Aligning and Averaging 3-D
Subvolumes from Electron Cryo-Tomograms

Michael F. Schmid

Flow Chart for processing subtomograms

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Key Points/Concepts

Effect of the Missing Wedge
Image considerations
filtering, masking
All-vs-all alignment as an option
Optimizing search parameters for efficiency
Examples \qquad
carboxysome, $\varepsilon 15$, herpes pentonless capsid, trypanosome flagella

Effect of the missing wedge
-Tomographic data is limited to $\pm 70^{\circ}$ max tilts
-Distorts the reconstructions

- Makes mutual alignment difficult

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The missing wedge in Fourier space \qquad during orientation cross-correlation search
\qquad

The number of zeros in the complex product changes with orientation, and the more zeros, the lower the cross-correlation peak

\qquad
\qquad
\qquad
\qquad
\qquad

One solution is to scale the cross-correlation peak by the reciprocal of the number of non-zeros in the complex product for that orientation

Another more recent option

-At each orientation, normalize the cross-correlation map
\qquad
-In real space, this makes the mean=0
and s.d. $=1$, so peak value is the \# times \qquad
s.d. by which the peak exceeds the
average for that orientation
-In Fourier space this makes total power
\qquad
of the complex product equal for all
orientations, which compensates for the
missing wedge
\qquad
\qquad

Improvement of alignment by accounting for the missing wedge in cross-correlation search			
Fraction missing	Tilt series equivalent	Ignoring effect of missing wedge	Accounting for missing wedge
. 00	$\pm 90^{\circ}$	40, 20, -20	40, 20, -20
. 05	$\pm 85.5^{\circ}$	40, 20, -20	40, 20, -20
. 10	$\pm 81.0^{\circ}$	40, 20, -20	40, 20, -20
. 15	$\pm 76.5^{\circ}$	40, 20, -20	40, 20, -20
. 20	$\pm 72.0^{\circ}$	40, 20, -20	35, -105, 125*
. 25	$\pm 67.5^{\circ}$	5, 20, -20	40, 15, -15
. 30	$\pm 63.0^{\circ}$	5, 15,-15	35, 20, -20
. 35	$\pm 58.5^{\circ}$	5, 15, -15	35, 20, -20
. 40	$\pm 54.0^{\circ}$	5, 15,-15	40, 20, -20
. 45	$\pm 49.5^{\circ}$	5, 15, -15	15, 75, -90
. 50	$\pm 45.0^{\circ}$	5, 15, -15	10, -60, 50

\qquad
\qquad

Fraction
missing missing wedge 40, 20, -20 40, 20, -20
$40,20,-20$
$40,20,-20 \quad 40,20,-20$
$40,20,-20$
$35,-105,125 *$
40, 15, -15
35, 20, -20
35, 20, -20
15, 75, -90
$10,-60,50$
\qquad
\qquad
\qquad
\qquad
\qquad

Image Preparation Considerations

\qquad
. Contrast-flipping, initial rotation and hand-choice
Reconstruction is usually contrast-reversed
Some reconstructions do not have missing wedge along z
2. Filtering

Subtomograms are inherently low-res and high-noise, so alignment should not be overly optimistic ($\sim 40 \mathrm{~A}$ lowpass is appropriate)
Large-scale features of the object may allow even more aggressive
filtering for initial alignment filtering for initial alignment
3. Normalization

Useful for classification based on cross-correlation peak values
4. Masking

Spherical Zero mask insures correct "fill-in" function for rotated volumes
5. Always carry out resulting operations (rotation and translation) on the ORIGINAL files, not the low-passed, etc. versions!
6. Ultimate goal is to keep track of all transformations to be able to reinsert the average into the tomogram at the orientation of each instance of the structure

Carboxysome

Found in photosynthetic and chemoautotrophic bacteria

"Polyhedral" bodies - ~100 nm diameter, thin angular shell
granular interior
Contain RuBisCO - fixes CO_{2}
Regulated
Size, shape, symmetry of carboxysome and arrangement of RuBisCO unknown
What if we want to inventory macromolecular machines in the cell if we don't know much about them a priori
500 nm
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Approach

Conventional single particle processing with icosahedral symmetry using common lines did not work
Our approach - averaging 3D subvolumes extracted from tomograms (subtomograms)

- but subtomograms have a missing wedge in Fourier space the same shape as the missing wedge of the entire tomogram
In the literature of post-tomographic averaging,
\qquad subtomograms have been aligned against a 3D model template which does not have a missing wedge
Size heterogeneity and unknown symmetry make it difficult to choose a starting model
Therefore we chose to mutually align subtomograms to each other

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Plot of density for 1 of 92 3-D Volumes

\qquad

Carboxysomes have size heterogeneity

Reference-free 3-D alignment and averaging

Roughly split 3-D subvolumes into 9 diameter classes

All-vs.-all mutual cross-correlation orientation alignment within each class, and also with the next larger class, and also with the next larger
and smaller diameter classes, shifting and smaller
if necessary

П

Average best pairs of alignments These replace the original data pairs in new all-vs-all round

Result of all-vs.-all mutual cross-correlation searching and averaging in size classes \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conclusions

\qquad

- Shell symmetry is icosahedral
- Size of carboxysome varies from 88 to 103 nm - \qquad unusual for an icosahedral particle
Shell protein arrangement varies with size
RuBisCO organization in layers inside, but not
\qquad regular, nor constant amount per particle
- Specialized processing needed for determining
mutual orientation and for averaging of particles with missing wedge \qquad
Schmid et al. (2006) J. Mol. Biol. (in press, online 09/14/06)
\qquad
\qquad

HSV pentonless capsids

\qquad
\qquad
\qquad
\qquad
Icosahedral single particle reconstruction -
Portal averaged away \qquad
\qquad

Flow Chart for processing subtomograms

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Tilt Series of Herpes Pentonless capsid \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Alignment problem

-The missing wedge causes densities to be different in different directions (from part 1)
-However, opposite vertices are affected equally \qquad by the missing wedge, so our solution was to compare the densities at opposite vertices; the \qquad one with the biggest difference in density was the portal vertex. \qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Difference map- 5 -fold minus icosahedral average, \qquad
cylindrically averaged, placed into icosahedral map

Epsilon 15 tomographic

 averages1. Align tomographic subvolumes to \qquad icosahedrally averaged model from single particle (after this, no model used)
2. Put each vertex in turn along z, average it c19 (cylindrical) \qquad
3. Put unique vertex along +z . (6 tail spikes still not aligned) \qquad
4. All-vs-all cross-correlation with 5 search orientations
5. Average best-correlating pairs, etc.

Flow Chart for processing subtomograms

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Jiang et al. (2006) Nature 439:612

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Epsilon 15 tomographic
averages

1. Align tomographic subvolumes to icosahedrally averaged model from single particle (after this, no model used)
2. Put each vertex in turn along z , average it c19 (cylindrical)
3. Put unique vertex along +Z . (6 tail spikes still not aligned)
4. All-vs-all cross-correlation with 5 search orientations
5. Average best-correlating pairs, etc.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Epsilon 15 tomographic

averages

1. Align tomographic subvolumes to \qquad icosahedrally averaged model from single particle (after this, no model used)
2. Put each vertex in turn along z , average it c19 (cylindrical) \qquad
3. Put unique vertex along +Z . (6 tail spikes still not aligned)
\qquad
4. All-vs-all cross-correlation with 5 search orientations
\qquad
5. Average best-correlating pairs, etc. \qquad

\qquad
$\underline{ }$
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Schmid et al (unpublished) Jiang et al. (2006) Nature 439:612
