
Programming for
Absolute Beginners

Steven J. Ludtke, PhD

IN PYTHON

Preface

Preface

ii

I first learned to program when I was about 10 years old, when my father
purchased our first computer, a TRS-80 Model I. Most of you have probably
never heard of this computer, as the year was 1978, and this was one of the
first ‘personal computers’ to come to market. There were no home video
games yet, and such devices were quite rare. In those days, there were no
hard drives, and even floppy drives weren’t available yet. The sole
mechanism for storing programs was on an audio cassette tape. The
computer had the ‘BASIC’ programming language built in to it, but otherwise
came with no software at all. If you wanted to play a game, you had to type
in a program from a magazine first. Needless to say, such games were
primitive even by the standards of what you might find on a cell-phone ten
years ago. Nonetheless, it was cutting edge at the time.

My father made a deal with me. I could play games on the computer, but
only if I went through the ‘learn to program’ book that came with the
computer. This book was really quite amazing even by modern standards. It
had little cartoons, and took you step by step through the art of
programming in BASIC. I still remember bits of it, even 30 years later, and
once I started learning how to get these fascinating machines to do
something, I was hooked. After all, you really couldn’t do much interesting
on the machines without knowing how to program.

Of course, The world has changed. Nowadays, you can buy or download a
program for just about any task you can imagine. Some of these programs
even include little programming languages of their own.

So, why learn to program at all ? Seriously, why ?

Chapter 1

Getting
Ready to
Program
Python is, itself, a program you run on your
computer, which interprets the programs you enter.
This chapter takes you through the process of
setting your computer up to use Python, and some
initial examples to show you what Python can do.

Conventions
I tried to write this book so it would be understandable to someone learning
programing for the very first time. If you already know a little bit of programming
from somewhere, you could also use this book to learn Python, though you may
find some of it a little simplistic. To add a little spice, you will find occasional boxes

that look like this: box , with notes for more advanced readers. If you're a
beginner, you can ignore these.

There are a few basic conventions we use in this book that it’s important to be
familiar with, so you find the process fun, not frustrating. Most people will find
these things pretty obvious, but let’s just make sure everyone’s on the same page.
First, if you see text that looks like this, you are supposed to (or can if
you like) type exactly what you see into the computer. Generally you should press
<enter> at the end of each line. When you see something between <> characters,
this represents a key you are supposed to press, such as <p>, <space> or
<enter>. Please note also that <enter> is the same as <return>. Different
keyboards give it different names. Sequences like <ctrl-c> mean you should hold
down the ‘ctrl’ key and press c. Text like this is text you should expect to see
displayed on the screen.

Section 1

SUMMARY

1. Text to type

2. Text you see on the screen

3. <key> to press

4. Example code at

5. Chapter ? contains a review of concepts

How This Book Works

5

The Good
Python is, quite simply, a fun language to use. Whereas many programming
languages force you to do any specific task one specific way, and make you
carefully define every aspect of your program before you can actually do anything,
Python is very relaxed, and free-form. For any given task, it is generally possible to
come up with a half-dozen different ways to accomplish it in Python. While it
permits you to be very rigid in your software design, it also gives you the freedom
to simply play around (which is what we will spend most of this book doing).

Python is widespread enough that it is included as a standard part of most (but not
all) modern operating systems. The specific version of Python you will have will
vary with how old your OS is. The exercises in this book will focus on Python 2.7.x.
The vast majority of what we cover will also be valid for earlier versions of Python.
Python 3.x has also been available now for some time, however adoption has
been slow because it isn’t 100% compatible with earlier versions. We will try to
mention any places where there is a critical difference between Python 3 and
Python 2.

The Bad
Python is what is known as an interpreted programming language. When you write
a program in a language like C++ or Fortran, your program is first passed through

Section 2

SUMMARY

1. Python installation is platform-dependent
(Linux, Mac, Windows).

2. This book will use Python 2.7.x. Most of
what is covered will also apply to other
versions.

3. We also install some useful Python libraries
which aren’t part of the standard
distribution.

4. Wherever text appears in this font, this
is an indication of something you are
expected to type into your computer.

Installing Python

7

Starting Python
There are two fundamentally different ways you can use an interpreted language
like Python. First, you can use a text editor to create a file containing your
program, then you can run the program just like you do any other application on
your computer. Alternatively, you can run Python in interactive mode, and just
type commands into it one after another. It will immediately respond to each
command. We will make use of both methods in this book. However, we will begin
with the interactive mode, and use this for many of the simple exercises in the
book.

On any of the three computer platforms we cover, Python can be run by opening a
command prompt, and typing python. While you can start it using an Icon on
most platforms as well, there are some reasons not to do it that way just yet.

So, go ahead and give it a try. Once you enter python, you should receive a
prompt, looking something like:

Section 3

SUMMARY

1. You can start Python by typing python at
the command-prompt.

2. Python can be used to do basic math like a
calculator, for example 2*5+10. If you need
scientific functions, like sqrt() or cos(), first
you have to type: from math import *

3. A string can be created by surrounding text
with double quotes, such as : "a test".
You can also perform addition and
multiplication with strings.

4. Python has built-in Turtle graphics, which
can be used to do simple drawing
operations. This emulates a real Turtle
robot drawing with a pen.

Taking Python Out for a Spin

11

While you haven’t really been ‘taught’ anything yet, if you’re
clever, you may be able to figure out the examples you’ve seen
enough to try your hand at a few simple problems. Of course, the
answers are provided as well.

Problem 1 - Print the integers from 0 to 10 and the square root
of each.

Problem 2 - Modify the turtle examples and see if you can draw:

a) A hexagon

b) The spirograph example is loosely based on triangles, modify
it so its based on squares instead.

Section 4

Problems

17
Scroll through the images to see the solution.

Solution 1.1

Again, start by running python.

Solution 1.2

Chapter 2

Turtlerific

Turtles have the most potential for doing something
interesting quickly, so we'll take a couple of turtle
examples apart to see what we can learn from
them.

Let's start with our spirograph example from the last chapter:

from turtle import *
s=Screen()
reset()
goto(-125,-125)
clear()
for i in range(61):
! forward(250)
! left(118)

This example shouldn't be too difficult to figure out. Let's start with the turtle
graphics functions: Screen(), reset(), goto(), clear(), forward() and left(). These
functions wouldn't be available except for the first line:

from turtle import *

Import
Python comes with a wide range of standard libraries to do all sorts of useful and
interesting things. We've seen two of these libraries in the examples in the first
chapter: math and turtle. While these libraries are distributed with the Python

Section 1

SUMMARY

1. Python has many built in modules,
including math and the turtle graphics
module we have already used. To use a
module you must either import module
or from module import *.

2. Python has a built-in help function, which
can be used to get documentation for
modules or functions, such as
help(math).

3. There are over 20 different commands you
can give the turtle. The most useful of
these are summarized.

4. Lists can be created using square brackets
and commas, such as: [1,2,3,4].

5. The for loop allows us to repeat an
operation for each element in a list.

Spirograph Example

19

Totally Random Walks
So far, we’ve introduced two modules: math and turtle. Let’s go ahead and add
one more to our repertoire. Try this:

import random
for i in range(10): print random.randint(1,100)

As you’ll see, this program will print 10 random numbers between 1 and 100
(possibly including 100). If you run the program again, you’ll get a different list of
numbers each time. There are a number of other functions available within the
random module as well, for example, random.uniform(1,100) will return a
random floating point number between 1 and 100. random.gauss(80,10) will
return a ‘Gaussian’ (a bell-shaped curve) centered at 80, with a width of 10. That is
it will be more likely to return values close to 80. The farther you get from 80, the
less likely it is to produce that number, but technically it could return 1000. It’s
simply very unlikely.

Let’s try applying this to turtle graphics:

from random import *
from turtle import *
a=Turtle()
speed(0)

Section 2

LOREM IPSUM

1. The random module provides functions for
making random numbers of different sorts.

2. Less Random Walks

3. Traveling Circle

4. Making Decisions

Random Walk

29

1)

Section 3

Problems

35

Chapter 3

Sudoku

In this chapter, we'll learn how to create and solve
Sudoku puzzles. Even if you don't know Sudoku or
don't like them, this chapter will introduce many
useful concepts.

Sudoku, if you aren't familiar with it, is a popular puzzle game of pattern
completion. While the rules are simple, they can be extremely challenging to solve.

The Rules
Before we can start thinking about how to write a program to solve or create
Sudoku puzzles, we need to understand the rules. If you're already familiar with
the rules, you can skip this section.

Sudoku is a pretty simple game. It's played on a 9 x 9 square grid. each square
holds a number between 1 and 9. The trick ? Each row, each column and each 3x3
smaller square can only have one of each of the 9 numbers. An example of a
solved Sudoku is shown to the right. When you
have a book of Sudoku puzzles, some of the
numbers are missing. The goal of the game is to
fill in all of the missing numbers. The more that
are missing, the harder the puzzle.

How would you go about making a Sudoku
from scratch ? One simple approach would be
to begin with an empty grid, then start filling in
random numbers in squares. Each time you
insert a number, you check to see if it's legal. If

Section 1

LOREM IPSUM

1. The Rules

2. Scrambled Sudoku

3. Functions

4. Sudoku Storage

5. Advanced Slicing

6. Sudoku Scrambler

7. Writing Actual Programs

Making A New Sudoku

37

1 2 3 4 5 6 7 8 9

4 5 6 7 8 9 1 2 3

7 8 9 1 2 3 4 5 6

2 3 4 5 6 7 8 9 1

5 6 7 8 9 1 2 3 4

8 9 1 2 3 4 5 6 7

3 4 5 6 7 8 9 1 2

6 7 8 9 1 2 3 4 5

9 1 2 3 4 5 6 7 8

A Solved Sudoku

So far we've gotten by with simple for loops and lists. Before we move on, we're
going to introduce not one, but two core concepts in programming: nested loops
and recursive functions.

Nested Loops
Nested loops really aren't a very difficult concept to grasp, but sometimes it can
take a little practice to understand when to use them. The for loops we've already
used operate on a single list. Now consider a table (like the 9 x 9 elements in our
Sudoku puzzle). While it's absolutely possible to do what we did with the Sudoku
puzzle, and 'unwrap' our table into a single list, it can also make our programs a
lot more complicated. Let's take a look at a simple problem: printing a
multiplication table. We'll do the same thing two different ways, one using a single
for loop, and one using a nested loop.

The Old Approach
If we want to make a multiplication table with a single for loop, we need to know
the total number of entries in the table, and then figure out which row and column
we're in for each item in the loop. We also have to jump through a few hoops to
decide when to start a new line. For simplicity, we'll do a 9x9 multiplication table.
That means (like the Sudoku) we will have 81 elements in our table. We can use

Section 2

SUMMARY

1. A nested loop is a loop inside another loop.
It is used to loop over more than one
dimension. For example, all of the rows and
columns in a table.

2. A recursive function is a function that calls
itself. Recursion has many uses, and while
it is a bit difficult to absorb, in some cases
there is virtually no other good way of
achieving the same results.

Nesting and Recursion

47

Let's turn the problem around now. Let's say we have a Sudoku with missing
numbers. How would we go about filling in the missing values (correctly) ?

Regardless of how we try to fill the numbers in, we will need to define a function
that checks to see if a given Sudoku list is a legal solution or not. This is pretty
straightforward conceptually. We just need to loop over all of the rows, columns
and 3x3 regions, and check if all of them have exactly 1 of each number 1-9. If any
fail the test, then we return False. Otherwise we return True.

Sets
To do this efficiently, we need to introduce yet another type of Python object: the
set. Like a list, a set contains other objects, such as numbers or strings.
Unlike a list, a set has no order, and the items in the set are unique. That is, if
you have a set containing 1,3 and 5, then add 3 to the set, the set will still have 1,3
and 5 in it. With a list, if you had [1,3,5], and appended 3 to the list, you
would have [1,3,5,3]. Give this a try:

a=[1,2,3,4,3,2,5,7,9,12,3]
b=set(a)
print a,b

Section 3

SUMMARY

1. Sets

Solving Sudoku

51

Lorem ipsum dolor sit amet, ligula suspendisse nulla pretium,
rhoncus tempor placerat fermentum, enim integer ad vestibulum
volutpat. Nisl rhoncus turpis est, vel elit, congue wisi enim nunc
ultricies sit, magna tincidunt. Maecenas aliquam maecenas ligula
nostra, accumsan taciti. Sociis mauris in integer, a dolor netus
non dui aliquet, sagittis felis sodales, dolor sociis mauris, vel eu
est libero cras. Interdum at. Eget habitasse elementum est,
ipsum purus pede porttitor class, ut lorem adipiscing, aliquet sed
auctor, imperdiet arcu per diam dapibus libero duis. Enim eros in
vel, volutpat nec pellentesque leo, temporibus scelerisque nec.

Ac dolor ac adipiscing amet bibendum nullam, massa lacus
molestie ut libero nec, diam et, pharetra sodales eget, feugiat
ullamcorper id tempor eget id vitae. Mauris pretium eget aliquet,
lectus tincidunt. Porttitor mollis imperdiet libero senectus
pulvinar. Etiam molestie mauris ligula eget laoreet, vehicula
eleifend. Repellat orci eget erat et, sem cum, ultricies sollicitudin
amet eleifend dolor nullam erat, malesuada est leo ac.

Varius natoque turpis elementum est. Duis montes, tellus lobortis
lacus amet arcu et. In vitae vel, wisi at, id praesent bibendum
libero faucibus porta egestas, quisque praesent ipsum

fermentum placerat tempor. Curabitur auctor, erat mollis sed
fusce, turpis vivamus a dictumst congue magnis. Aliquam amet
ullamcorper dignissim molestie, sed mollis. Tortor vitae tortor
eros wisi facilisis. Consectetuer arcu ipsum ornare pellentesque
vehicula, in vehicula diam, ornare magna erat felis wisi a risus.
Justo fermentum id. Malesuada eleifend, tortor molestie, a fusce
a vel et. Mauris at suspendisse, neque aliquam faucibus
adipiscing, vivamus in.

Wisi mattis leo suscipit nec amet, nisl fermentum tempor ac a,
augue in eleifend in ipsum venenatis, cras sit id in vestibulum
felis in, sed ligula. In sodales suspendisse mauris quam etiam
erat, quia tellus convallis eros rhoncus diam orci, porta lectus
esse adipiscing posuere et, nisl arcu vitae laoreet. Morbi integer
molestie, amet suspendisse morbi, amet, a maecenas mauris
neque proin nisl mollis.

Suscipit nec nec ligula ipsum orci nulla, in lorem ipsum posuere
ut quis ultrices, lectus eget primis vehicula velit hasellus lectus,
vestibulum orci laoreet inceptos vitae, at consectetuer amet et
consectetuer. Congue porta scelerisque praesent at, lacus
vestibulum et at dignissim cras urna.

Section 4

Problems

58

Chapter 4

Wordgames

In this chapter, we’ll use strings in Python to provide
solutions for some common word-games, or
perhaps, even create some new puzzles.

More Ify Statements
While we could just jump right in and start writing programs again. Let's take a
break and introduce a few more concepts first.

Let's start by going back briefly to our discussion of the if statement. Actually,
there's even more to it than we've seen. The full description of if is:

if expression : do something
elif expression : do something else
else : do something completely different

This sequence of commands lets you ask a sequence of linked questions. If the
first question is True, then it executes do something and skips the rest. If the first
question is False, then it asks the second question. If that's True, then it
executes do something else, and skips the else. If that one isn't True either, it
executes do something completely different. You can put as many elif
statements in as you like, but there can only be a single else at the end, which
happens only when everything else in the list is false.

This sequence is often used to do things like ask the users questions. Let's try
using raw_input with our new extended if statement:

Section 1

LOREM IPSUM

1. More Ify Statements

2. While Not

3. Strings

Preliminaries

60

There are a lot of games which involve making words from random letters, some
involve dice, some involve tiles. What they all share in common is a set of random
letters.

Once again, when settling down to write a program to do something, the first thing
we need to do is describe exactly what the program would do, step by step. Think
of it as explaining the steps of the process to a six year old. You need to cover
every step in detail. The problem we want to solve in this section is to take a list of
N (could be 5 or 7 or whatever you like) letters, and rearrange them to produce any
possible word.

Break it Down
Now that we have a broad definition of the problem we want to solve we need to
go into more detail. We'll start out with a simplified version of the problem. Say, we
have 5 letters: A,B,C,D,E. In most games, the rule is that you can use each letter
only once when you make words. We'll deal with that eventually, but let's start out
without that restriction, just to make things easier. That is, we have an "A", so we
can use "A" as many times as we like. Let's summarize the rules of our little
"game":

We have 5 letters

Each letter can be used as many times as we like

Section 2

LOREM IPSUM

1. Lorem ipsum dolor sit amet

2. Consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua.

3. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat.

4. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat
nulla pariatur.

What Words Can You Make ?

65

Lorem ipsum dolor sit amet, ligula suspendisse nulla pretium, rhoncus tempor
placerat fermentum, enim integer ad vestibulum volutpat. Nisl rhoncus turpis est,
vel elit, congue wisi enim nunc ultricies sit, magna tincidunt. Maecenas aliquam
maecenas ligula nostra, accumsan taciti. Sociis mauris in integer, a dolor netus
non dui aliquet, sagittis felis sodales, dolor sociis mauris, vel eu libero cras.
Interdum at. Eget habitasse elementum est, ipsum purus pede porttitor class, ut
adipiscing, aliquet sed auctor, imperdiet arcu per diam dapibus libero duis. Enim
eros in vel, lorem ispum volutpat nec pellentesque leo, temporibus scelerisque
nec. Ac dolor ac adipiscing amet bibendum nullam, massa lacus molestie ut libero
nec, diam et, pharetra sodales eget, feugiat ullamcorper id tempor eget id vitae.
Mauris pretium eget aliquet, lectus tincidunt. Porttitor mollis imperdiet lorem
ipsum libero senectus pulvinar.

Etiam molestie mauris ligula eget laoreet, vehicula eleifend. Repellat orci eget erat
et, sem cum, ultricies sollicitudin amet eleifend dolor nullam erat, malesuada est
leo ac. Varius natoque turpis elementum est. Massa lacus molestie ut libero nec,
diam et, pharetra sodales eget, feugiat ullamcorper id tempor eget id vitae. Mauris
pretium eget aliquet, lectus tincidunt. Porttitor mollis imperdiet libero senectus
pulvinar. Etiam molestie mauris ligula eget laoreet, vehicula eleifend. Repellat orci
eget erat et, sem cum.

Section 3

LOREM IPSUM

1. Lorem ipsum dolor sit amet

2. Consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua.

3. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat.

4. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat
nulla pariatur.

Word Search

73

Chapter 5

MATH

Lorem ipsum dolor sit amet, ligula suspendisse
nulla pretium, rhoncus tempor placerat fermentum,
enim integer ad vestibulum volutpat. Nisl rhoncus
turpis est, vel elit, congue wisi enim nunc ultricies
sit, magna tincidunt. Maecenas aliquam maecenas
ligula nostra.

Integers, as you probably know, are numbers without any fractional part, ranging
from -∞ to ∞. Floating point numbers on the other hand are numbers with
fractional values, expressed on computers using decimal notation rather than
fractions (in most cases). In Python and most other languages, if you do math with
only integers, the result is also an integer, but if either value is floating point, the
result is floating point.

Section 1

LOREM IPSUM

1. Lorem ipsum dolor sit amet

2. Consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua.

3. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat.

4. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat
nulla pariatur.

Untitled

75

Chapter 6

Making!

Lorem ipsum dolor sit amet, ligula suspendisse
nulla pretium, rhoncus tempor placerat fermentum,
enim integer ad vestibulum volutpat. Nisl rhoncus
turpis est, vel elit, congue wisi enim nunc ultricies
sit, magna tincidunt. Maecenas aliquam maecenas
ligula nostra.

Chapter 7

A
Compilation
of Concepts
This chapter reviews all of the concepts introduced
in the earlier chapters. It's a useful reference, and
can be referred to when you're learning the
concepts to see additional examples.

Section 1

MAIN DATA TYPES IN PYTHON

1. Integer

2. Floating Point Number

3. String

4. List / Tuple (immutable)

5. Dictionary

6. Set

A Summary of Common Data Types

79

Conversion
Function Mutable Main Operators, Functions & Methods

Integer int() - +, -, *, /, **, %

Floating
Point

Number
float() - +, -, *, /, **, %

import math

String str() No
+, *, [a:b]

len()
strip(), split(), find(), rfind(), replace()

List list() Yes
+, *, [a:b]

len(), sorted()
append(), remove(), count(), sort(), reverse()

Tuple tuple() No
+, *, [a:b]

len(), sorted()
count(), index()

Dictionary dict() Yes
[key]
len()

keys(), values(), items()

Set set() Yes

|, &, -, ^
len()

add(), remove(), clear(), union(),
intersection(), difference()

“HI” program

from turtle import *

Turtle()

a=[90,180,90,90,180,90,0,180,-90,90,180]

fdr=[100,50,50,50,100,40,50,25,100,25,50]

ht()

clear()

for i in range(11):

 left(a[i])

 forward(fdr[i])

Section 2

Miscellany

83

