
EMAN2.12 - Tutorial 2
Dealing with Structural or Conformational Variability in Single

Particle Analysis
For the 2015 workshop our intent was to have multiple software package developers all apply
their standard techniques to a specimen exhibiting variability. It was a challenge to identify a
data set with enough variability in a small number of particles to be suitable for use with laptops
at a workshop. Eventually we settled on a ribosome data set Joachim Frank's group made
publicly available over a decade ago. While this is not a high resolution data set by any stretch
of the imagination, variable data sets rarely are. This data set consists of 10,000 particles, 1/2 of
which have a bound EF-G, and 1/2 which don't. Other variabilities also exist within the set,
however, the box size is MUCH smaller than it should be for proper CTF processing, and
violates EMAN2's requirements. Part of this project is an illustration of how to best handle
situations like this.

The issues with this data are:
- box size much too small
- preferred orientation
- defocus groups rather than individual micrographs
- In theory only 2 states, but… (as a test set, that could be viewed as a positive)

EMAN2.1 has a significant number of different programs designed explicitly to explore
heterogeneity. While the test data set is small and can be downsampled, most of the 3-D
methods for studying heterogeneity would require hours on a laptop computer, which is more
time than we have in the workshop. So, in this instance, we are providing a folder where a range
of different methods have been applied to resolve a known variability within a Ribosome/SecY
data set. Below is a discussion of how some of these methods might be applied. The methods
themselves are described in a new manuscript in Methods in Enzymology:
http://www.sciencedirect.com/science/article/pii/S0076687916300362

Step 1 - Canonical procedures
We won’t describe these procedures in detail here. Before attempting heterogeneity analysis it
is expected that you have performed a canonical single particle refinement, treating the data as
if it were homogeneous. While a few methods, such as 2-D variability analysis are possible
without a full reconstruction (as some data sets are so heterogeneous it isn’t possible to get a
single meaningful reconstruction), most methods use a 3D refinement as a starting point.

So, step 1, go through the normal single particle analysis tutorial and get a refinement. High
resolution is not necessary.

Step 2 - CHOICES
We probably won't have time to go down any of these paths at the workshop, but when you get
back home, you can try some of these other heterogeneity analysis methods.

Method 2.1 - Variance Analysis on the single model refinement
In this paper:
Zhang, W., Kimmel, M., Spahn, C.M., and Penczek, P.A. (2008). Heterogeneity of large
macromolecular complexes revealed by 3D cryo-EM variance analysis. Structure. 16:1770-76.

Penczek’s group introduced the concept of performing variance analysis to CryoEM maps, to
identify which regions of the map were more/less reliable, and/or where there might be motion
or other variability in the underlying data. This is not a local resolution estimator like ResMap
produces, but rather is a method for essentially putting an error bar on each voxel of your final
reconstruction.

EMAN2.1’s implementation of this method performs bootstrapping on class averages rather
than directly on the 3-D model, but in a later paper, Penczek’s group found that the original
method needed to take into account the anisotropic particle orientation distribution and came up
with a very complicated method to accomplish this. The EMAN implementation accomplishes
the same goal through class-based bootstrapping and thus should produce very reliable results.

• This program is called e2refinevariance.py, and has not yet (due to a forgetful faculty member)
been added to the projectmanager. So you will need to run it from the command-line.

• You must have a complete refinement from step 5 to run this program (refine_XX folder)
• give it the following options:

• --path refine_XX (an existing complete refine_easy result)
• --apix 5.62 (or 2.82 if you used the full data)
• --mass 3000
• --input <particle stack based on refine_XX input>

• You cannot low-pass filter the results of a variance calculation, so if you want to look for
low-resolution variability specifically, you must filter the input data before running the
program.

• --nmodels 100 (the number of bootstrap volumes to generate, to get a useful variance I
suggest at least 40-50)

• --iteration YY (the iteration number within refine_XX to produce the variance of)
• --keep3d (this will keep all 100 bootstrap volumes. A lot of disk space, but if you need to

tweak some parameters, can use later with --volfiles)
• --threads and --parallel as usual

Put this together and we get something like:
e2refinevariance.py --path refine_05 --apix 5.62 --mass 3000 --input sets/
all__ctf_flip_small.lst --nmodels 100 --keep3d --iteration 3 --threads 4 --parallel thread:4

The results will appear in a new folder called refinevar_QQ

Method 2.2 - Traditional multi-reference refinement

This is, is the "traditional" multi-model refinement concept. Say in a normal 3-D refinement of
some particle you would generate M different projections of that structure when trying to
determine its orientation. You now also have N different 3-D references, so you make
projections of each in the same set of projection directions, giving a total of N*M different
projections. For each individual particle you now have to decide not only which of the M
orientations its in, but also which of the N references it best matches. This classification leads to
having N sets of M classes each, leading to N different reconstructions. Each of these then
becomes a reference for the next round of refinement, and things proceed almost exactly as
they do in normal single particle analysis.

This general concept is available in virtually any of the available software packages which
support heterogeneous particle analysis, often with subtle variations in each.

➡ I have heard comments sometimes from people saying “I ran a 3-way alignment in Relion,
then I ran one in EMAN2.1, and I liked Relion’s results better”. Is this true? How can you make
value judgements like this? I believe the most common cause of this statement is actually due
to a mistake in EMAN usage, and one that I may have actually promulgated in the past.
Consider:
➡ In the normal single particle analysis tutorial, I describe how the iterative class-averaging

process permits EMAN refinements to converge in many fewer cycles than most other
software packages. In packages like Relion and Frealign, it is quite common to run for 20-30
cycles before converging. Iterative class averaging means EMAN typically only requires ~4
iterations to achieve the same level of convergence.

➡ Can we make the same argument for multi-reference refinement? NO! While iterative
class-averaging remains a useful thing to do, it does not make multi-model refinement
converge any faster. In Relion, it runs 25 cycles when splitting a data set among multiple
models! In EMAN, if you are seeding the process with a random particle distribution you may
need to run quite a few iterations to come to convergence, many more than the typical 4
used for single model refinements (though 25 may be overkill). This, I believe is the greatest
cause for this misperception when comparing the packages. Note also that EMAN has a
variety of other heterogeneity resolving methods which are much less computationally
demanding!

To perform simple multi model refinement, in the projectmanager:
• 3D Refinement → Multiple Map Refinement OR Multireference Data separation
➡The rest of the description focuses on the first option. The second option performs a single

pass on the data, and relies on the alignment parameters from an existing single-model
refinement to classify the data. It is very fast, but the two reference maps must be highly
accurate.

• The multimodel refinement needs to be seeded with N different inputs to produce N different
outputs. If the inputs are identical, then there is no way to separate them, so there are
several mutually exclusive ways to do this:
1. Provide N different volumes from some other source (like one of the other heterogeneity

analysis methods discussed below). To do this, enter a comma-separated list of the
filenames in the models text box. Do not fill in anything above this in the GUI in this
case.

2. Provide a single reference volume (specified in the model text box), then one of:
2.1. mapfragment - automatically segment the single map, then generate N different

volumes with a random segment excluded from each.
2.2. randclassify - in the first round, each particle is randomly assigned to a different class

(similar to what Relion does, I believe). This option is probably the least biased
2.3. randphase - The volume is phase-randomized N times beyond some automatic

resolution to produce N different seeds
• nmodels is only specified with option 2 above. With option 1, the number of models is the

same as the number of provided models
• input - The particles to refine. As with normal single particle refinement, this is one of the

sets/*lst files. This MUST be a .lst file to work properly, and the particles must be phase-
flipped.

• targetres - Similar to the option in e2refine_easy. However, if you are trying to perform
coarse classification, this has little to do with the final resolution you want to achieve. It has
more to do with the level of detail at which you expect to see differences. So, for something
like the current ribosome example, I suggest a value of 15 or 20 Å.

• sym - c1 (no symmetry)
• mass - 3000
• iter - 10 (see the discussion above, you may find you need even larger numbers for subtle

variations, but 10 is usually more than enough for big, discrete changes)
• apix - Unlike e2refine_easy, at the moment, this is required. If you use the data

downsampled by 2 (you probably should) enter 5.64
• fill in parallel and threads as usual. If you want to run on a cluster, go to the command tab,

copy the command out, and run on a cluster as described:
http://blake.bcm.edu/emanwiki/EMAN2/Parallel/Mpi

• defaults should be fine for the other options. For a single computer: Launch

After this finishes running (will take quite a bit longer than normal refinement):
• Results will be in a folder called multi_XX
• Note that e2refinemulti does produce a report/ folder, like e2refine_easy, but at the moment,

this functionality has not been completed for e2refinemulti. Don’t even bother looking at it for
now. At some point we will fix this…

• The final results are in multi_XX/threed_YY_ZZ.hdf
• Each time you run e2refinemulti in the project XX is increased by 1
• YY is the iteration number. ie - if you tell it to run 10 iterations, you should be looking at

YY=10
• ZZ is the reference number. There should be N of these matching the number of starting

models.
• multi_XX/fsc_mutual_avg_YY.txt contain averaged FSC curves computed among the different

maps in each iteration. Unlike all of the other refinements we’ve done, these FSC curves are
expected to get worse as we refine. As the models gradually diverge from one another, as you
expect, agreement becomes worse.

• If the refinement runs to completion, you will also magically see new sets appear, with names
like:
• all__ctf_flip_small-lst_mulXX_itYY_mZ.lst
• XX is the name of the multi_XX folder
• YY is the iteration number in that folder
• Z is the number of the model
• These sets contain the particles associated with each of the N final maps at the end of the

multi-model refinement, but they are only created if e2refinemulti runs to completion

• Once you have completed the multi-model refinement it is CRITICAL that you not just trust
these results as they are. There has been no “gold standard” or equivalent methodology to get
rid of model bias (this is also true in Relion!). At this point you MUST take these structures and
confirm that you are seeing reality not fantasy. This is usually accomplished in a couple of
stages:
• First, you need to run a normal e2refine_easy on the particles extracted for each

subpopulation. That is why the new sets/*lst files are produced for you, so you can do this.
For this task you have a choice of what to use as an initial model for each of these
refinements. For this initial run, it is fine to use the final outputs in multi_XX as initial models.
This run will give you some resolution estimates, etc. If these e2refine_easy commands give

http://blake.bcm.edu/emanwiki/EMAN2/Parallel/Mpi

you better resolution than the refinement you did above in step 5, that is a good sign, as it
indicates the particle subpopulation has sufficiently improved homogeneity to produce a
higher resolution.

• Next, we need to insure that these subpopulations are fairly robust. An excellent way to do
this is by cross-validation. The idea is to take one of the particle populations we just used,
and refine it, not against the map that was used to produce it, but against one of the other
maps from multi_XX. ie - in the previous step we refined all__ctf_flip_small-
lst_mulXX_itYY_m1.lst against multi_XX/threed_YY_01.hdf, NOW we want to refine the
same data using multi_XX/threed_YY_02.hdf (for example) as a starting model. If these new
refinements produce maps that look like the particle data, then you have a robust population
and you can be moderately more confident that your data separation is valid. However, if the
refined map looks more like the threed file you used as a starting model, then your results
are likely due to model bias, not a useful classification of your data.

• Note that you can also take the final sets derived from e2refinemult as inputs to another run of
e2refinemulti to build up a hierarchy of split data sets.

Method 2.3 - Robust data splitting into 2 populations
Let us say that you are performing a ligand binding experiment or some other experiment where
you expect the data to fall into 2 discrete classes. While e2refinemulti can give a very
respectable result in these cases, just as there is some orientation uncertainty for each particle,
there can also be a substantial classification uncertainty. In 6.2 at the end we tried to make sure
that our split particle populations were robust. While this should be true on average, on a per-
particle basis there will still be a significant number of incorrectly classified individual particles.

To have completely accurate classification between the models there must be sufficient
information in each individual particle image to make the decision between maps. If the ligand in
question is small, very often noise and other perturbations will be strong enough to make this
per-particle classification at least somewhat inaccurate.
e2classifyligand performs a much more focused process specifically to classify particles. The
program takes 2 reference volumes as input, which should at least weakly represent liganded
and unliganded populations. The program uses the difference between these references to
identify a mask where the most important ligand information exists in 3-D. It then takes an
existing single-model refinement (step 5 above), and “carefully” subtracts a projection of the
map from each particle (including CTF and other information) then 2-D masks the result, and
finally classifies the particle based on this information. More about its usage will be documented
here (as soon as I can find or regenerate the material):

http://blake.bcm.edu/emanwiki/EMAN2/Programs/e2classifyligand

Method 2.4 - Split a single model refinement into 2 using 2-D PCA
This is a very new method, which has not yet been published. It is still experimental. That said, it
can very quickly split a single 3-D refinement into 2 subvolumes, based on PCA applied to each
individual orientation in 2-D. It then uses what I believe is a novel method to group the PCA-split
class-averages into 2 different 3-D maps. That is, you can provide this method with the results
of a single model refinement (again, step 5), and it will produce 2 maps as output with no other
information. I will document how this procedure works in a manuscript soon. For now, I simply
encourage you to give it a try and see what you get. Typically I would take the results of this
method, and use the 2 resulting maps as inputs to e2refinemulti or e2classifyligand.

http://blake.bcm.edu/emanwiki/EMAN2/Programs/e2classifyligand

• 3D Refinement → Split map into two subgroups
• path = refine_XX
• parallel = (standard option)

• The results of this splitting operation will be put directly in the refine_XX folder:
• threed_YY_split.hdf (contains the 2 output volumes in an HDF stack)
• classes_YY_split0.hdf and classes_YY_split1.hdf
• sets/split_XX_0.lst and sets/split_XX_1.lst

I would suggest running the program, then looking at the resulting threed_YY_split file to see if
you observe a biologically interesting change. If you see something that looks interesting, it is
important to follow up with either an e2refine_multi, or at least an e2refine_easy using the split
particle sets.

Method 2.5 - Breaking the symmetry of a pseudosymmetric structure
This method is a bit of an outlier. It doesn’t target heterogeneity per-se. Rather it considers the
problem of structures with pseudosymmetries. For example, an icosahedral virus particle with
one unique vertex (typically a portal complex) is generally treated with icosahedral symmetry to
achieve a high resolution reconstruction. Of course, this is nonsense. It is averaging the unique
vertex into all of the others and producing some sort of hybrid average. Nonetheless, one can
often achieve very nice high resolution structures of the capsid ‘on average’ this way. To go from
this to an asymmetric structure can be best accomplished by making use of our existing
knowledge of the orientation of the particle within the asymmetric unit.

In e2refine_easy, there is a checkbox called “breaksym”. If you check this box, the final map it
produces will be an asymmetric map, rather than one with the specified symmetry imposed.
During refinement it will make use of the specified symmetry, so the initial model must be
aligned to the standard orientation of the symmetry axes. Once it determines the orientation of
each particle assuming the specified symmetry it then performs an independent search for
which asymmetric unit the particle fits into. The final reconstruction will then have broken
symmetry, and the particle orientations will cover the full unit hemisphere.

Method 2.6 - Extracting components of individual particles for independent processing
While ‘focused classification’, ie - using a mask in conjunction with multi-model refinement, is a
powerful technique, there are cases with large amounts of flexibility where this method is
insufficient. As one very simple example, consider an ostensibly symmetric particle like GroEL
with 14 copies of each monomer. Each of these monomers is undergoing some flexible motion
independently in solution. In the apical domain this may be as large as ~10 Å. To study
dynamics, we would like to look at the 14 monomers individually, rather than the aggregate
complex which has too much variability to subclassify.

We have a program based on a method developed in ~2005 in EMAN1 to extract individual
monomers or other components of larger particles for independent analysis. The program is
called e2extractsubparticles.py.

I’m not quite ready to describe this program in detail here, but if this sounds like something you
are interested in trying, contact me (sludtke@bcm.edu), and I will give you the necessary details
to try it. Eventually it will become part of this tutorial as it evolves.

mailto:sludtke@bcm.edu

