

 

 

 

(1.31) 

 

Here the  symbol denotes complex conjugate. It can be assumed that the complex 

vector cross terms between the noise component (N(s,θ)) and the (power) profile of the 

particle structure factor  Φ(s,θ) go to zero with sufficient averaging. This is based on the 

assumption that noise in the electron microscope contributes independently of true signal, 

or in other words, is incoherent with respect to the beam’s interaction with the specimen. 

Thus Eq. 1.29 becomes 
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(1.32) 

 

or more simply, 

 

 . (1.33) 

 

Eq. 1.33 makes use of the simplifying notation  which describes 

the (power) profile of the particle structure factor  (Φ(s,θ)) and  



which  is the rotational of average of the noise power spectrum. The contribution of the 

noise is difficult to characterize and is modeled in practice using functions similar to that 

presented in Eq. 1.26.  Also, the arbitrary scaling factor 1/2π has been removed for 

simplicity.  

 

Rotationally averaged power spectra are utilized extensively by procedures designed to 

facilitate the estimation of the parameters of the C(s), E(s) and N2(s) functions (Mallick et 

al., 2005; Mindell and Grigorieff, 2003; Zhu et al., 1997), regardless of whether they are 

manual or automated. However, on their own, the power spectra of individual (or cropped 

portions of) images generally contain insufficient information to elucidate any useful 

information. This is demonstrated in Fig. 1.10A&B, which depict rotationally averaged 

power spectra generated from the inset small boxed images of GroEL. Both of the images 

in Fig. 1.10A&B are taken from the same micrograph and therefore, in the absence of 

specimen tilt and variable ice thickness, may be assumed to be imaged under identical 

conditions. Therefore, both power spectra (Fig. 1.10A&B) should reveal the same 

functional form of the CTF, envelope and noise function. However due to the inherent 

lack of detail in these spectra, the estimation of the associated imaging parameters is 

practically impossible and alternative methods are required.  

 

 
Figure 1. 5. The rotationally averaged power spectrum. A & B. Rotationally averaged power spectrum 
of inset images. C. Averaged rotationally averaged power of a large (100 particle) data set (example images 
shown inset. The dashed red box shows the region of the averaged power spectrum where the first CTF 
maximum can be observed. 
 

It is well known that coherently averaging the power spectra (M2(s)) generated from 

many individual subregions of the same micrograph (i.e., many boxed particles or 

consecutively boxed image subregions) will simplify the process of obtaining estimates 



of the parameters governing the C(s), E(s) and N2(s) functions. The averaging of many 

different profiles, resulting in the average profile , can be described mathematical 

as 

 

 
. 

(1.34) 

 

Here Mi(s,θ) is understood to mean ith subfiled or cropped portion of an electron 

micrograph (M). This is precisely the approach used in popular SPA software such as 

FREALIGN (Grigorieff, 2007) , SPIDER (Frank et al., 1996) and EMAN (Ludtke et al., 

1999), which utilize Eq. 1.34 for the purposes of generating accurate power spectra that 

facilitate the determination of parameters governing C(s), E(s) and N2(s). Automated 

algorithms that achieve these ends are often based on the fact that the zero crossings of 

the CTF in the averaged rotational power spectrum must coincide with the background 

noise profile (Huang et al., 2003; Mallick et al., 2005; Mindell and Grigorieff, 2003). An 

example of an averaged rotational power spectrum is shown in Fig. 1.10C, which is 

generated from the average of the power spectra of approximately 100 particle images 

taken from the same micrograph used in Fig. 1.10A&B. Data shown in Fig. 1.10C is 

typical of cryo-EM and in the context of Fig. 1.10A&B, where the form of the CTF is 

clearly ambiguous, which demonstrates the utility of rotational power spectrum averaging 

concept.  

 

In practice, the approach used for the determination of these parameters is strongly 

dependent the SPA software being used. Furthermore, the parameters determined are 

generally not transferable between separate software packages. This is a consequence of 

the unique SPA reconstruction approaches embodied in the competing software packages 

currently used, but which may be overcome in the near future if common conventions are 

adopted (Heymann et al., 2005) and/or unifying software projects are initiated (Hohn et 

al., 2007). 

 



1.4.2 The absolute signal to noise ratio and its effect on projected resolution 
 

In addition to providing the basis for CTF, envelope and noise parameter determination, 

the power spectrum provides a means to generate the absolute SNR metric, which in turn 

is used to estimate the maximum recoverable resolution from a given particle data set.  

This directly influences the resolution of the final 3D reconstruction and provides a guide 

for the user to estimate maximal attainable resolution. The SNR is a function of spatial 

frequency, defined in terms of the rotationally averaged power spectrum and can 

described as 
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(1.35) 

 

In accordance with the concept of SNR, the definition supplied in Eq. 1.35 reflects the 

ratio of the strength of the signal (numerator) to the strength of the noise (denominator). 

This expression can be evaluated in two ways: If the parameters of the functions C, E, N2 

and Φ2 are known or approximated; or if the noise profile N2 has been modeled it can be 

subtracted directly from the measured power spectrum of the data (M2) (right side, Eq. 

1.35) to obtain a direct estimate of the power of the signal. This latter approach is the 

simplest and most direct method for estimated the SNR. In either case the parameters of 

C, E, N2, or M2 are approximated using power spectrum techniques as described above. 

The unknown structure factor Φ can be difficult to approximate. The process of doing so 

is generally based on the fact that the power spectrum is dominated in the low frequency 

domain by the structure factor itself, as revealed in Fig. 1.10 and the fact that the 

approximating structure factor profile  can be separated from the power 

spectrum defined in Eq. 1.33 using simple algebra, as expressed in Eq. 1.36.  

 

 
. 

(1.36) 

 



It should be understood that any inaccuracies in defining the CTF, envelope and noise 

functions will reduce the accuracy of the approximated structure factor. To improve 

accuracy, the structure factor profile of the macromolecule being studied should be 

extrapolated and averaged using at least several micrographs imaged at varying degrees 

of defocus, based on Eq. 1.36.  This technique will yield a structure factor estimate 

sufficiently accurate on the Fourier interval 1/0 Å (the Fourier origin which has no 

frequency) to 1/25 Å.  Because the high resolution structure information is difficult to 

resolve from noise in the cryo-EM data, the extrapolated structure factor profile 

generated is generally merged with the high resolution component of a previously solved 

protein structure at the nominal low resolution cut off (i.e. 1/25 Å ). This is based on the 

loose assumption that, when comparing two independent structure factors from two 

different molecules, most variation will be observed in the low frequency domain. The 

merged structure factor can then be used as the basis for the SNR estimation, the Wiener 

filtering operation (which requires a structure factor estimate, see above), and has been 

used in the reconstructions of various models at subnanometer resolutions using SPA 

(Booth et al., 2004; Ludtke et al., 2005; Menetret et al., 2005). 

 

Similar to the approach espoused in Section 1.4.1, an improved estimate of the SNR in a 

given micrograph can be arrived at using the incoherently averaged power spectra of 

many cropped particles, as described in Eq. 1.34. This leads to an adapted form of the 

SNR given by the formula 

 

 
, 

(1.37) 

 

where is determined according to Eq. 1.34. This is a more effective means of 

determining the SNR of a data set as the averaging procedure reduces the error of the 

estimate. As an example, the power spectrum of the data shown in Fig. 1.10C is shown in 

Fig. 1.11A, but with the noise profile N2(s) modeled (red line). The corresponding SNR 

profile is shown in Fig. 1.11B which is calculated using Eq. 1.37, and shows how the 



SNR profile is relatively strong at low frequencies but rapidly approaches values near to 

zero. 

 

 
Figure 1. 6. Interpreting the rotationally averaged power spectrum. A. Rotationally averaged power 
spectrum as shown in Fig. 1.10C but with modeled noise profile and inset zoom in on subregion where the 
first CTF maximum can be observed. B. The SNR profile of the data generated from A. C. Zoom in 
focusing on the SNR profile in B so that the point of intersection with the 0,05 and 0.02 cutoffs can be 
observed. 
 

The absolute SNR can be used to estimate the achievable resolution in a given single 

particle experiment (Saad et al., 2001; Thuman-Commike et al., 1999). At present the 

nominal SNR recoverable by SPA software packages is approximately 0.05. This was 

confirmed in the context of the EMAN software package (Ludtke et al., 1999) that 

reconstructed an artificially generated test data set to a resolution of 1/4 Ǻ  (Ludtke et al., 

1999), at which point the SNR was approximately 0.05. The article also claimed that, 

very broadly, an SNR of 0.02 is recoverable in the context of the EMAN package 

(Ludtke et al., 1999). Given these parameters it is reasonable to estimate that the GroEL 

data (shown pictorially in Fig. 1.11C) contains sufficient signal to reveal molecular detail 

to 1/11 Ǻ  using the 0.05 SNR cutoff, as shown in Fig. 1.11C. If this cutoff is relaxed to 

0.02 the same data could potentially yield structural information at 1/10 Ǻ  (green dashed 

line, Fig. 1.11C). 

 

At high resolution the most significant influences on SNR are the envelope function E(s) 

and the structure factor Φ(s) (Eq.  1.36). If the envelope function is overly dampening, for 

instance as a result of relative large defocus settings or low microscope operating voltage, 

the SNR will diminish rapidly and the projected resolution of the final 3D model will be 

limited. It is also important to note the influence of the structure factor itself. For 



example, if this macromolecular structure itself contains comparatively little information 

at high resolution the problem of revealing fine detail will be further exacerbated. This 

problem is compounded by that fact that in most SPA experimental conditions the 

structure factor is unknown to begin with. Indeed, recovery of the structure factor is 

precisely the aim of the SPA experiment. In either of these potentially resolution limited 

scenarios, and in the absence of any significant algorithmic advances, the simplest 

strategy is to increase the total number particle images used in the experiment. 

 

1.4.3 Wiener filtering 
 

Wiener filtering is a Fourier based image processing technique for recovering signal from 

noisy data. In an ideal SPA situation (i.e. in the absence of noise) the original signal can 

be recovered from the measured signal by performing a simple deconvolution in Fourier 

space, which can be expressed as 

 

 
. 

(1.38) 

 

Here Φrecovered(s) denotes the deconvoluted (recovered) image. Note that in the presence 

of zeros in the CTF function this deconvolution process will fail to yield the true 

projection image Φ(s), due to the loss of information at these radial frequency ranges. In 

the presence of noise, the operations defined in Eq. 1.38 will cause noise amplification, 

especially at high spatial resolutions where the signal is weak. This motivates the 

derivation of the Wiener filter, a Fourier based filter designed specifically for data 

recovery from noise corrupted signals. We seek an optimal deconvolution operation of 

the form 

 

 , (1.39) 

 



where W(s,θ) is the unknown Wiener filter and  is the filtered, output 

approximation of the true signal, such that 

 

 
 

(1.40) 

 

is minimized in the least squares sense.  

 

The orthogonality principle dictates that the error vector corresponding to the optimum 

vector  should be perpendicular to Φ(s,θ), that is 

 

 . (1.41) 

 

Evaluating Eq. 1.41 in detail reveals the functional form of the optimal Wiener filter 

which is may be stated as  

 

 
, 

(1.42) 

 

 . (1.43) 

 

Here we have introduced the polar (absolute) SNR defined as 

 

 
. 

(1.44) 

 

Eq. 1.43 is a concise description of the optimal Wiener filter which minimizes the 

difference between the estimated and true signal, based on the assumption that the SNR 

can be approximated. Wiener filters, in various forms, are applied extensively in SPA 



software packages such as SPIDER (Penczek et al., 1997), FREALIGN (Grigorieff, 

2007) and EMAN (Ludtke and Chiu, 2002). The main difficulty in applying a Wiener 

filter in signal processing is that, in general, the SNR (defined in Eq. 1.44) can not be 

estimated because the structure factor Φ(s,θ) is unknown and the noise function N(s,θ) is 

random. In practice this makes Wieners filters dependent on estimated SNR.  

 

 
Figure 1. 7. Wiener filtering. This figure depicts typical results obtained by the Wiener filtering operation. 
The results shown here are applied to synthetic data.   The top row depicts pure projection images as yet 
uncorrupted by the electron microscope imaging system. The middle row depicts the results of applying 
typical CTF, envelope distortions and adding background noise to the projections shown in the top row 
(parameters shown). The bottom row depicts the output of the Wiener filtering option as defined in Eq. 
1.42, determined by using estimates of structure factor amplitudes from x-ray measurements in a beam line 
synchrotron. 
 

It is however possible to obtain estimates of the average 2D profiles Φ2(s) and N2(s) using 

the rotationally averaged power spectrum of many raw data sets, as described in Section 

1.4.2. Thus, the SNR defined in Eq. 1.44 can be approximated using the formula 

 

 
. 

(1.45) 

 

In Eq. 1.45 the noise profile is defined according to Eq. 1.26 and the (power) structure 

factor can estimated using techniques described in Section 1.4.2, or by measuring the 

structure factor directly for example by using a synchrotron beamline.  An example of 

Wiener filtering applied to synthesized data using the SNR approximation embodied in 



Eq. 1.45 is shown in Fig. 1.12, using the known GroEL structure factor (Ludtke et al., 

2004).  

 

The use of structure factor estimates from x-ray measurements using a synchrotron has 

been proposed for use in conjunction with SPA software for many years now (Ludtke et 

al., 2001; Saad et al., 2001; Thuman-Commike et al., 1999; Zhou and Chiu, 2003). 

Indeed, such an approach was utilized to reconstruct GroEL at the benchmark resolution 

of 6 Å (Ludtke et al., 2004). 

 

1.4.4 The singular value decomposition in single particle analysis 
 

The Singular Value Decomposition (SVD) is a useful mathematical concept that allows 

the analysis of intrinsic, mutual variation in an arbitrary data set, such as a set of boxed 

particle images used in SPA. This intrinsic variation is identified based on a mathematical 

technique for generating a set of orthogonal basis vectors/images that literally point in the 

direction of the most significant underlying data variation of the image data, in a high-

dimensional space.  This section will explore the mathematics of the SVD, and describe 

how it is utilized in by SPA software packages. 

 

Let the data set being studied consist of n boxed particle images, each of l x k pixel 

dimensions, and consisting of a total of l x k = m pixels.  The SVD theorem states that, 

given A, a real n by m matrix, then there exists orthogonal matrices  and 

such that 

 

  (1.46) 

 

where 

 

  (1.47) 

 



and 

 

 . (1.48) 

 

Here the values σi are referred to as the singular values of A, which are positive and non 

zero for all i.  In the special case where n = m (and matrix A is non singular), the SVD is 

precisely the eigenvalue decomposition. The SVD reveals a great deal about the 

underlying nature of the data in the matrix A. For instance, the number r is the rank of A. 

In addition the span of the column vectors [u1,…,ur] is the range of A, and the span of the 

column vectors [vr+1,…,vn] is the null space of A (Golub and van Loan, 1996). 

 

In image processing applications the data are most often placed into the columns of A. 

That is, the data in each 2D image is instead treated as a one dimensional (1D) vector of 

length m and arranged side by side in the matrix A. This concept is depicted in Fig. 1.13. 

Indeed, Subsequently the SVD is calculated using standard numerical techniques (Golub 

and van Loan, 1996), which directly generate the matrices U, D and V (Golub and van 

Loan, 1996). In image processing the columns of the matrix U have particular 

significance, and are referred to as the eigenimages of that data set. SVD-based analysis 

can be utilized as the basis of particle classification schemes at various stages in 3D 

reconstruction procedures in different software packages (Chen et al., 2006; Frank et al., 

1996; van Heel et al., 2000).  

 

As revealed by Eq. 1.46 and Fig. 1.13, each individual image in A is a linear combination 

of the so called eigenimages (the columns of U). The eigenimages are scaled linearly by 

the singular values of the matrix D and the corresponding coordinates values in the 

(orthogonal, coordinate) rows of V to yield each unique input image in the columns of the 

matrix A. More precisely, the image aj in the jth column of the input matrix A may be 

expressed as 

 



 
Figure 1. 8. The SVD applied to particle data analysis. This figure depicts how Eq. 1.46 can be 
interpreted in terms of particle data set as generated by SPA. The matrix A consists of the particle images 
arranged into columns (shown). After application the SVD the matrices U, D and V will be generated. The 
matrix U will contain the so called eigenimages which reflect the intrinsic variation of the data set. The 
matrices D and V having different but equally important interpretations (see text for details). 
 

 
. 

(1.49) 

 

This concept is described graphically in Fig.1.14. As the matrix V is orthogonal each vj 

must be precisely of length 1.  Therefore, the singular values σi and the eigenimages uj 

uniquely define a solution bounding hyperellipsoid, the surface of which contains all 

possible permutations of the matrix vector product Ax, for all permutations of x of 

(vector) length 1. All particle images stored in the matrix A will coincide precisely with 

this hyperelliptic surface. 

In SPA the SVD is often used in conjunction with k-means classification (Frank, 1996) or 

the so called hierarchical ascendant classification (HAC) scheme (van Heel et al., 2000), 

both of which use clustering algorithms that group particles according to their spatial 

distribution in eigenimage ‘correlation-score’ space (or similar). More specifically, SVD 

can be performed using an entire (potentially massive) particle data set to yield basis 

(eigen) images as shown by example in Fig. 1.14 (denoted uj).  Following this, the 

similarity exhibiting between each raw particle image and each basis image can then be 

evaluated (for instance, using correlation techniques) yielding a set of similarity metrics 

for each raw particle. According to the (set of) similarities exhibited by each image to the 



bases, particles can then be grouped in self similar classes and averaged to produce signal 

boosted projection image reflecting the intrinsic variation in the data set. Because 

variation is strongly dependent on Euler orientation, this process will generally yield 

projection views of the particle in various orientations, as shown in Fig. 1.15. Such 

approaches can be used to for generating the initial model in the iterative 3D 

reconstruction procedure or alternatively for evaluating data set heterogeneity (Chen et 

al., 2006). 

 

 
Figure 1. 9. Interpreting the SVD. Each of the particles in the SPA data set (arranged in the columns of 
A) can be interpreted as a linear combination of the eigenimages. The way in the which the eigenimages 
sum to give the specific particle image is dependent on the contents of the row vectors of V, which are 
sometimes called the  eigencoordinates and which are, by definition, of length 1. The extent to which any 
eigenimage can contribute towards the photometric densities in a given particle image is limited by the 
diagonal entries of D, which conceptually define the boundaries of a hyperellipsoid in eigenspace where the 
axes of this hyperellipsoid are the eigenimages themselves, and all particles images are incident with its 
surface. 
 

 



 
Figure 1. 10. SVD-based class average generation. Classes are generated using k-means classification 
based on exhibited similarities to eigenimage basis, which are produced by the application of the SVD. 
 


