
GS-SB-406
Practical Introduction to

Programming for Scientists
 Steven Ludtke

sludtke@bcm.edu

Lecture 1:
Introduction

 http://blake.bcm.edu/IP14

1 Lecture1.key - January 6, 2014

Course Details (Jan 2014)
• Meets Monday & Friday, 9 - 10:30 AM, N315
• Auditors welcome, but encouraged to register
• Graded

• 50% homework, 50% final project
• Grading will be lenient

• Homework due before each class via email
• Bring your Laptops

• Class lectures will be video-archived (unless I forget)
• http://blake.bcm.edu/IP14
• Please follow the homework link for this lecture !

2 Lecture1.key - January 6, 2014

Syllabus (likely to change)
• Jan 6 - Introduction, strings, lists, data types
• Jan 10 - Program flow
• Jan 13 - More core language features
• Jan 17 - Representation of numbers, Reading/writing files
• Jan 20 - Holiday, no class
• Jan 24 - Import, Exceptions, Genomic data processing, BioPython
• Jan 27 - Numerical Processing/Plotting
• Jan 31 - Object Oriented Programming introduction
• Feb 3 - Programming Examples
• Feb 7 - Web Server, HTML, XML, Databases
• Feb 10 - GUI Programming
• Feb 14 - Image Processing
• Feb 17 - Holiday, no class
• Feb 21 - Network Programming
• Feb 24? (TBD) - presentation of class projects, finals week

3 Lecture1.key - January 6, 2014

Why should you learn how to program ?

• Something you can’t find in existing software ?

• Make repetitive tasks easier ?

• You want to be a Maker ?

4 Lecture1.key - January 6, 2014

What Can Computers Do ?

• Store numbers (1 & 0)
• Rearrange numbers
• Math
• Simple decisions based on numbers
• Communicate

5 Lecture1.key - January 6, 2014

8512 computer languages
(vs 6909 human)

l Machine Language → Assembly Language
l Four of the first modern languages (50s):

− FORTRAN (FORmula TRANslator)
− LISP (LISt Processor)
− ALGOL
− COBOL (COmmon Business Oriented Language)

l BASIC (1963 - used in 70s-80s)
l C (1972)
l C++ (1983)
l Perl (1990)
l Python (1991)
l Ruby (1992)
l HTML (1994)
l Java (1995)

6 Lecture1.key - January 6, 2014

Python ?
PYTHON OOL- developed by Guido van Rossum, and named after

Monty Python. (No one Expects the Inquisition) a simple high-level
interpreted language. Combines ideas from ABC, C, Modula-3, and

ICON. It bridges the gap between C and shell programming, making it
suitable for rapid prototyping or as an extension of C. Rossum wanted

to correct some of the ABC problems and keep the best features. At the
time, he was working on the AMOEBA distributed OS group, and was

looking for a scripting language with a syntax like ABC but with the
access to the AMOEBA system calls, so he decided to create a
language that was extensible; it is OO and supports packages,
modules, classes, user-defined exceptions, a good C interface,
dynamic loading of C modules and has no arbritrary restrictions.

www.python.org

Note: Python 3.0 is now available, but we will use Python
2.x since it is still more widely used

7 Lecture1.key - January 6, 2014

Why Python ?

• Easy to learn !

• Widely used for scripting

• Many available libraries

• Powerful

• Scripting for 3rd party software

8 Lecture1.key - January 6, 2014

A Few Apps with Python
Scripting

Blender 3-D modeler, animation, post production (free)
Gimp Photoshop-like graphics editor (free)

Chimera Structural biology visualization (free)
PyMol Structural biology visualization (free)

OpenOffice MS Office clone by Sun (free)
Maya Professional 3-D Modeling and Animation
Poser 3-D modeling of humans
VTK Visualization Toolkit (Scientific Visualization, free)

Abaqus Finite element modeling (free)
EMAN2 Cryo-EM Image Processing (free)
Phenix X-ray crystallography toolkit (free)
SciPy Wide range of science/math tools in python (free)

BioPython Bioinformatics toolkit for Python (free)

9 Lecture1.key - January 6, 2014

Python
• Python is a "high level language"
• Data storage

• ‘simple’ types - numbers, characters
• compound types - lists, strings, dictionaries, sets, ...

• Operate on data
• statements - a=b*10, print b*5+3, if a>5 : a/=2, ...
• functions - sin(a), len(x), ...
• methods (functions on an object) - “abc”.count(“b”)

• Interact with the outside world
• User interactions - raw_input()
• Disk and other device access - file i/o

10 Lecture1.key - January 6, 2014

Python Reserved Words
and del from not while

as elif global or with
assert else if pass yield

break except import print
class exec in raise

continue finally is return
def for lambda try

+ - * ** / // % ~
<< >> & | ^

< > <= >= == != <>

() [] { } @
, : . ` = ;

+= -= *= /= //= %=
&= |= ^= >>= <<= **=

31

45

11 Lecture1.key - January 6, 2014

Numbers
• integers

• 32-bit (-2,147,483,647 - 2,147,483,648)

• long - effectively unlimited

• floating point

• 64-bit (15 significant figs, <10308)

• complex

• 5.0+3.0j

12 Lecture1.key - January 6, 2014

Strings
’string’

”also a string”

”””This too

but this one can span lines”””

”A”+” test”

”A test”

13 Lecture1.key - January 6, 2014

Lists
[item1,item2,item3,...] # items can be anything!

a=[0,1,2,3,4,5,6] # A list of 7 numbers!

a[n] # nth element in list!

a[n:m] # sublist elements n to m-1!

a[-n] # nth item from the end!

a[3] -> 3!

a[1:4] -> [1,2,3]!

a[-2] -> 5!

a[2:-2] -> [2,3,4]!

a[2]=”x” -> [0,1,”x”,3,4,5,6]!

tuples: a=(0,1,2,3,4,5,6) # tuples are immutable!

a[3] -> 3!

a[3]=5 -> ERROR!!

14 Lecture1.key - January 6, 2014

List Methods

• append, extend

• del, remove

• count

• index

• reverse, sort

15 Lecture1.key - January 6, 2014

Methods of Strings

• upper, lower, title, capitalize

• count, find, rfind, index

• replace

• split

• regular expressions later...

16 Lecture1.key - January 6, 2014

Sets
• Sets have no order and are unique, but can be

iterated over

• set([1,2,3,4,5])

• add, remove, discard, clear

• issubset, issuperset

• union, intersection, difference

17 Lecture1.key - January 6, 2014

Dictionaries
• keys must be immutable, values are arbitrary

• { k1:v1, k2:v2, k3:v3, ... }

Example:

a={ 1:2,2:3,”a”:”b”,2.0:3.2,(1,2):”really?” }

a[1] -> 2

a[(1,2)] -> “really?”

a[2] -> 3.2

18 Lecture1.key - January 6, 2014

Dictionary Methods

• has_key

• keys

• values

• items

19 Lecture1.key - January 6, 2014

Some Built-in functions
• int, float, str, list, tuple, set, dict - Converts between types

• range, xrange - makes a list or iterator covering a range

• enumerate

• eval

• input & raw_input

• len

• max,min

• reversed, sorted

• type, isinstance

20 Lecture1.key - January 6, 2014

Installing Python
• See my book chapter for additional tips

• Mac OSX - Included (strongly suggest MacOS 10.7 or higher)

• Linux - Included, but make sure you have 2.7+

• Windows

• Download from www.python.org

• Run installer

• OR you may consider Anaconda from:

• http://continuum.io/downloads

21 Lecture1.key - January 6, 2014

Installing ipython
http://ipython.scipy.org!

• Linux - use your package manager
• Mac: if you use fink or macports, use that, otherwise:

sudo easy_install ipython
sudo easy_install readline
!

• Windows:
- Anaconda may be the simplest solution on Windows
- Alternatively, install SetupTools
https://pypi.python.org/pypi/setuptools#windows
then use easy_install

22 Lecture1.key - January 6, 2014

Resources

• www.python.org

• http://docs.python.org/tutorial/

• pypi.python.org

• www.scipy.org

23 Lecture1.key - January 6, 2014

Homework 1

• There is a 'click me' link in the homework section at http://blake.bcm.edu/
IP14 Everyone should fill out and send in this form, even if you are
informally auditing the class !!!

• Install python and (optionally) ipython

• You should be able to compute 1+1 and get 2 using python on your
laptop before next class

• Familiarize yourself with the documentation at www.python.org (Python 2.6 or
2.7)

24 Lecture1.key - January 6, 2014

