
EMAN2.3 Reconstruction Tutorial
Using the Project Manager

This tutorial was updated in December, 2019. It should not be used with versions of EMAN2 older 
than EMAN2.31. 
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➡ Boxes like this one will contain additional information and tips. You can complete the tutorial 
without reading any of these, but they may help you better understand what you are doing. 

➡ The main source for EMAN2 documentation is the Wiki at: http://eman2.org . There is also a 
Google Group for support and discussions: http://groups.google.com/group/eman2 . Anyone 
can read/search these sites, you only need to join if you want to post. 

➡ GUI Tips: EMAN2 will work best with a 3-button scroll mouse, though there are alternatives 
using keyboard modifiers for one button mice or trackpads on Macs. 
• In most EMAN2 windows (2-D images, 3-D volumes, plots, etc.), the middle mouse button 

will open a control panel for the widget, which is different for each widget type 
• The right mouse button is used for panning in 2-D or 3-D image windows, and can be used 

to zoom (by shift+dragging), and to reset the zoom (clicking) in plot windows. 
• The scroll-wheel will generally act as a zoom. control-panel for more precise control 
• If you have a one button mouse or trackpad, holding down the alt/option key combined with 

a mouse click will serve the same role as a middle-click.  
• In the control panels, and other places in the EMAN2 interface you may encounter ‘Value 

Sliders’. A slider is attached to a text-box with a number in it. Dragging the slider controls the 
number, and entering a number will change the slider. In addition, the text-box can be used 
to control the range of the slider and get more precise control. By typing <value or >value in 
the text box you can change the limits of the slider.  

➡ Text you see in italics will generally refer to labels in the GUI, such as buttons to press. Text 
you see in bold, are commands to be typed in. Items like: <param> are parameters you 
should fill in (without the < >). Items like: [param] are optional parameters (again, fill without 
the [ ]). 

➡ Check your version:  The command e2version.py will tell you exactly what version of EMAN 
you are using. When reporting bugs or asking questions on the mailing list it is critical to 
include all of the lines of the output of this program with your question.

➡ Mac Laptops - If you have a Retina display (most will nowadays), then you have a lot of 
control over the resolution of your display. By default, your display will give you an effective 
resolution of 1440x900 pixels. This isn’t enough space to do image processing well. For the 
workshop, we strongly suggest opening System Preferences-> Display and adjusting it to 
“More Space” which will be 1920x1200 effective resolution. 

➡ Windows users - Windows will make your life more difficult with EMAN2. If you have no 
choice but Windows, please remember that programs must be run from the windows 
command-line, not by clicking on icons. Installation of an ‘enhanced command-line’ tool for 
windows, such as Console 2.x, will make your life somewhat easier.

➡ Windows  likes to aggressively kill “unresponsive” programs. This means if you have asked 
EMAN2.2 to do something from the GUI, and it hasn’t finished yet, simply clicking on an open 
window while you wait may cause the whole program to be killed. We have no solution for 
this at present other than "don't do that".

http://eman2.org
http://groups.google.com/group/eman2
http://eman2.org
http://groups.google.com/group/eman2


Why EMAN2?

• Over 200 general purpose image processing algorithms (filters, masks, transformations,...)
• Simple pipeline for reliable refinements to near-atomic resolution
• Additional pipelines for

• Subtomogram averaging, with full CTF correction
• Structure validation (tilt validation, class-average/projection matching, etc.)
• Conformational and compositional hetereogeneity

• Reads and writes virtually every file format used in CryoEM
• A complete GUI workflow interface, with complete logging of all processing
• Wide range of GUI tools for 2-D plotting, image viewing and manipulation and 3-D rendering
• Complete pipeline for tomography and subnanometer resolution subtomogram averaging

There are now quite a few software packages available in the CryoEM community, and new users in 
this field are faced with a wide range choices. Larger packages like EMAN, SPIDER, XMIPP and 
BSOFT compete with the task-specific software like RELION, CISTEM and SIMPLE. Learning how to 
use the larger packages thoroughly can take a little more time than the simpler packages, however, 
they also offer a much wider range of analytical tools and image processing methods when you 
inevitably run into problems with your projects. 

For some fraction of projects, you could collect your data on a Krios with a K2 camera, process 
with RELION and achieve a self-consistent high resolution structure. However, what happens when 
this straightforward process fails to produce the expected result, or even worse, gives you a structure 
which turns out to be incorrect due to model bias or other problems? How do you detect the problem 
and correct it?  

This is where packages like EMAN2 shine. Like RELION, EMAN2 provides a simple guided 
path for single particle refinement to near-atomic resolution. Indeed, for "good" data sets it is easily 
demonstrable that EMAN2 and RELION produce virtually identical structures. However, EMAN2 also 
provides an extensive set of tools for validating the accuracy of your structure, and investigating what 
the problem is when, for example, you have a specimen with a large degree of conformational or 
compositional variability. EMAN2 includes at least 6 different methods for exploring different types of 
specimen variability, and a range of standard tools for insuring self-consistency between raw data and 
reconstruction.
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Introduction to the Tutorial 
EMAN2 can be used at many different levels ranging from high-level task-based workflow, to 
command-line utilities, to writing code in Python or C++. In this tutorial, we will be focusing primarily 
on the task-focused high-level Project Manager interface. This interface will help you work step-by-
step through established techniques such as single particle analysis and subtomogram averaging. 

We will be using a Beta Galactosidase data set for this tutorial. This data set is a subset of one of the 
data sets being used in the 2015 Map Challenge sponsored by the EMDatabank. The original paper 
published with this data achieved a resolution of 3.2 Å. While the full data set can be processed on a 
workstation in a day or two, it is a bit too much for a laptop in a one day tutorial. So, we will be using a 
subset of the data, which has been down-sampled for faster processing. Even the reduced data set 
used here is still capable of producing about 4 Å resolution, though the final refinement may be 
pushing the capabilities of some laptops.   

We strongly recommend going through this tutorial using the provided data set. Once you understand 
how everything is supposed to work, then you can use your own data or download additional public 
data sets from sites like http://www.ebi.ac.uk/pdbe/emdb/empiar/. The map challenge (http://
challenges.emdatabank.org/?q=2015_map_challenge) is another good source for interesting high 
resolution test data sets.

There are several important things this tutorial does not cover:

1) Movie mode processing
• This is very data and GPU intensive, so we are skipping it for the workshop. The relevant 

programs are:
• e2ddd_movie.py and e2ddd_particles.py 

2) Particle picking 
• There is (or will be) a separate tutorial on the website covering the new particle picking 

program, including the neural network-based picker. Again, this works best with a GPU, and 
takes more time than we have in this setting.

3) Tomography
• A big topic. There is a separate tutorial for this at http://eman2.org

4) Detailed Command-line usage
• I will mention this as I can during the presentations

5) EMAN with Python
• We have some decent recordings covering this online, there are also a few mini-tutorials on 

the Wiki. Please feel free to email the mailing list/google group any time for help. We cover this 
briefly in some of the workshops.

Check the Wiki (eman2.org) for other available tutorials, some of which include videos
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Time estimates are provided for most steps in the tutorial below. These estimates assume you 
are using a single quad-core ~3 Ghz computer.
➡ If you are an experienced user (or an impatient one), there is a much shorter ‘quick’ 

version of the tutorial without all of the detailed explanations, at the end of this document. 
The section numbering is the same in both versions, so you can move back and forth as 
necessary. ie- you can go through the short version, and if you don't understand 
something, jump back to the detailed version for more information. 

➡ The detailed tutorial also includes many useful comments and explanations for solving 
problems with your own data, not just the tutorial set.

➡ Note that files named __bispec in EMAN2.2 have been renamed __invar in EMAN2.3. The 
first time you run e2projectmanager in an EMAN2.2 project, it will (try) to update the 
naming convention in the appropriate files.

Detailed Tutorial
Before getting started, it's a good idea to get a feel for the relative speed of your computer (to set 
expectations). Run e2speedtest.py. This will give you a score telling you how fast a single processor 
is on your computer. If your machine has 4 cores, you multiply this number by 4 to get a total 
performance number. Note, however, that some processors have a 'turbo' mode, and if you are using 
only 1 processor (which is what the test does), it will run faster than if you are using 4 cores at once. 
This can exaggerate the speedtest score by as much as 30%. My 2018 MacBook Pro scores ~1.2 
(per core) on this test without turbo mode. 

1. Prepare your project folder

The tutorial files are distributed in a .zip file. Unzip the sample data archive in a convenient place. 
This will give you a folder called workshop_2016 (the data is the same as the EMAN 2.12 tutorial) 
with a folder called bgal inside it. Do not run any EMAN2 programs yet. First, from the command line: 
cd workshop_2016/bgal
The folder you are now in is called the ‘project folder’. You will run virtually all commands from this 
location. All files associated with this project exist in 
this folder or subfolders within this folder. EMAN2.3 is 
designed so all of your data and results are self 
contained, if you use the GUI in the normal way. The 
goal is that at the end of the project you will be able to 
trace any step you performed to produce any of your 
results without ambiguity. Any EMAN2 commands you 
run should be run from this folder, not from subfolders 
or other locations.

2. Project Manager
Type e2projectmanager.py. A window should appear 
that looks like the image to the right. 

• Begin by setting the overall properties of the project, 
by using the Project → Edit Project menu item.

• For the B-gal demo data set, enter the following 
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parameters: mass = 400, Cs = 2.7, voltage = 300, apix=1.275  (these may already be set for you 
depending on where you got the demo data)

• These parameters are stored in info/project.json, which is a human readable text file. As you 
progress, many other .json files will appear in this folder, all of which can be read, and (if you are 
careful) edited with a text editor (NOT a word processor). 

• When working on your own project
• voltage and Cs should be known for your microscope
• Mass is expressed in kDa, but as resolution increases, this number should actually be less than 

the true mass since for visualization particles are normally rendered with a lot of vopen space
• Å/pix (apix) should be a calibrated value for your microscope at the specific mag you used. On 

typical microscopes this may vary by as much as 5% from the mag reading on the instrument.

3. Evaluate images and import data
The next step is to bring the raw data into your project. In this tutorial, we provide you with 
micrographs and a set of .box files containing pre-selected particle locations. The data set we are 
using is a small subset of the beta-galactosidase images provided as part of the 2015 Map 
Challenge. The full data set with full sampling is capable of achieving about 3.2 A resolution. The 
downsampled subset we are using will be limited to ~4 A resolution, but will be much faster to 
process, making it more suitable for a tutorial.  

You now have two choices. You can simply trust that all of the data is good, or you can go through the 
micrographs one at a time and briefly evaluate each to decide whether it is good enough to include. If 
you opt to simply use all of them (which is fine for the provided tutorial data), you can always return 
later to learn how to evaluate images.  
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➡ On the Mac - there is an OSX bug which sometimes causes the menu-bar not to update 
properly for newly launched programs. To resolve this, click on some other application, 
then click on the project manager again, and the menu should work properly.

➡ On the Mac, windows may open, but not appear in front of other windows. Click on the 
Python rocket-ship icon in your dock to bring them to the front if you can’t find them.

➡ There are many file formats used in the CryoEM community, including familiar formats 
like TIFF and PNG, cryo-EM specific formats like IMAGIC and SPIDER, and proprietary 
formats like DM4 and SER. EMAN2 supports virtually all file formats used in the 
community (http://blake.bcm.edu/emanwiki/Eman2DataStorage). People often ask “how 
do I convert file X to work with EMAN2”. In most cases, the answer is “you don’t have to!”  
Any EMAN2 program should transparently read any supported file format. Similarly, 
when specifying output files, simply use the standard file extension and EMAN2 will write 
to almost any format as well. That said, EMAN2 uses an interdisciplinary format called 
HDF5 as its native format.

➡ The project manager interface is an expandable tree. Each level of the tree has a form 
with containing information or parameters, even the items which just appear to be labels 
for the levels below them. 

http://blake.bcm.edu/emanwiki/Eman2DataStorage
http://blake.bcm.edu/emanwiki/Eman2DataStorage


*** Choose only one of the following *** 
(for tutorials/workshops, you only have time for step 3a, don't try to do 3b. It can be useful to go 
through 3b on your own later) 
a) Automatically import all of the frames. You will still have the ability later to discard some if they 

prove to be bad at a later step. 
b) Manually evaluate each frame, and only import ones you decide are good. 

3a. (~5 min) Import only (choice 1)
To bring all of the frames into the project and determine CTF parameters, without manual evaluation, 
use : 

Raw Data → Import Micrographs & est Defocus 

• Press the Browse button, double click on orig_micrographs, then press Sel All 

• Now, unselect invert and select the edgenorm, xraypixel and ctfest checkboxes. Astigmatism 
correction is not necessary for this tutorial project. Invert isn't necessary because the provided 
micrographs have already been inverted so particles look lighter on a darker background. 
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➡ The advantage to the second method is, if you have a significant fraction of ‘bad’ frames (and 
many people do), then you can skip particle picking by excluding them up front. This can save a 
lot of effort. For this tutorial, there are only 1 or 2 micrographs which are slightly worse than the 
others, so, you can go through 3b, but you won't find many images to exclude.

➡ From this point forward, some of the tasks you complete will take more than a few seconds to 
run. Open the Task Manager, by selecting the middle icon in the vertical toolbar on the right 
side of the project manager (          ), and it will show you the progress of EMAN jobs running on 
the machine.

➡ The single particle data you begin with may be either "light" or "dark". That is, the protein 
particles may appear either lighter or darker than the surrounding solvent in the micrograph. It 
is CRITICAL for all processing in EMAN that the particle images be "light". If collecting cryoEM 
data with no stain on a CCD/DDD camera, the contrast in the raw micrographs will be "dark" 
and should be inverted as the micrographs are imported into the project. The inversion can be 
done at later stages as well (but should only be done once, if necessary). Many algorithms will 
fail if this convention is not followed.

➡ When working on your own data, you can import already boxed-out particles into EMAN from 
other software. However, if you have selected particles elsewhere and are starting in EMAN the 
preferred approach is to import the box coordinates and micrographs, giving you an opportunity 
to evaluate the micrograph and do micrograph-based in addition to particle-based CTF 
determination. This is particularly true if you are targeting high resolution. If you are looking at 
dynamics, or limited to low-intermediate resolutions, it may be fine to simply import the particles 
and begin at step 5 below.

➡ If you have a large number of frames (say >5000), you may give up on the manual approach 
entirely and decide you have to trust that the frames are all good, and automatic picking and 
CTF determination are trustworthy. In these projects, there are methods which can be used 
after initial refinement to weed out bad particles and bad micrographs. These can cost some 
computational time for the project, but save a lot of human effort.



• If you set the project parameters correctly in step 2, then the remaining parameters should already 
have the correct values: apix = 1.275, voltage = 300, Cs = 2.7 and ac = 10. defocusmin and max 
should be set to 0.6 and 4.0 which is sufficient for all of the data in this project. 

• Press Launch. It will process each micrograph as specified and store the resulting CTF information 
in info/*.json files. It should take only a few minutes to run (this includes initial CTF fitting). 

3b. (manual, ~30 min) Evaluate and Import (choice 2)
➡ IF YOU DID STEP 3a, DO NOT ALSO DO STEP 3b. SKIP TO STEP 4

Automatic and manual data acquisition will normally produce a significant fraction (10-50%) of 
quantitatively “bad” images. While there will also be later opportunities to eliminate bad micrographs 
and/or particles, these other methods take place after particle picking. By excluding obviously bad 
frames at this stage, you can save the substantial effort of particle picking the bad frames. For the 
tutorial, we are providing particle locations, so you don’t gain much benefit in eliminating bad images 
at this stage. You may still wish to go through this process to learn how micrographs can be 
evaluated, though. 

Including bad data is NOT harmless. It can lead to model bias and reduce the accuracy of your 
reconstruction, even if it does not always reduce the measured "resolution". We have tried to 
streamline the manual evaluation process so it can be done very quickly (~3-5 seconds/frame): 
• Raw Data → Evaluate & Import Micrographs 
• press the Browse button 

• This should cause a browser window to open. Double click orig_micrographs 
• Select all images in the orig_micrographs folder. Press ‘OK’ 
• Change box to 384. (256-1024 is typical, this has nothing to do with particle size) 
• Assuming you set the project settings properly in step 2 above, the remaining parameters should 

be fine with their default values. 
• Press Launch. 

• Four windows will appear: Control Panel, Micrograph View, Plot and 2D FFT. You will need to 
arrange these windows so you can see them all. Make the micrograph window as large as you 
can, without obscuring the others. Use the mouse-wheel to zoom the micrograph window so you 
can see the entire micrograph and its pattern of green boxes. Select the first image file in the 
Control Panel. 

• In the Control Panel window, change Ctf Zeroes to None. This will remove the pattern of green 
rings obscuring the 2-D FFT. If you wish to check the defocus match in 2-D rather than look for 
drift and other quality indicators, you can re-enable this. 

• Deselect the invert checkbox. The micrographs we are using have already been inverted. 
• In the micrograph window, clicking on any green box will toggle it on/off. Note that it may not be 

obvious that a single ‘off’ box in the center of 8 other ‘on’ boxes is actually off, since the lines 
overlap. The ‘on’ boxes define the region used for the power spectrum calculation. If there is 
contamination or some other artifact present in the image, turning ‘off’ the boxes in these regions 
will produce a cleaner power spectrum, but this is mainly for visualization, so there is no need to 
rigorously turn off all contamination boxes. 
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• You can then go through the images one at a time and decide which ones are appropriate to 
further process. Most of the provided images are good. This section assumes some familiarity 
with TEM imaging. If you don’t understand these terms, you should read about them before 
proceeding. Things to consider: 

• Drift: If the image has too much directional falloff in the 2-D power spectrum, you should 
consider excluding it. 

• Astigmatism:  None of the included images should have significant astigmatism, but when 
processing your own data, you must decide whether to try and correct astigmatism or to 
remove overly astigmatic images. For very high resolution studies, astigmatism correction is 
almost always a good idea. For this tutorial it isn’t necessary. 

• Particle concentration:  If the particle concentration is so high you don’t believe you will be 
able to isolate a lot of particles well separated from others, you may consider excluding it. 

 The image above is typical when targeting subnanometer resolution. 

 The image above has noticeable drift in the indicated 
direction (fading rings), but  
 still has good subnanometer resolution signal, so might still be used. 
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This is an image with excellent resolution, but also astigmatism (non-circular 
Thon rings). While correctable in most cases, many people just exclude significantly 
astigmatic images.

• If you think you may want to include an image, but it doesn’t seem quite as good as the others, 
you may consider assigning it a lower (or, conversely, higher for particularly good images) quality 
value. These numbers are qualitative user-assigned values. It can make it easier to select 
subsets of your data later on, or to locate representative good and bad images within your 
project. 5 is the default. Larger values normally indicate better images, but there is no set scale. 

• For each image you decide to use, press the Import button (harmless to do it more than once). 
This will copy the image to the micrographs folder, and store the preliminary CTF parameters 
you’ve determined. Make sure invert is not checked before importing. 

• If you accidentally import an image you didn’t mean to, you can simply delete the hdf file from 
the micrographs folder or use the shortcut above. In EMAN2.0 deleting files would have caused 
major problems. In EMAN2.1, you can manually move files around at pretty much any time. 

• e2evalimage.py <image> <image> ...  (the program you’re using now) has many more 
capabilities you can explore, but for purposes of this tutorial, this is all you need.  

• When you have imported all of the good frames, close the Control Panel window. This should 
cause the other windows to close as well. 
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Keyboard Shortcuts - To make evaluating and importing images faster, there are a set of 
keyboard shortcuts you can use. To use these, you must have keyboard focus on the list of 
micrograph names. To do this, simply click on one of the micrograph names with the mouse. 
From this point, you can use:

✴ up and down arrow - select next/previous image
✴ left/right arrow - small changes to defocus
✴ i - imports the micrograph into the project
✴ u - un-imports a micrograph mistakenly imported
✴ 0-9 - sets the quality (before importing)



4. (~2 min) Extracting/boxing particles from micrographs
• The data we are using in the workshop came from the first CryoEM map challenge. The particle 

locations were standardized for this challenge, so, we will use .box files which contain preselected 
particle locations. These box files include a significant fraction of “particles” which are actually ice 
contamination. Later in processing we will see a few methods we can use to eliminate most of these 
bad particles. If you want to learn how to use the new particle picker, there is a short section on it at 
the end of the tutorial, or follow the tutorial for the new Neural Network based picker:  
http://eman2.org/Programs/convnet_pickparticle 

• In the Project Manager:  Particles → Import Tools → Import .box or .star files 
• Use the Browse button, and select all of the .box files in the orig_box folder. It is ok to select .box 

files for micrographs you previously excluded. It is ok to have box locations for micrographs 
which aren't in the project, they are silently ignored. 

• Press Launch. This import process takes only a second or so to complete, and there is no 
progress display indicating that anything happened. 

• We are now ready to actually extract the images of the particles from the micrographs and save 
them into particle stack files.  

• Particles → Generate Output 
• Press the Browse button and look at the list of micrographs. You should see a (non zero) number of 

stored boxes next to each micrograph name. You do not actually need to select these files, we just 
opened the browser to make sure the box import was successful. If stored boxes shows 0, then 
something went wrong with step 4, and you should try again or seek assistance. 
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➡ You may have heard the term “stack file”. This name derives from the fact that in ‘MRC 
format’, sets of 2-D images are stored as a single large image by “stacking” them in 3-D. 
This is unique to the MRC format. All other formats distinguish between a set of 2-D 
images and a 3-D volume. To use MRC "stack" files with EMAN2, they must have 
the .mrcs filename extension. EMAN natively reads and writes virtually all file formats 
used in CryoEM, but uses the interdisciplinary HDF5 format for all internal processing. 

➡ It is critical for good quality reconstructions (there are several reasons) that the box size 
be 1.5 - 2x the longest dimension of the particle. That is, if a box that just barely contains 
your particle has a size of 128, you should use a final box size in the 192-256 range. 
See:  http://blake.bcm.edu/emanwiki/EMAN2/BoxSize  for information on ‘good’ sizes to 
use to optimize processing speed. Picking an appropriate box size at this stage is 
critical ! 

➡ On Linux/Mac, you can open the Task Manager( ), and it will let you monitor running jobs 
to see when they have completed.

➡ When working on your own data, if you have already selected your particles using 
another program, or prefer to use a different program, it is much preferable to import 
particle coordinates and micrographs rather than simply import particles using Particles 
→ Particle Import.  This will preserve the particle location in the header of each particle, 
and provide access to the whole micrograph for CTF estimation, etc.

http://blake.bcm.edu/emanwiki/EMAN2/BoxSize
http://eman2.org/Programs/convnet_pickparticle
http://blake.bcm.edu/emanwiki/EMAN2/BoxSize


• You should have write_ptcls and allmicrographs as the only checkboxes selected. By checking 
allmicrographs, you don’t need to use the browser to select which ones to process. 

• box_size = 256, ptclsize doesn’t matter. Then press Launch. 

• This process should take only a minute. You can use the task manager to see when it’s done. 

5. (~10 min) CTF Correction 
We are now beginning the process of correcting for the Contrast Transfer Function (CTF) of the 
microscope. This process can conceptually be broken into three steps (all three are automatic): 
• measuring the CTF parameters of each micrograph
• phase flipping 
• amplitude correction

Measuring defocus and astigmatism can be performed on whole micrographs and/or on particle 
images. If doing astigmatism correction, it is generally better to start with whole micrograph defocus/
astigmatism measurement. EMAN has a unique method for measuring additional parameters, such 
as SSNR (spectral signal to noise ratio) from the particle data, which is used during refinement to 
make more optimal use of the available data. This step must be performed on particle data, so even if 
you have estimated defocus on the entire micrographs, as we did above, you still need to perform the 
second stage of CTF estimation to get these additional parameters.

Luckily, this process is fully automatic, with no human intervention at all. In previous versions of 
EMAN2, it was mostly automatic, but there were still several manual steps to go through. We now 
have e2ctf_auto.py which combines all of these steps into a single rapid automatic process. We can 
double check the results to insure there were no failures after running the automated process. 
Failures will be dramatically reduced if you have first done the automatic whole-micrograph defocus 
estimation.
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➡ If you are working with your own data, and happen to be working in negative stain, we strongly 
encourage you to perform CTF correction, even if you do not believe it will gain you any resolution. 
There is more to CTF correction than simply achieving higher resolutions.

http://eman2.org/NegativeStain
➡ This is a good point at which to explain the file naming convention for raw data within the 

project. The only thing you need at this point is a folder called particles. Inside this folder there 
should be one image file for the particles from each micrograph:

• Each file must be named micrographname.hdf or micrographname_ptcls.hdf 

• The micrographname above must match the files in the micrographs folder if present. 

• While EMAN supports most file formats, within the project, you must use HDF format, because 
other formats do not support arbitrary header information. When importing particles from some 
other software, they are converted to HDF. 

• During the following steps, we will be creating modified versions, or ‘variants’ of the particles 
(phase flipping CTF correction, downsampling, filtering, etc.)  The naming convention used for 
these versions is a __ (double underscore) separator. eg - abc123_ptcls.hdf might become 
abc123__ctf_flip.hdf, or abc123__ctf_flip_lp12.hdf. You are free to make any such variants you 
like as long as they include exactly the same particles as the parent _ptcls files. 

➡ SSNR = Spectral Signal to Noise Ratio. This is a measure of data quality as a function of 
resolution, and computing this is one of EMAN2’s unique features. A Signal to Noise Ratio of 
1.0 means there is an equal amount of signal and noise. SSNR is high at lowe resolution, and 
low at high resolution.  

➡ SSNR is additive if proper weighting is applied when averaging particles together. Meaning, if 
the SSNR were 0.05 at 10Å resolution, it should take roughly 20 particles in that orientation to 
achieve a minimal average SSNR of 1. In theory you could use this method to achieve arbitrary 
resolutions, but in practice SSNR values below ~0.02 (50 times more noise than signal) are 
difficult to recover, regardless of the number of particles. 

➡ Do not become too distracted by B-factors you may see. These are not important in EMAN2 
processing. Generally, if you find some reasonable consensus B-factor for your data, you can 
just fill that number into the fixedbfactor box and not worry about it.

➡ When working with your own data, do NOT import “CTF corrected particles” from other 
software. When programs say they have “CTF corrected particles”, it generally means they 
have been phase-flipped, or phase flipped and filtered with some sort of per-particle Wiener 
filter. This unknown processing will prevent EMAN from doing optimal reconstructions. When 
importing particles they must always be the original raw particle images. It is often possible to 
import defocus/astig values along with the particles if you want to insure both programs use the 
same values (e2import.py, e2ctffind3util.py, e2emx.py). 

➡ Along the same lines, EMAN2 has e2reliontoeman.py which will take particle stacks and a 
STAR file from Relion and convert it automatically into an EMAN2 project for comparative 
refinement. There are also programs to go from EMAN2 to other software 
(e2refinetofrealign.py, e2refinetorelion2d.py, e2refinetorelion3d.py, e2emx.py).

http://eman2.org/NegativeStain
http://eman2.org/NegativeStain


Automated CTF processing
• Select CTF → CTF Autoprocess 

• check the hires box. This gives the automatic processing a hint that the data may extend to 
near-atomic resolution. If you collected negative stain data, or were using a 20 year old 100 keV 
scope, you should select lores. The tutorial set we are using was collected on a Krios with a K2 
direct detector, and easily extends to 4 Å resolution. 

• The Image Parameters are: apix=1.275, Voltage=300 and Cs=2.7. If you entered the project 
parameters correctly above, these should be pre-filled for you. 

• While not absolutely necessary, setting constbfactor to a reasonable value, say 80.0 can 
improve self-consistency of the fitting results. It shouldn’t really impact the final reconstruction. 

• The only other option we need is  “threads” which tells the program how many processors to use 
on the local computer. You should know or find out this number. 

• Once the parameters are set, Launch.  As usual, you can open the progress meter to see how it’s 
doing. This entire process, including generating various types of phase-flipped particles, should take 
about 5 minutes to complete. 

• In addition to fitting the CTF, this program automatically generates several processed output stacks 
for each micrograph, depending on the resolution target. For high resolution work, these will include 
CTF phase flipped: _lp12, _lp5 and _fullres.  

• The _lp12 particles have been heavily downsampled, and low-pass filtered to ~14 Å resolution. 
These particles are suitable for initial model generation, eliminating very bad particles and quick 
refinements. 

• The _lp5 particles have been less heavily downsampled and low-pass filtered to ~5 Å resolution, 
and are suitable for quick, intermediate resolution refinements. 

• The _fullres particles are suitable for final refinements to high resolution. 
• Finally, _invar particles, which can help improve 2-D class-averaging, and speed refinements, 

but are never used directly as particles. These are bispectral rotational/translational invariants, 
not particle images themselves. 

5a. (manual, ~10 min) Visual CTF 
This step is not necessary for the tutorial data, since the autofitting should work more or less 
perfectly. It is here to teach concepts. You may consider skipping it in workshops, and coming back to 
it while you are waiting for a refinement to finish running, or reviewing it after the workshop. 
• When automatic processing is done, it is advisable to check the results to make sure there were no 

fitting errors. To open the CTF fitting interface, select:  CTF→Visual CTF 
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➡ If you don’t know how many cores your machine has, now is the time to research it. Please be 
aware that there is a difference between “cores” and “threads”. Current generation Intel 
processors have a feature called hyperthreading, which may give them, say, “4 cores and 8 
threads”. Normally the number you should use is the number of cores. On newer machines you 
may get a 10-20% boost by using roughly the number of cores*1.2, but you should not use the 
number of cores x2. 

➡ If you decide to perform astigmatism correction at some point (do not try and do this the first 
time through the tutorial), you should first determine astigmatism on the whole frames, and only 
then do astigmatism fitting in this program. 

➡ It is also possible to manually run the CTF → generate output program and make your own 
processed versions of the particles with specific parameters you select.



• Make sure allparticles and sortdefocus are selected (the other parameters should be 
automatically set), then press Launch. You will get 4 windows (shown below). 

• When automatic CTF fitting 
does fail, it almost 
always fails 
dramatically, 
producing defocus 
values at either the low or 
high extreme. 
Sometimes this is due to 
specifying too narrow a 
search range when 
autofitting, but there are 
certain types of 
particle artifacts which can 
also confuse the 
routine. So, at a bare 
minimum, in this step we 
want to double-check a few 
of the closest to focus and a 
few of the furthest from 
focus images.  

• This analysis is based on 
particles rather than tiled regions from the micrograph, as used in the earlier micrograph 
assessment step. Basing the analysis on particles allows us to accurately estimate the SSNR 
and structure factor (next step) from the particle data. While it is possible to estimate defocus 
and astigmatism from random boxed out regions of the micrograph, the method used here relies 
on the fact that each box contains a particle reasonably close to the center of the box. If too 
many "bad" particles are present, the SSNR and structure factor estimates will be impacted. 

• The control panel window (titled CTF) allows you to select which image to work on, and adjust 
the various parameters for that image interactively. The particles window shows the average of 
the first 20 particles (without alignment) as well as the first 20 particles individually (use up and 
down arrow in that window). The 2-D FFT window shows the average 2-D power spectrum for 
the particles in the current image, optionally (if Show 2D Sim is set) the simulated 2-D curve, and 
optionally (if Show Zeroes is set) the first several zeroes as blue rings.  

• Finally, the plot window shows several curves. In "Bgsub & Fit" mode, the black curve is the 
background subtracted, rotationally averaged power spectrum. The dotted black curve is the 
same thing, but using a different background subtraction scheme which exaggerates the CTF 
oscillations. The blue curve is the fit based on the parameters shown in the control panel. We do 
not yet have a structure factor curve, so, while ideally the blue and black curves would match 
perfectly, at this point we can expect significant deviations at low resolution. Don't bother trying 
to 'fix' this by adjusting sliders, it is normal for this point in the process. Even later on, there is no 
need for a perfect fit in amplitudes as long as the zeroes are in the right places. 

• While there are many interesting things we can do with this program, at this point we mainly 
need to insure that the defocus values are correct. Again, the automatic fitting is quite good, but 
with some specimens, or with particularly low quality data, it will make occasional errors. 
Generally if it’s wrong, it is significantly wrong. If you find an image with a significantly incorrect 
defocus, adjust it so it’s approximately correct, and hit the refit button (you can use it several 
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times if necessary). This will be much easier if you zoom in on plot window as shown above. 
Typically a vertical range of ~0-1 and a horizontal range of ~0-0.25 will work well. 

• If this doesn’t solve the problem, you can fit manually, then press the save parms button instead. 
• This project is small enough, you may take the time to look at all of the images. If you have 1000 

images, and the automatic fitting seems to work fairly well, you may just check the first dozen 
closest to focus and last dozen far from focus images. If all of those are fit correctly, odds are 
good that the rest are too. 

• If you didn't screen and eliminate bad micrographs before boxing, this can be a good time to try 
and identify any bad images in the data set. You can do this by looking for artifacts like 
uncorrected drift (directional falloff in the 2-D power spectrum) or strong astigmatism (asymmetry 
in the 2-D power spectrum), or overall poor high resolution signal. This particular subset of the 
full B-gal challenge data set is almost entirely 'good' images. If you find a micrograph you wish to 
exclude later, set it’s quality to a lower value (the default is 5), and you can use this later to 
exclude it. 

• Again, the primary purpose of this process is to correct any gross defocus errors. If you don’t 
find any, you can just proceed to step 6. If you DID correct any defocus values, before going to 
step 6, rerun the automatic process in step 5. This will respect any defocus adjustments you 
made, and regenerate all of the output files accordingly. 

6. Building sets (can skip for now)
This step is provided for reference only. The automatic CTF fitting program we used in the last step 
automatically builds a set containing all particles for us. You may want to make other sets later 
though, after marking bad particles, for example.
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➡ New windows will be randomly placed on the screen the first time you run a program 
within a project. Once you have positioned them once, if you run the same program 
again, they will normally follow your rearrangement. 

➡ In the plot window, to zoom in on a region of the plot, drag with the right mouse button. 
To rescale, click the right mouse button without moving the mouse. Left-mouse drag will 
show cross-hairs. For the X-axis it will show both the value and the reciprocal of the 
value (resolution). As usual, middle-click will open the control-panel.

➡ % Amplitude Contrast can only be determined experimentally through some rather tricky 
experiments, and frankly, slightly different values will not have a strong impact in most 
reconstructions. Values of 5-15% generally work best for cryo data. However, for 
negative stain data, you will likely want to use a much larger value than the default 10% 
(~40-80% will generally work better). 

➡ When screening manually, there are some keyboard shortcuts available to speed the 
process. You must select one of the micrograph names in the list to move the keyboard 
focus on that widget for this to work: up and down arrow select different images; left and 
right arrow make small adjustments to defocus; pressing a number 1-9 will set the 
quality for the current image to that value;  'b' will set the B-factor to 100; 's' will save the 
current parameters; and 'r' will restore the currently saved parameters.



Particle sets (.lst files) are text files which reference the image files which actually contain particles. They are 
analogous to the STAR files used in Relion and Bsoft, but have more functionality. Once created, you can treat 
a .lst file in EMAN2 as if it were an actual image file with any program. This allows you to experiment with 
doing reconstructions with different subsets of your particle data without having many copies of the actual 
images. 
• Particle sets→ build particle sets

• check the allparticles and excludebad checkboxes
• enter "all" int the setname box (you can use whatever name you like)
• If you gave any micrographs a lower quality value when manually assessing them, you could 

also enter 5 in the minqual box, which will exclude any images with the quality set below 5.
• There are other options for including only particles within a given range of defocus or with other 

specific parameters. We don't need these for this tutorial, but can be quite useful in other 
projects.

• Launch

7. (~20 min) Generating reference free (unsupervised) class averages (2D refinement)
There are two purposes to this step. First, we need to generate a few good class-averages we can 
use to make an initial 3-D map for refinement. Second, we can optionally identify some fraction of bad 
particles and remove them from our data set.  For the first purpose 20-30 class-averages would be 
sufficient, but if we want to identify bad particles, more averages gives us more precision, and the 
number of classes has little impact on how long it will take to run.

The standard 2D class-averaging program is called e2refine2d.py and has changed only modestly in 
the 20 years since the program of a similar name was created in EMAN1. In August 2017, we added 
a new 2D class averaging program which solves this problem using some new mathematical 
methods, which are both faster, as well as producing better class-averages in most cases (see box 
below). :

EMAN2.31 Tutorial v1                 Dec 2019                                                        16

➡ If working with your own data, you should target a minimum of ~20 particles per class (on 
average) and a maximum of ~500 particles per class. If trying to process a data set with 1 
million particles, you may not want to use this method to identify bad particles, and simply use 
this step on a ~10,000 particle subset to make class-averages for building an initial model. 
Unsupervised class-averages in EMAN are not used for high-resolution refinement, so bad 
particle identification is the only reason you would need to run this on your complete particle 
set. Note that the alternative strategy discussed below for identifying bad particles is largely 
automatic, and works very well, so you may not want to use this method for finding bad 
particles at all.

➡ For most projects, this is also an ideal point at which to look for structural heterogeneity in your 
data. If you see several class averages apparently in near-identical orientations, but with subtly 
different internal features, this may be a sign that your particle is moving in solution. There is an 
additional tutorial discussing approaches used to address this issue. Aside from ice 
contamination, the tutorial data set is highly homogeneous. 

➡ The new bispectrum-based class averaging method works well on most data sets. If you get 
poor results with this method, or if your particles are unusually noisy or dense, try the older 
non-bispectrum version. It may produce dramatically better results for certain data sets. If using 
the older method, suggest working with a "lp" data set for speed. 8 iterations is typical.



• Select 2D Analysis→Bispectrum-based Class Averaging (this is the new method) 
• Input = sets/all__ctf_flip_lp5.lst 
• Ncls = 64, nbasisfp = 24 
• classalign = rotate_translate_tree, params = flip=1   (this should be the default) 
• parallel = thread:4  (or how ever many cores you have) 
• classaverager = ctf.weight.autofilt 
• The defaults should be fine for the other options, Launch 

8. (optional, ~10 min) Eliminate some of the bad particles
This step is optional - There is an additional fully automated strategy for eliminating bad particles, 
which we will use later in the tutorial. This step can be useful if your particle picker included many bad 
particles consisting of ice contamination or other non-particle artifacts. 

Once class-averaging has finished, we can take a critical look at the averages 
and see if we can identify any classes containing predominantly bad particles. 
The BGal data set used for the tutorial contains a large fraction of ice 
contamination “particles” which should be eliminated at some point. To mark 
particles as bad, we will use e2evalparticles.py.
• 2D Analysis → Mark bad particles by class
• There are no options, just press Launch
• This will cause (initially) only one window to open: 
• The window is divided into 3 sections:

• The upper section shows a list of all class averages generated so far in 
the current project, both reference-free and (if you have run a 3-D 
refinement) reference based

• The middle section permits you to modify which class-averages are 
currently selected for operation

• The bottom section allows you to perform various operations on the 
particles associated with the selected class-averages. The only option 
we will use right now in this section is Mark as Bad. See: http://
blake.bcm.edu/emanwiki/EMAN2/Programs/e2evalparticles for other 
uses.

• At present, we need to look at the results of our 2-D reference free classification. In the top section, 
select r2db_01/classes_00.hdf.  While we could look at classes_00.hdf instead, the allrefs files 
contain the same images, but sorted and aligned to make it easier to compare the different 
averages visually.

• This will cause 3 additional windows to open. Two of these windows, titled: Included Particles and 
Excluded Particles, will be empty initially. The third will show the class-averages from the selected 
file. Single click on one of the class-averages, which will cause the windows to be populated, then 
position windows for convenient viewing. It would be good to see all of the class-averages at once 
(maybe with some scaling). The Excluded Particles window can be smaller.

• Note: There is a random element to the 2-D class-averaging process, so everyone will see a 
somewhat different set of class-averages.

• Single-click on any of the class-averages. After a short delay, you will see particles appear in the 
Included and Excluded particles windows. These correspond to the particles associated with this 

EMAN2.31 Tutorial v1                 Dec 2019                                                        17
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➡ This process requires judgement. While we would like to eliminate all of the bad particles, it is 
also possible to incorrectly identify some particular particle shape as bad particles, when it is 
really just an unusual orientation of the particle with a projection you weren’t expecting. If you 
eliminate all (or most) of the particles in some view like this, you will wind up with a significantly 
worse reconstruction with an anisotropic resolution. 

➡ It is often difficult for people to understand why we can’t get rid of bad particles easily and 
automatically. Bad particles come in several different types. The type we are looking at above is 
quite obvious, and can be largely excluded automatically during processing. The far more 
difficult sort of bad particles to identify are those which are pure (or nearly pure) noise. The one 
clear characteristic of noise images is that they don’t look like anything, even each other. That 
means they will tend to be randomly distributed through any set of class-averages. Even worse, 
the good particles with the best high resolution signal are often quite close to focus. Since this 
decreases low resolution contrast, eliminating low contrast particles has the side-effect of 
eliminating the very best data along with the junk. 

➡ Generally speaking one bad particle like the ones shown above will do far more damage to a 
reconstruction than one good particle helps the reconstruction. In fact, particles like this can 
easily do more damage than 5 good particles would help the structure. So, if you have to 
sacrifice a fraction of your good particles to get rid of really bad particles, this is usually a 
worthwhile trade to make. 



class-average. The Included particles were used (after alignment) to produce the actual average 
you selected. The Excluded particles are particles which were members of the class, but looked 
little enough like the final average that they were excluded from the averaging process.

• We now need to identify any class-averages which consist predominantly of “bad” particles, yet do 
this without eliminating too many “good” particles. Below you will see my class-averages, and the 
particles associated with average #9.

• Hopefully it is obvious that these “particles” (lower right window in figure) are actually just ice 
contamination. In most cases we won’t have such a clean separation and the particles will consist 
of some bad and some good particles. We would now like to mark these particles as “bad” so they 
aren’t used during our 3-D reconstruction. Now double-click on any class-averages you think are 
mostly bad particles, you will see a small blue mark appear in the corner of each. You cannot click 
on individual bad particles, only class-averages.

• Note that it is not possible to mark individual particles as bad using this interface. If you want to 
manually mark particles as bad, there is a section in the Appendix which explains how to do this.  
For now, mark all of the class-averages you wish to exclude with the little blue mark. It will not be 
the end of the world if you leave a few bad particles in the set. The goal is to eliminate 80-90% of 
the bad particles, to make our overall population healthier.

• Once you are satisfied with your blue marks, press the Mark as Bad button, and confirm that you 
want to do this in the dialog that appears. This will add all of the bad particles from all of the 
marked class-averages to an internal list of bad particles maintained for each micrograph. The next 
time you use the “build sets” interface, it will automatically exclude these particles from new sets 
you create. It is safe to repeat this process. Marking new particles as bad adds to the list, it doesn’t 
remove existing bad particles from the list.

• You can exit the program (close the windows) when you’re done.

9. (manual, ~5 min) Selecting Good Class-averages
There are several strategies you can use to produce initial models. One strategy (stochastic gradient 
descent) can actually work with raw particle sets, and doesn't even require class-averages. The 
strategy outlined here uses the traditional initial model generator in EMAN2. Feel free to experiment 
with the others.
You will get the best results, generally, if you use all of the class averages, perhaps excluding some 
obviously bad ones. There are two general strategies for manually selecting a subset of images in a 
stack file and writing that subset to a new file. Either you can mark bad images for deletion, then save 
to a new file, or you can mark good particles, and save the marked good particles to a new file. With 
this strategy, our intent is to only mark a few of the 64 class-averages as bad, so we will use the first 
strategy. The second strategy is described in a box for your reference, but you don't need to use this 
method now.
• Browse to r2db_01 (or whatever the highest number r2db folder you have is)
• Double click on classes_sort_00.hdf (the variant without _sort_ is also ok) 
• Middle-click on the window showing the class-averages to open the control panel
• In the control panel press the Del button. This will put the left mouse button in delete mode.
• Click on any class-averages you are pretty certain are bad, ie - not a projection of B-gal, but 

something like ice contamination, or just a noisy average of junk. This will cover the offending 
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class-average with a colored box, marking it for deletion. Note that this does not actually change 
the file you are viewing. This is just a mark on the display for now.

• Once you have marked all of the bad class-averages, press the Save button in the upper right 
corner of the control-panel, and enter "good_classes.hdf". The name doesn't matter, as long as you 
use the same name in the next step.

10. (~10 - 30 min) Making an initial model
There is a lot of controversy in the cryoEM community on this point. Some people feel that initial 
model generation is the most critical step in refinement, and that you need to use difficult and time-
consuming experimental methods to get an initial model before you can proceed. We have shown 
that the simple approach used in EMAN2 can give a completely reliable initial model with no 
additional experiments required in the vast majority of cases. 

• Despite all of the caveats and descriptions, the actual initial model generation program is quite 
easy to use. Just select: Initial Model→Make Initial Model 

• Input = good_classes.hdf, sym = D2, iterations = 12, tries = 12,  
• randorient unchecked, shrink = 3 (if there are problems you can try shrink=2) 
• Since we are under time constraints at the workshop, I suggest starting with 8 or 12 tries, then if 

you don’t get a good one, run another 12. If you have a little more time, or more than 4 cores, you 
might want to start with 20 or 30 to make it more likely you will get a good result on your first try. 

• parallel= thread:4 (again, replace 4 with the actual number of cores on your machine) 
• Use the default values for the other options, and Launch 

For high symmetry objects like virus particles, there is another program e2initialmodel_hisym.py 
which does a good job for most high symmetry objects. This program is best run with just a few (3-5) 
class-averages, and with heavy downsampling. 
There is also an experimental new initial model generator in examples/ called initmodel_sgd.py. This 
program uses stochastic methods, so is best run with a fairly large number of class averages (or even 
raw particles). In many cases it performs well with the provided default parameters, but not always. 
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Sometimes you may have a need to extract a few specific images from a stack. Instead of deleting 
everything you don't want, there is another approach where you can mark what you want to keep 
instead:
• Open the the stack in a multi image display window as above.
• Middle-click on the window showing the class-averages to bring up the control panel.
• In the control panel press the Sets button under the histogram plot, then also select the Sets tab 

(next to Main).
• Press the New button and type good in the box that appears. You should now have a green (or 

blue) colored set with this title. Click on the colored word good to make it active.
• Now single-click on each image you wish to extract. You will see a colored mark appear. Click a 

second time if you change your mind and wish to exclude the image.
• When done, press the Save button in the lower right corner of the control panel (not the one in 

the upper right). This will save the selected images in the highlighted category to a specified file.



For particularly challenging specimens, we recommend subtomogram averaging rather than the 
traditional random conical tilt method. While EMAN2 does have an implementation for both methods, 
we largely consider the RCT code to be deprecated in favor of subtomogram averaging. EMAN2 now 
includes a complete tomography/subtomogram averaging pipeline which can achieve subnanometer 
resolution with good data. There is a separate tutorial for this workflow at http://eman2.org. 

You are also absolutely free to use initial models generated in any other software you like. As long as 
the A/pix value in the header of the initial model is set to the correct value, you can use it directly with 
e2refine_easy as an initial model, and it will automatically rescale/clip as necessary to make it work. 
You can double-check the A/pix value in the header using either e2iminfo.py -H or with the file 
browser. If the header value is wrong, you can use e2proc3d.py with the —apix option to correct it. 

• When the program is done, open the browser ( ). You will see a new folder called initial_models. 
The program saves all of the initial models it generated, not just the best one. For each trial, 4 files 
will be produced in the initial_models folder. We will look at three of them in the tutorial: 
model_NN_MM, model_NN_MM_proj and model_NN_MM_aptcl. The first time you run 
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➡ This is an updated version of the program in EMAN2.3. Rather than purely starting with random 
blobs, the first 7 tries will start with predefined geometries based on the specified symmetry. 
Any additional starting models beyond 7 tries will be randomized. If you check randorient, 
starting models are generated from the class-averages in random orientations. With the new 
version we suggest leaving randorient unchecked unless you have difficulties. 

➡ For most structures, there are a number of ‘local minima’ in the energy space. What that means 
is, there are a number of incorrect structures which can still appear to agree fairly well (but not 
as well as the correct structure) with the input data. So, some fraction of the answers you get 
out will be bad starting models. Such bad starting models are usually quite obvious. The 
severity of this problem varies considerably with the shape of the molecule and the amount of 
orientation coverage you have. Interestingly, particles like ribosomes, generally viewed as 
‘difficult’ have virtually no local minima, and will produce a usable starting model almost all of 
the time. 

➡ If your best initial model comes out without a pretty clear handedness, you may want to try 
again. 

➡ Heterogeneity is a big potential issue in most projects. If you have a particle that is highly 
heterogeneous, the EMAN initial model strategy will produce a model, but it will not be unique 
(since there isn’t one). Single particle tomography may offer the best solution towards 
understanding the heterogeneity in your specimen. Once you understand the heterogeneity, 
there is a separate tutorial on the Wiki for dealing with such cases. 

➡ If your particles have a single, strongly preferred orientation, especially if this is combined with 
a low symmetry, mathematically there may not be enough information to produce an 
unambiguous starting model. However, it is also important to note that in this situation, even if 
you get a good starting model, refinement will also tend to degrade rather than improve the 
model. To perform a proper 3-D reconstruction, you must have a reasonable number of 
particles in orientations covering at least one great circle around the unit sphere. 

➡ If you do have a difficult structure, single particle tomography is our recommended solution 
( http://eman2.org/e2TomoSmall )

http://eman2.org
http://eman2.org/e2TomoSmall
http://eman2.org/e2TomoSmall


e2initialmodel, NN will be 00, and MM will indicate the number of the attempt. If you need to run the 
program again, new results will have NN = 01. 

• model_00_01.hdf ostensibly contains the best 3-D refined initial model, but looking at the 3-D map 
is not the best way to detect whether it is bad or good. Instead, start by looking at 
model_00_01_aptcl.hdf. The image below shows two possible results, the left is good, and the right 
is bad: 

• Each of these files contains adjacent pairs of images. The first image is one of the class-averages 
you provided and the second image is a projection of the initial model it created, and so on in 
alternating fashion. If you have a good initial model, the class-averages and projections should 
agree with each other very well (aside from noise). 
• In the left (good) case above, you will see that this is the case every class is a good qualitative 

match to the corresponding projection, with the possible exception of 0-1. 
• In the right (bad) case, while several of the pairs agree well, such as 38-39, many of them do 

not. In a good initial model, agreement should be good for ALL of the class averages.  
• If one or more do not match, there are 3 possibilities: 1) a bad initial model, 2) a bad class-average, 

3) heterogeneity in the particle population. In the left result, the first image (and perhaps the third) 
is likely just not a very good class average, as other than this, agreement is excellent. Having seen 
the left case, we know that the right case is just a (random) bad initial model.  

• You should also look at model_00_01_proj.hdf. This file contains a sequential set of projections of 
the final model from all orientations. The goal here is to make sure that all of the projections look 
“good”. ie - like projections of a rational protein. Most bad initial models will be quite distorted 
looking in some orientations. 
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• If your best model doesn’t agree well, you should try running the program again. If you persistently 
fail to get completely self-consistent results, the conclusion would be that you have some structural 
heterogeneity in your particles. That situation is covered by the other tutorial on the wiki. This B-gal 
data set should not have significant heterogeneity other than the particles which are actually ice 
contamination. 

• Once you identify a starting model with a good _aptcl file, go ahead and open the corresponding 
model_NN_MM.hdf file in 3-D and have a look at it. This will be the starting model we use for 
refinement. Note that the handedness of this model will be arbitrary. There is a 50/50 chance that it 
is correct. We deal with that after refinement. 

11. (~1 min) Building sets - again
Note - if you skipped step 8 above do this step anyway. In addition to excluding bad particles, we are 
also making a set with fewer particles for faster initial refinements.

Above we went through some manual effort to identify bad particles (unless you skipped that step). 
However, so far all we have done is put a mark on the bad particles. At present they are all still 
included in the sets/*.lst files which we use for our refinements. This is done intentionally, so you can 
retain the original set of particles, in case you want to go back and check what effect eliminating the 
bad particles had.  We would now like to run refinements, and exclude these bad particles, so we 
make new sets excluding them.

• Particle sets→ build particle sets
• check the allparticles and excludebad checkboxes
• enter all-bad1 int the setname box, this name indicates to me that I have made one pass at 

removing bad particles, but otherwise the set includes everything. If I made another pass and 
excluded more bad particles, I would call it all-bad2, but this naming convention is arbitrary. 

• Launch

We'll make one more set containing less of the data for our initial refinement (for speed)
• Particle sets→ build particle sets

• Uncheck the allparticles box
• Press the Browse button. Click on the snr-hi (or snr-lo) column to sort, and select the first 20-25 

images (with the highest snr values), then click OK.
• enter best-bad1 in the setname box.
• Launch

12. (~25 min) 3D Refinement
We are now ready for our first quick refinement, to turn our initial model into something with a few 
more features. If the initial model is decent, it might be possible to jump straight to a 4 Å map at this 
point, but it is usually a good idea to take a couple of steps on the way there to make sure things are 
coming out as expected. As we push resolution using the traditional refinement algorithm, the 
compute time required increases very rapidly:
• 1 CPU-h : Quick (~15 Å resolution) refinement using ~1000 _lp12 downsampled particles
• 2 CPU-h : Quick (~15 Å resolution) refinement using all ~5000 _lp12 particles
• 12 CPU-h : (~6 Å resolution) refinement using all of the _lp5 particles 
• 70 CPU-h : (~4.0 Å resolution) refinement using all of the __fullres particles
• 168 CPU-h : (~3.6 Å resolution) refinement using all of the __fullres particles
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Note - times above are CPU-hours, so to get actual estimated wall-clock time, divide by the number 
of cores on your computer. This estimate becomes less accurate for large numbers of cores (like 128 
or 256), but is fine for a desktop machine.

However, it is worth noting that the "--invar" option now available for refinement can decrease these 
times quite dramatically. While it does a very good job for preliminary refinements, at this point in its 
development we don't yet recommend it for the final stage refinement when pushing resolution. For 
the earlier rounds of 3D refinement, checking the 'invar' checkbox is generally quite beneficial.
The 15 minute refinement results are usually too coarse for accurate bad particle removal, but it 
should show if there is some fundamental problem in the processing leading up to this point, so we 
will begin with that, then move to the 3-hour (if 'invar' is not used) refinement to identify bad particles, 
and finally finish up with the 70 hour refinement, which will run overnight. We won’t have time for the 
168 hour refinement at the workshop. Note also that if you have access to a linux cluster, using a very 
modest 128 cores, you could get your 3.6 Å map in under 2 hours. 
The program we will use for our first refinement is e2refine_easy. As its name implies, it is easy to 
use, with very few required parameters. It has an advanced system of heuristics to automatically 
select the best options for your refinement. These are not just default values. The program considers 
the information it has about your project combined with the target resolution and other parameters 
you give it to select what it believes will be the best options.  
Its choices, and some of the reasoning for them, are all documented in a report file generated during 
the refinement. If something goes wrong, you can then 
override any of these options from the command-line as 
required. 

Now do:
• 3D refinement → Single map refinement 

(e2refine_easy). 
• input → sets/best-bad1__ctf_flip_lp12.lst 
• inputavg → leave empty 
• model → select your good starting model 

(model_00_01.hdf or similar)  
• targetres→15, sym→d2, iter→2, mass→400, 

speed→5, apix→0, ampcorrect→auto, 
tophat→(empty text box) 

• parallel→thread:4  and threads→4 (or appropriate 
numbers) 

• Launch  
• e2refine_easy creates an HTML (web page) report as 

it runs explaining the various decisions it makes and 
the parameters it used, as well as summarizing the 
results. Browse into the refine_01/report folder and 
select index.html. You can press the “Firefox” button 
(or just browse to the file in your web-browser if that 
doesn't work on your machine).  

• The report is updated continuously, including 
resolution and convergence plots. You will need to 
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➡ scaling is not perfectly linear with number of processors, and is worse for small projects like this 
one than it is for large projects. If you have 100,000 particles, you can get roughly linear scaling 
for a larger number of cores.  

➡ e2refine_easy computes a ‘gold standard’ resolution as part of the refinement process, for each 
iteration of the refinement algorithm, and uses this information with to near-optimally CTF 
correct and filter the final 3-D maps. The ‘gold standard’ does not eliminate noise bias, but it 
does prevent noise bias from entering the resolution calculation, which in turn influences how 
the map is filtered. 

➡ You’ll note that the apix (Å/pixel) parameter is set to 0, not its actual value. This prompts the 
program to read the value from the header of the particles being used for the reconstruction. 
That way if the data is downsampled (as it is in this case) the apix is always properly adjusted. 
In addition, e2refine_easy will automatically rescale and resize the starting model based on the 
apix values it finds in the two files.

➡ The speed parameter is the primary control the user has over the refinement process (unless 
you want to override all of the detailed options). A speed of 1 strongly weights the heuristics 
towards a high quality reconstruction at optimal resolution, but pays little attention to how long it 
will take. A speed of 7 (the maximum) will run very quickly, but has only barely sufficient 
sampling for the target resolution. 5, the default should give a very solid reconstruction 
reasonably efficiently. Normal usage would be to use 5 for most refinements, then once you’ve 
done the very best you can with 5, try something in the 1-3 range to see if it improves your map 
quality or resolution. 

➡ Mousing over individual parameters will give help on each, though on some OS versions the 
default font coloring makes these difficult to read. If you want more information on each option, 
run e2refine_easy.py --help from the command-line, and it will give full details on all of the 
options.  

➡ The project manager simply uses the parameters you enter to 
run a command-line program for you. You could achieve exactly 
the same results by running the resulting command yourself. If 
you click on the command tab when entering parameters for a 
program it will show you the exact command that will be 
launched by the GUI. You can add additional options to the end 
of this command before pressing Launch. Just be warned that if 
you do this and switch back to the GUI tab and additions you made which are not shown in the 
property list will be lost.

➡ Clearly we won’t be running any jobs on Linux clusters at the workshop, but if you continue to 
do single particle analysis, eventually it is almost inevitable that you will need to do this. The 
final refinement below with speed=1 can take ~150 CPU-h to finish. With the full data set that 
has 10x as many particles and even finer sampling, we’d be talking hundreds of CPU-h. Even if 
you had a powerful 24 core workstation, this is still more than a day to finish the job. On a 
cluster you could bring the time down to a couple of hours. Note that all of this extra data and 
computation would be to improve from ~3.6 A we can achieve with the tutorial data to the 
published ~3.2 A resolution with the full data. There is fairly extensive documentation on the 
topic in the Wiki (http://blake.bcm.edu/emanwiki/EMAN2/Parallel) where you can find many of 
the necessary details. If you have problems, don’t be shy about asking!

http://blake.bcm.edu/emanwiki/EMAN2/Parallel
http://blake.bcm.edu/emanwiki/EMAN2/Parallel


reload the index.html page to display the new content. 
• With ~1000 particles on the quad-core desktop computers, this should take about 15 minutes to 

complete. 

Refinement 2: 
• The initial refinement should not take very long to run. As soon as it finishes, do a quick check on 

refine_01/threed_02.hdf with the browser to make sure it  looks reasonable (ie - something like a 
low resolution B-Gal). You may also take a look at the report/index.html to make sure your 
convergence and resolution curves are doing what you would expect (the web page explains this, 
at least somewhat).  

• If there are no problems, go ahead and start the second refinement running. Make the following 
changes to the last run: 
• input → sets/all-bad1__ctf_flip_lp5.lst 
• model → refine_01/threed_02.hdf 
• tophat → global    (type this word in the box) 
• targetres→6, iter→4, speed→5,   
• then Launch 
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• The tophat option above was new in EMAN2.2. When you run the postprocessing program in 
Relion, it changes the Wiener filter it normally uses during refinement into a sharp cutoff filter 
(also known as a "tophat function". This filter makes fine details stand out more strongly (like 
side-chains and the pitch of alpha helices), but also produces some high resolution artifacts. This 
filter is the reason why in the past people often thought Relion maps looked "better" than maps of 
the same resolution from a lot of other software. EMAN now provides the "tophat" option in 
e2refine_easy to do basically the same thing. 

• There are 3 choices for "tophat" in e2refine_easy. " " (empty text box), "global" or "local".  
• tophat=(empty), the tophat option will not be used, and the final filter will be just like 

EMAN2.12. This is probably a good idea for structures worse than ~10 Å resolution. 
• tophat=global does basically the same thing Relion does in post-processing, and sharpens 

your map to make it look prettier (but watch the artifacts). 
• tophat=local is a new option unique (I believe) to EMAN2. This option will compute a local 

resolution map for your refined structure, then use this resolution map to apply a local filter to 
each region of the structure. This means that regions which may be dynamic will be filtered to 
be blurrier in the final map, and regions which are very stable will be sharpened appropriately. 
For some structures, this can have a dramatic positive effect, and actually refine stable 
regions to a higher resolution, by iteratively downweighting the inconsistent regions. It is still 
experimental, but it has proven very useful on many structures containing flexible domains. 

• Note that EMAN is not using the popular ResMap program to compute local resolution, but a 
"local FSC". The results can be visualized in a similar way, but the property being computed is 
significantly different. The program e2fsc.py can be used to compute these ResMap-like 
volumes, given an unfiltered even and odd input map, and can also apply local filtration. It is also 
possible to run ResMap from within EMAN for comparative purposes.



• Now that you have a real refinement running, let’s go over what all of these options are and what 
they mean (you don’t have to remember all of this): 
• input - this is simply the set (.lst file) containing the phase-flipped particles to be refined. 
• inputavg - if specified, this permits you to use a different stack of particle images for 

reconstruction and alignment. input is used for alignment, inputavg is used for the final class-
averages and 3-D reconstruction. This is used in cases such as direct-detector movie mode 
processing when you want to use high-dose particles to determine orientation, but low dose 
(minimal radiation damage) particles for the final map. 

• model - Perhaps an unfortunate historical term. We refer to the 3-D map used to seed the 
iterative refinement as the initial model. Model is also often used to describe the PDB model 
derived from a high resolution map. That is not the meaning here. This file must be a 3-D map 
file with a valid A/pix value in the header. You do not need to resize/rescale the map. This is 
handled automatically. 

• startfrom - this can be used instead of all 3 parameters above. If you have already completed a 
refinement run, and wish to continue without changing the input particle set, but perhaps wish to 
slightly change other parameters, specify the name of an existing refine_XX folder, and it will 
pick up where that refinement left off. It is not possible to change the input particle stack with this 
option, as that would violate the assumptions for the ‘gold standard’ method. 

• targetres - This is the resolution (in Å) you are trying to achieve in this particular refinement run. 
If you select a much higher resolution than you can actually achieve, it will make the refinement 
take much longer, and in extreme cases may even make the refinement quality somewhat worse 
(not typical). If you set the resolution much lower than the provided data can achieve, it will not 
sample sufficiently, and you may get some odd resolution curves with apparently exaggerated 
resolution. If your refinement ever achieves a resolution better than your targetres, you MUST 
rerun the refinement with a higher resolution target to have a valid result.  

• sym - the enforced symmetry of your structure. Your initial model must be in a symmetry-aligned 
orientation matching the specified symmetry here. See: http://blake.bcm.edu/emanwiki/EMAN2/
Symmetry 

• iter - Number of refinement iterations to run. Linearly related to time required for the job to run. 
With a decent starting model, most EMAN2 jobs will converge after ~3 iterations, and we often 
run 4 just to make sure we have achieved pseudoconvergence. If you are starting with a very 
poor starting model, such as trying to refine a ribosome from a featureless ellipsoid, you may 
need to run 10-12 iterations to converge to something sensible, much like the initial model 
generator. 

• tophat - explained in the box on the previous page. Important new option! 
• ampcorrect - There are different strategies for CTF amplitude correction. For maps with 

resolution worse than 6-7 Å, we use the 1-D structure factor we automatically fit when doing CTF 
fitting above. For very high resolution maps, however, a B-factor correction+Wiener filter strategy 
(this is similar to what Relion and Frealign typically do) works a bit better. "auto" is usually the 
best option to select here. 

• treeclassify - don’t use this at present. It is an experimental new option. 
• breaksym - A powerful option for studying pseudosymmetric objects, such as icosahedral viruses 

with portal complexes or multimeric proteins with highly homologous subunits. This will 
determine the orientation of each particle first with the stated symmetry. It will then search that 
orientation in each of the N asymmetric units for the best match. Converges much more quickly 
if a symmetry broken starting model is provided, but after enough iterations you can even start 
with a symmetrized starting map. This is discussed in more depth in the separate heterogeneity 
tutorial. 
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• m3dold - Not normally used. Reverts the 3-D reconstruction to an older version of the code. If 
you experience any strange artifacts in your 3-D reconstruction you could try turning this on. If it 
helps (it shouldn’t), please report the situation to sludtke@bcm.edu. 

• mass - in kDa. However, that isn’t really what this parameter means. The goal is to set 1.0 as a 
reasonable isosurface threshold for the map. Historically this has been done by assuming a 
mean protein density of 1.35, and using the mass to compute a volume which should be 
enclosed by an isosurface. However, if you were to visualize a 4 Å resolution map using this 
method, you would see a solid density in space. An isosurface where the backbone and 
sidechains are visible is mostly open space, and has perhaps 1/2 the volume you would 
normally assume. So in a project targeting high resolution this mass value should normally be 
significantly less than the true mass of the target molecule. 

• automaskexpand - A ‘solvent flattening’ procedure is a standard part of most single particle 
refinement procedures. That is, a mask is constructed just outside what is believed to be the 
protein density, the mask is softened with a gaussian falloff to the mean solvent level. This 
improves both refinements as well as resolution values by eliminating pure noise. However, if 
you have a ligand with weak fractional association, or a dynamic component on the exterior of 
the molecule it can create a weak density just outside the main molecule, which may get sliced 
off by this automatic masking. This parameter allows you to specify an additional number of 1 
voxel shells to expand the mask beyond the automatically determined size. 

• classkeep - the fraction of particles in each orientation class which should be included in the 
class-average. When making class-averages, the particles are combined, then each is 
compared against the just-created average. If this value is, for example 0.9, then the 10% of the 
particles that look least like the average will be excluded from the class-average. 

• m3dkeep - similar to classkeep, but the fraction of class-averages to include when building the 
3-D reconstruction. Classes are already automatically weighted based on number of particles or 
SSNR, but if you have some class-averages in underpopulated orientations which are really 
simply bad, this allows you to exclude them from the reconstruction. 

• classrefsf - causes the class-averages to be filtered to have a similar structure factor as the 
projections. This doesn’t actually influence the information content in the class-average, but 
makes them easier to visually compare with the projections. 

• classautomask - an experimental option for performing 2-D masking of the class-averages 
during iterative class-averaging. 

• prethreshold - An experimental option for applying a threshold to the 3-D map before using it as 
a reference for the next round of refinement. 

• m3dpostprocess - allows you to specify a manual processor to be applied to the 3-D map at the 
end of each iteration. Normally not necessary as the maps are automatically filtered. 
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13. (~5 min) Eliminate bad particles
This is a new addition to EMAN 2.2. It is an alternative/supplement to the bad particle identification 
strategy above in step 8.

You will need to wait for the step 12 refinement to finish before doing this step.

Can we eliminate bad particles by simply comparing each particle to the corresponding projection or 
class average, and throw out the ones which agree poorly?  Yes and no. This idea is, in fact, already 
used during refinement to eliminate bad particle outliers within each class. Unfortunately, when used 
aggressively, this method also eliminates the very best high resolution particles (close to focus).

What we are doing in this step is very similar. Instead of computing a single similarity metric between 
each particle and each projection, which has poor separation, the comparison is made over 4 
resolution ranges, and then we combine 2-4 of these values to make the decision about which 
particles to keep. We are looking for particles which are consistently good at multiple resolutions

• Validation and Analysis → Eval particle Qual
• refine_XX→your highest numbered refine folder
• both checkboxes should be selected. includeprojs is for visualization only, and should not 

normally be used when sets with very large numbers of particles are considered, but for the 
tutorial it will be useful.

• Launch
• It should take <5 m for this to run. You can monitor it as usual with the process monitor.
• When this program is finished, it will have created four new sets: 
• sets/pf02_good_all__ctf_flip_lp5.lst
• sets/pf02_bad_all__ctf_flip_lp5.lst
• sets/pf02_good_all__ctf_flip_invar.lst
• sets/pf02_bad_all__ctf_flip_invar.lst
• This will be the program's attempt to automatically split your particles into good and bad particle 

subsets. You can simply trust this result, or you can go through the more detailed instructions 
below to manually assess your data.

You can skip the below section if you like and move on to step 14. It explains how the automatic 
separation above works, and gives you the opportunity to assess whether the automatic separation is 
likely to be good, and possibly to do a better job:

• You will also have two new files: ptclfsc_XX.txt and 
ptclfsc_XX_projections.hdf. The .hdf file is not 
useful on its own, it is referenced when visualizing 
the .txt file.

• Open the browser and double-click on 
ptclfsc_XX.txt.  This will open a window containing 
a scatter plot like this:

• Each point in this plot represents one particle in the 
data set. The X axis of this plot is the particle 
agreement (larger better) from 30-100 Å and the Y 
axis is the agreement from 15-30 Å. Note the 
characteristic 2 lobed distribution.
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• If you left-drag with the mouse over these data points, in addition to identifying the points in the 
plot, it will also open 2 image display windows showing the particle and the corresponding (aligned) 
map projection. 

• For the workshop data, you should see a distribution very much like the image above. If you don't 
see something like this, with a pretty clear separation, you may not have a good structure. In this 
situation, the most likely problem is that you started with a bad initial model, but there may be a few 
other possibilities as well. Best to ask an expert if it isn't obvious.

• If working with your own data, and the distribution appears horizontal rather than sloped, or if there 
really isn't any separation between the "lobes", this generally indicates very noisy data, either due 
to the particles being very small, or the ice being significantly too thick. If the particles are >200kDa 
and you see this problem, you may need to investigate your grid preparation. If it is a small particle, 
it may simply not be possible to accurately distinguish between "good" and "bad" particles.

• You will see the particles appear very noisy when doing this. If you open the control-panel for the 
noisy particle display, then go to the Filt tab and check all 3 checkboxes you see there, the particle 
will be filtered for display and it should be much easier to visually assess the difference between 
the particle and projection. This interactive visualization is not required to extract the good subset 
of the particles, but allows you to look at a few of the worst particles to better understand what 
about them makes them so bad.

• By default the plot widget displays the first 2 columns present in a text file, but this file actually 
contains 8 columns: 
• The first 4 columns of this file are the quality of the particle over different resolution ranges: 

30-100A, 15-30A, 8-15A and 4-8A. 
• alt, az Euler angles in degrees
• class number
• defocus in um
• There is also a comment after # on each line identifying the particle associated with each line in 

the file.
• If you middle-click on the plot, as usual, a control panel will appear. In the control panel you will see 

two widgets labelled: X Col and Y col. These control which columns are used for the X and Y axes 
respectively (numbering starts with 0). Try changing Y Col to 2. You should see a slightly different 
plot, but with a similar shape, implying we are able to discriminate individual particle quality at 8-15 
Å as well.

• Now set Y Col to 3. You should see that the distribution now is roughly symmetric about Y=0, with 
only a slight positive bias. This says that our information at 4-8 Å is not strong enough to act as a 
good discriminator of particle quality. This is typical for even the best data sets. For some data sets 
even the 8-15 Å band will not be useable. Set Y Col back to 1.

• We now wish to separate the “good” particles from this distribution. 
• Press the Classification button in the control panel, causing a new window to appear.
• In the K-means section of the new window, Nseg→2 and Axes→0,1,2
• Check the Eq Wt Axes box, then press K-means

• You should see 2 new plots appear in the control-panel list. Since the points are at exactly the 
same location as the original points, we can’t see them in the plot yet. Uncheck the original curve 
(blue), and you should now see the green and red subgroups of the data emerge. It should show a 
fairly clear separation between the groups.

• Remember, the points in the upper right of the plot are the “good” particles. We now wish to extract 
these to a new sets/XXX.lst file. To do this, in the plot control panel, click on whichever set (red or 
green) is in the upper right.
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• With this one subset selected, in the Classification window, enter goodqual in the Prefix text box, 
then press the adjacent New Sets button.  A window should appear saying “New sets created: sets/
goodqual_X.txt”

• You can now close the plot window. In the browser, you should now see that sets/goodqual_0.lst 
now contains a subset of the original particles which should have excluded about 20% of the whole 
data set. 

• While this certainly did not do a perfect job of eliminating bad particles, it certainly made a major 
step in that direction. You can repeat this process after running an additional refinement with this 
subset, and should be able to get rid of a few more bad particles, but not nearly as many as in this 
initial attempt. 

14. (20+ h, depending on options and ambition) Final refinement
If everything went well, you should now have a refinement which has achieved at least ~6-8 Å 
resolution. If the resolution curve has gone beyond Nyquist due to the high quality of the data, then 
you can't completely trust the resolution value (ie - the resolution value can only be trusted to a bit 
past the target resolution you specify), and you should run another refinement with better sampled 
data. 

You now need to decide how ambitious you want to be, based on the amount of time and the 
computer you have available (and how much you care about the final resolution of this learning 
exercise). Refer again to the list of anticipated timings at the beginning of step 12 above to consider 
how many CPU-hours you think you can afford, and adjust appropriately. 

So far we have been using the _lp5 data sets. These particles have been downsampled and low pass 
filtered so they are only useful to ~5 Å resolution, and at 5 Å will have only marginal detail. Switching 
to the full resolution data will make the refinement take significantly (probably ~5x) longer to run, but 
is the only way to get to 4 (or 3.6 Å).  

In each of these cases, you will be running a new e2refine_easy run. 

Option 1 (fastest, worst resolution) 
If you want to use the _lp5 data and just make sure you get the best resolution you can from that 
data:  

• You will be using the "good" set you prepared in step 13 above as the input for this new refinement. 
If you are just using the automatically generated results, this file will be sets/
pf02_good_all__ctf_flip_lp5.lst . If you followed the manual instructions, you will have named this 
file yourself. If the refinement folder wasn't refine_02, the 02 may also be different. If you are using 
the actual 2.22 release, it is possible that the name will be a little different, but you should be able 
to figure out the correct file. 

• targetres → 4.5, speed → 5 
• model →refine_xx/threed_yy.hdf   (fill in xx and yy with the highest numbers available) 
• iter →3  
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Option 2 (bit slower, ~4 Å resolution) 
Use the full resolution data, but with less aggressive options:  

Before we can start the refinement, we have to deal with an issue with the 
pf02_good_all__ctf_flip_lp5.lst file we just created. That file was derived from a refinement made 
with _lp5 data, and we now wish to work with the _fullres data. Unlike the other sets we have built, 
the method above doesn’t produce a set for all of the different file types for us, so, exit the project 
manager, and from the command-line (you may have to change "02" to another number depending 
on how many refinements you have run, and the name may be a bit different depending on the exact 
EMAN2 version you have): 
• cp sets/pf02_good_all__ctf_flip_lp5.lst sets/pf02_good_all__ctf_flip_fullres.lst  
• e2proclst.py s sets/pf02_good_all__ctf_flip_fullres.lst --retype ctf_flip_fullres (this will retain 

all of the same particle numbers in the .lst file but change the particle filenames to be 
__ctf_flip_fullres within this file) 

• input → sets/ptclfsc_XX_good__ctf_flip_fullres.lst 
• targetres → 4, speed → 5 
• model →refine_xx/threed_yy.hdf   (fill in xx and yy with the highest numbers available) 
• iter →4     (may be ok with only 3)  

Option 3 (slowest, ~3.6 Å resolution) 
Use the full resolution data, targeting the best possible structure. Note that this would appropriate to 
run on a workstation with many cores, or even a linux cluster. The wiki has instructions for using 
EMAN2 on clusters:  

Before we can start the refinement, we have to deal with an issue with the 
pf02_good_all__ctf_flip_lp5.lst file we just created. That file was derived from a refinement made 
with _lp5 data, and we now wish to work with the _fullres data. Unlike the other sets we have built, 
the method above doesn’t produce a set for all of the different file types for us, so, exit the project 
manager, and from the command-line (you may have to change "02" to another number depending 
on how many refinements you have run, and the name may be a bit different depending on the exact 
EMAN2 version you have): 
• cp sets/pf02_good_all__ctf_flip_lp5.lst sets/pf02_good_all__ctf_flip_fullres.lst  
• e2proclst.py sets/pf02_good_all__ctf_flip_fullres.lst --retype ctf_flip_fullres (this will retain all 

of the same particle numbers in the .lst file but change the particle filenames to be __ctf_flip_fullres 
within this file) 

• input → sets/ptclfsc_XX_good__ctf_flip_fullres.lst 
• targetres → 3.2, speed → 1 
• model →refine_xx/threed_yy.hdf   (fill in xx and yy with the highest numbers available) 
• iter →4 

When you've picked one of the options above and filled in the parameters, go ahead and 
launch the full refinement job.  

➡ Note that setting startfrom to an existing refine_xx folder is NOT equivalent to setting model to the 
final map from the same refine_xx folder. If you specify a single input model, it will be phase-
randomized to relatively low resolution as starting models for the even/odd half refinements (that 
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is, you take a step backwards if you do this). If you use startfrom, the existing even/odd 
references are used, and the refinement can progress naturally, with no model bias, but you are 
not able to change the input data set.

15. Looking at your results
First, look at the refinement report in refine_XX/report/index.html. You can open this file in a web browser 
directly, or you can use the EMAN2 browser with the ‘info’ button (which won’t show plots) or press ‘Firefox’ if 
you have that browser installed.

If your resolution curves are not “healthy”. That is, they have strange peaks, don’t fall all the way to 
zero, or have other artifacts, then some sort of bias still managed to creep its way into your project. If 
this happens, I’d suggest asking me about it. Sometimes you will see this in the tightly masked curve, 
but the curve with the normal mask should be fine. This simply indicates that the automatic tight mask 
was a little too aggressive, and you should ignore that curve. For the tutorial project, with a speed=5 
refinement, the curve should look something like:

Next, look at the final refined map (refine_03/threed_XX.hdf). 
• You can open the map in the EMAN browser and look at it directly
• You can load it into Chimera, and also open PDB 3j7h. 

• If the PDB vs map alignment is off, you can use Chimera’s “fit in map” tool
• If you still have a poor match, the handedness of the map is probably inverted. There is no way to 

determine handedness in a CryoEM experiment without doing a tilt experiment, so the handedness 
(regardless of software) has a 50/50 chance of being wrong. If you need to fix it, there are 2 easy ways to 
do it in EMAN2

• Use the EMAN2 browser, and browse to the map, then press “filtertool”.
• configure a processor: xform in the left box, flip in the right box. Enter “z” in the axis box. Check 

the checkbox near xform.
• Use the menu to save processed map.

• Alternatively, from the command-line, use a command  like:
• e2proc3d.py refine_03/threed_04.hdf processed_map.hdf --process xform.flip:axis=z
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• Now you can open processed_map in Chimera, and you should be able to dock 3j7h

At this resolution, beta strands should be reasonably separated, alpha helices should exhibit pitch, and larger 
sidechains should be visible. You should see something like:

➡ If you refine exactly the same data set with Relion or Frealign, you will almost certainly find that 
the resolution curves do not overlap perfectly. With very good data like this you should expect to 
get nearly identical results. The cause for the disagreement in the FSC curves is generally 
differences in masking. Relion in particular uses a very aggressive masking strategy, which 
sometimes pushes the ‘gold standard’ resolution beyond where (in my opinion) it has any right to 
be. So, if comparing between packages it is critical that you use the same masks on both 
structures.

Particularly if you observe any anisotropy in the resolution (if the map looks smeared or blurry in 
some particular direction), it is a good idea to take a look at the orientation distribution of your map. If 
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you run Validation and Analysis → Run e2eulerxplor, it will give you a window showing the distribution 
of particle orientations within one asymmetric unit. As usual, middle-clicking on the orientation display 
window will give a control panel allowing you to select which iteration of which refinement to look at. 
The height of each cylinder indicates the relative number of particles in that orientation. Clicking on a 
cylinder will show the projection and class-average from that orientation. You will find that this 
particular specimen does have a fairly significant preferred orientation, which has likely produced 
some resolution anisotropy. There are ways to evaluate this in EMAN2, but the results are difficult to 
visualize and relate back to the map, so we won’t discuss that in this tutorial. 

The next assessment which is good to perform is to compare projections of the final map to 
reference-based class-averages, reference-free class averages, and perhaps even individual 
particles. There are two primary tools you can use to do this comparison: e2ptclvsmap.py and 
e2classvsproj.py. These programs can be used to generate figures for papers demonstrating good 
agreement between data and reconstruction. 
  
For example, if we wish to compare our original reference free class averages to the projections from 
our final map. First we rescale the final map to match the downsampled data we used for class-
averaging: 
• e2proc3d.py refine_04/threed_04.hdf rescaled.hdf --process math.fft.resample:n=4.5633 

Then we run the comparison: 
• e2classvsproj.py r2d_01/allrefs_06.hdf rescaled.hdf clsvsproj.hdf --ang=7.5 --sym=d2 

The result, clsvsproj.hdf, will look something like: 

The images alternate, with first, a class-average and second, the corresponding projection. It is 
important to note that e2classvsproj.py also filters the projections to match the apparent filtration of 
the class-averages. Ideally, every reference-free class-average should have a corresponding 
matching projection. The exception would be class-averages which are believed to be artifacts, such 
as ice contamination. If there are any class-averages which appear “good”, which do not have a 
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matching projection, you should be very concerned. This is an indication of an inconsistency between 
the data and the map. There could be several possible causes: 
• The class-average could represent some other species of particle present in the boxed out particle 

set. In that case, particles associated with such classes should be removed. 
• The 3-D structure is incorrect, and is excluding a view which should be present in the map. This 

could result if a very bad starting model were used for refinement. However, in this case, it should 
not have been possible to achieve a high resolution refinement. 

• The particle may have some compositional or conformational variability in solution. This issue will 
be considered in a separate tutorial. 

In the example above you’ll see that there is a surprisingly good match even for the class-averages 
which we identified as consisting primarily of ice contamination. These class-averages are 
unsupervised, so the shapes of these blurry averages are not due to any sort of bias by a 3-D map. 
This implies that some coarse features of the particle are still managing to emerge even with a strong 
random ice-blob component. Still, the key factor to note is that ALL of the class-averages showing 
detailed features have a very nicely matching projection of the map, so we have very good self-
consistency.  

If you did not use the tophat=local option discussed above, you may wish to consider running: 
e2fsc.py refine_XX/threed_even_unmasked.hdf refine_XX/threed_odd_unmasked.hdf   This will 
compute a local FSC map showing how the resolution varies across the map. This will have lower 
sampling than the original input maps, but can be visualized in chimera as a surface color. Alas this 
isn't a very useful thing to do on this particular data set because it is quite homogeneous with little 
local motion. This program can also be used to perform local filtration (tophat=local), and the 
parameters for the resolution estimate are adjustable at the command-line (e2fsc.py --help).  

While we will not perform it in this tutorial, it can also be useful to run ResMap (http://
resmap.sourceforge.net/) on your refinement results. Note that ResMap works best when provided 
with unmasked/unfiltered volumes. While it is impossible in any CryoEM reconstruction to provide 
truly “unfiltered” reconstructions, because CTF correction necessarily involves filtration, you can use 
the same threed_even_unmasked.hdf (and odd) you used above. These are the unmasked volumes 
corresponding to the last successful iteration in the refinement. These are the two files you should 
provide to Resmap. While Resmap can work with a single map, its estimates are far better if you give 
it the unmasked even/odd maps from a “gold standard” pair. This "resolution" estimate is 
mathematically quite different than that computed by e2fsc.py. 

Once you have optimized your reconstruction as described in this tutorial, there are other factors you 
can consider: 
• Movie mode alignment - The provided data for this tutorial includes already aligned/averaged/

downsampled direct detector movies. This is both due to data size and processing limits. The 
alignment was NOT done with the UCSF software used in many groups, but with EMAN. In our 
testing, EMAN produces extremely good movie alignments, quite rapidly, and does not require a 
GPU to do them. This is done with e2ddd_movie.py. 

• astigmatism - the astigmatism present in the tutorial data really isn’t big enough to bother correcting 
it. If you do correct astigmatism (with your own data), the best approach is to determine defocus/
astigmatism for the entire micrographs. e2ctf_auto will then respect these values in favor of the 
particle based values. The whole micrograph estimation can be done in EMAN as we did in this 
tutorial, or if you prefer, you can use CTFFIND3 or other tools, then import the results. 
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• magnification anisotropy - some microscopes have a significant amount of magnification 
anisotropy, and it may vary with time. This is a completely different effect than astigmatism. 
Anecdotally this seems to occur only on FEI microscopes and is typically in the 1-2% range. It is a 
significant effect for large virus particles, where it may limit the resolution out as far as 5-6 A, but for 
small particles, the effect is often negligible to ~2 A. One approach for measuring this effect is to 
put an amorphous gold specimen in the microscope and assess the circularity of the gold ring. 
However, you can also estimate this directly from the particles if the effect is large enough to have 
an impact on them. To do this, run e2evalrefine.py with the --anisotropy option. This will measure 
the anisotropy from the particles in relation to a completed high resolution refinement. If you find a 
significant anisotropy, this can be corrected on the raw particle data with e2proc2d.py with the --
anisotropic option. We do not suggest making the corrections at the micrograph level due to long-
range Moire patterns. 
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Overview/Quickstart 

This is a highly abbreviated form of the full single particle reconstruction tutorial. The numbering 
follows the detailed tutorial above, so you can switch back and forth. While this quick tutorial will get 
you through the process, you may not learn much on the way. It is a good starting point for those who 
already have EMAN2 experience and are just trying to learn what recent changes have been made. 

IF YOU ENCOUNTER ANY UNEXPECTED BEHAVIOR HERE, PLEASE CHECK THE FULL 
TUTORIAL ABOVE BEFORE ASKING FOR HELP! 

1. cd workshop_2016/bgal       (assumes you have already unzipped the data) 

2. e2projectmanager.py 
a. Project → edit project     (on the menu bar, not the task list) 

i. Mass = 400, Cs = 2.7, voltage = 300, apix =1.275  

3. There are 2 options for importing/evaluating the data. See above for details. Here we show only the 
automatic form: 

a.  (~5 min) Raw Data → Import Micrographs & est Defocus 

i. Browse, then select all HDF files in the orig_micrographs folder (press OK) 

ii. check edgenorm, xraypixel and ctfest checkboxes, and uncheck invert and astigmatism. 

iii.Other parameters should be correct and match 2.a.i above. Launch 

4.  (~2 min) Import box locations in to project, and extract particle images 

a. Particles → Import Tools → Import .box or .star files  

b. Browse button, and select all of the .box files in the orig_box folder 

c. Launch. Finishes almost instantly. 

d. Particles → Generate Output 

e. Press the Browse button and select all of the micrographs 

f. box_size → 256  
g. Launch. Only takes a minute or two. Use Process Monitor to watch progress (middle icon on the 

right) 

5. (~5 min) CTF Fitting and preprocessing of particles 

a. CTF → CTF Autoprocess 

b. check the hires box. 

c. Image parameters should be prefilled. threads → 4 (# cores your computer has) 

d. Launch  

e. See section 5a above if you wish to interactively browse results 

6. Building sets 

a. Nothing to actually do here. Already done for you in step 5.  
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7. (~20 min) Generating reference free (unsupervised) class averages (2D refinement) 

a. 2D Analysis → Bispectrum-based Class Averaging (the newer program, see notes above) 

b. Input → sets/all__ctf_flip_lp5.lst 
c. Ncls → 64, nbasis → 24 

d. classalign = rotate_translate_tree, params = flip=1 

e. parallel → thread:4  (NOT threads:N, replace 4 with the # of cores on your machine) 

f. The defaults should be fine for the other options, Launch 

8. (optional, ~10 min) Eliminate bad particles by identifying bad classes                                (skip this 
step for 1 day workshops) 
a. Instructions are extensive, please read the detailed section 8 above. 

9. (manual, ~5 min) Select good class-averages 
a. Display r2db_01/classes_sort_00.hdf in a tiled display using the browser 
b. Open the control-panel and use the “del” to mark any obviously bad class-averages. 
c. Save these good averages as good_classes.hdf  

10. (~2 min) Initial Model→Make Initial Model 
a. Input = good_classes.hdf 
b. Sym = D2, tries = 12, iterations = 12, shrink = 3 
c. parallel:  as above 
d. randorient → unchecked 
e. Launch 
f. When initial model generator is done, open browser and look in “initial_models” 
g. If you don’t know how to evaluate the results, please read the full tutorial section above for 

step 10. You may need to rerun the program if the Monte-carlo didn’t produce a good result on 
the first try. 

11. (~1 min) Building Sets Again (read section 11 above for details) 
a. Particle sets→ build particle sets 
b. select allparticles and excludebad 
c. Enter all-bad1 as the setname 
d. Launch 
e. Particle sets→ build particle sets 
f. deselect allparticles 
g. press Browse and select the best 20-25 images (with the highest SSNR-lo or hi) 
h. Enter best-bad1 as the setname 
i. Launch 

12. Initial refinements 

a. (~25 min) 3D refinement → Single map refinement (e2refine_easy) 
i. input → sets/best-bad1__ctf_flip_lp12.lst 
ii. model → select your good starting model (model_00_01.hdf usually) 
iii. targetres → 15, sym → d2, iter → 2, mass → 400, speed → 5, apix → 0  
iv. ampcorrect→auto, tophat→(empty text box)  
v. invar → checked (optional, much faster but slightly reduced quality) 
vi. fill in parallel as above. Also fill in the number of cores in the threads box 
vii. Launch 
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b. Check results quickly. If ok, run the longer refinement to ~7 Å 

c.  (~4 hours) 3D refinement → Single map refinement (e2refine_easy) 
i. change model → refine_01/threed_02.hdf 
ii. input → sets/all-bad1__ctf_flip_lp5.lst 
iii. tophat → global (type this word in the box)  
iv. targetres→6, iter→4, speed→5 
v. invar → Not recommended for final refinement 
vi. Launch again. This one will take a bit longer 

13. (manual ~5 minutes) Eliminate bad particles 

a. Validation and Analysis → Eval particle Qual 

b. refine_XX to best current refine_ folder 

c. Check both boxes for tutorial data, may disable includeprojs for large projects  

d. Launch (Should take ~5 min) 

e. Will create two new sets/* files. (see detailed instructions for more) 

14. (~15-30 h) Final refinement, 3D refinement → run e2refine_easy 

There are several choices, please read section 14 above. 

15.Evaluate results! 
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