
Introduction to Programming for Scientists

Prof. Steven Ludtke

N410, sludtke@bcm.edu

Lecture 3:
Writing Programs

1 Lecture3.key - January 13, 2014

Homework Review

Write a program which asks the user’s name and says hello to them, unless the
name entered is yours, in which case it should say something clever.

name=raw_input(“Your name: “)
!
if name.lower()==“steve” :
	 print “Something clever”
else:
	 print “Hi there,“,name

2 Lecture3.key - January 13, 2014

Homework Review

Write a program which asks the user’s name and says hello to them, unless the
name entered is yours, in which case it should say something clever.

name=raw_input(“Your name: “)
!
if name.lower() in (“steve”,”steven”) :
	 print “Something clever”
else:
	 print “Hi there,“,name

3 Lecture3.key - January 13, 2014

Homework Review

Ask the user to enter a 1-letter DNA sequence, and have it print the (forward)
complement. For example “CTGGGCCACACTGGAAGAACTGTGTTGGGCCACA"

Tempting:

!
!
seq=raw_input("Enter a sequence: ").upper()!
!
print seq.replace(“C”,"G").replace("G","C").\!
 replace(“A”,"T").replace("T","A")!
!
!
… but wrong

4 Lecture3.key - January 13, 2014

Homework Review

Ok, how about:

… but strings are immutable ! …grrr …now what?

seq=raw_input("Enter a sequence: ").upper()!
!
for i in xrange(len(seq)):!
! if seq[i]=="C" : seq[i]="G"!
! elif seq[i]=="G" : seq[i]="C"!
! elif seq[i]=="T" : seq[i]="A"!
! elif seq[i]=="A" : seq[i]="T"!
! else : print "ERROR with ",seq[i]!
!
print seq

5 Lecture3.key - January 13, 2014

Homework Review

Ok, then, let’s make the string into a list:

seq=list(raw_input("Enter a sequence: ").upper())!
!
for i in xrange(len(seq)):!
! if seq[i]=="C" : seq[i]="G"!
! elif seq[i]=="G" : seq[i]="C"!
! elif seq[i]=="T" : seq[i]="A"!
! elif seq[i]=="A" : seq[i]="T"!
! else : print "ERROR with ",seq[i]!
!
print "".join(seq)

Whew, finally ! Further improvements ?

6 Lecture3.key - January 13, 2014

Homework Review

We could use a dictionary instead of all those if’s :

seq=list(raw_input("Enter a sequence: ").upper())!
!
dnamap={"C":"G","G":"C","T":"A","A":"T"}!
!
for i in xrange(len(seq)): seq[i]=dnamap[seq[i]]!
!
print "".join(seq)

If there is an error due to an illegal letter, the program crashes

7 Lecture3.key - January 13, 2014

try, except

• A way to avoid having errors crash your program

• An alternative to lots of ‘if’ statements

!

• try: - try to do something

• except <exception>: - if something specific fails, do this

• except: - if anything else fails, do this

!

• http://docs.python.org/library/exceptions.html

8 Lecture3.key - January 13, 2014

Homework Review

Better error detection :

seq=list(raw_input("Enter a sequence: ").upper())!
!
dnamap={"C":"G","G":"C","T":"A","A":"T"}!
!
for i in xrange(len(seq)): !
! try: seq[i]=dnamap[seq[i]]!
! except: print "The letter",seq[i],"is unknown"!
!
print "".join(seq)

If there is an error due to an illegal letter, the program continues

9 Lecture3.key - January 13, 2014

Homework Review

A variation using the map() function :

seq=list(raw_input("Enter a sequence: ").upper())!
!
dnamap={"C":"G","G":"C","T":"A","A":"T"}!
seq[i]=map(dnamap.get,seq)!
!
print "".join(seq)

10 Lecture3.key - January 13, 2014

Homework Review

“bytearray” is a mutable string, but slightly trickier to use :

seq=bytearray(raw_input("Enter a sequence: ").upper())!
!
dnamap={"C":"G","G":"C","T":"A","A":"T"}!
!
for i in xrange(len(seq)): !
! try: seq[i]=dnamap[chr(seq[i])]!
! except: print "The letter",seq[i],"is unknown"!
!
print seq

11 Lecture3.key - January 13, 2014

Homework Review

Let’s get back to that original approach :

Tempting:

!
!
seq=raw_input("Enter a sequence: ").upper()!
!
print seq.replace(“C”,"G").replace("G","C").\!
 replace(“A”,"T").replace("T","A")!
!
!
… but wrong

Maybe we could fix this…

12 Lecture3.key - January 13, 2014

Homework Review

Two lines, and it works ! :

seq=raw_input("Enter a sequence: ").upper()!
!
print seq.replace("C","g").replace("G","c").\!
 replace("A","t").replace("T","a").upper()!

13 Lecture3.key - January 13, 2014

Homework Review

How about this one ? :

import string!
seq=raw_input("Enter a sequence: ").upper()!
!
table=string.maketrans("ACGTacgt","TGCATGCA")!
!
print seq.translate(table)

This is the most efficient program to perform this task !

14 Lecture3.key - January 13, 2014

Homework Review

How about this one ? :

seq=raw_input("Enter a sequence: ")!
!
table=“X”*65+"T"+"X"+"G"+"XXX"+"C"+"X"*12+"A"+"X"*12+\!
"T"+"X"+"G"+"XXX"+"C"+"X"*12+"A"+"X"*139!
!
print seq.translate(table)

15 Lecture3.key - January 13, 2014

DNA → Protein

• Write a program to convert a file containing a DNA
sequence to its corresponding protein sequence*.

* - ignoring post-translational modifications, splicing, and other issues, just a straight translation

16 Lecture3.key - January 13, 2014

Programming

• How do we represent the data ?

• Break the task into small pieces

• Code each of the pieces

17 Lecture3.key - January 13, 2014

Genbank Example

 1 atggcagcta aagacgtaaa attcggtaac gacgctcgtg tgaaaatgct gcgcggcgta!
 61 aacgtactgg cagatgcagt gaaagttacc ctcggtccga aaggccgtaa cgtagttctg!
 121 gataaatctt tcggtgcacc gaccatcacc aaagatggtg tttccgttgc tcgtgaaatc!
 181 gaactggaag acaagttcga aaacatgggt gcgcagatgg tgaaagaagt tgcctctaaa!
 241 gcgaacgacg ctgcaggcga cggtaccacc actgcaaccg tactggctca ggctatcatc!
 301 actgaaggtc tgaaagctgt tgctgcgggc atgaacccga tggacctgaa acgtggtatc!
 361 gacaaagctg ttaccgctgc agttgaagaa ctgaaagcgc tgtccg!

18 Lecture3.key - January 13, 2014

Data Representation

• DNA sequence

• A string ?

• Strip out whitespace, numbers, etc ?

• Error checking ?

• Protein Sequence

• A string ?

• Translation Table

• Dictionary (?)

19 Lecture3.key - January 13, 2014

20 Lecture3.key - January 13, 2014

Represent as Dict

{0:['tag', 'taa', 'tga'], 'a':['gca', 'gcc', 'gcg', 'gct'],
'c':['tgt', 'tgc'], 'e':['gag', 'gaa'], 'd':['gat', 'gac'],
'g':['ggt', 'ggg', 'gga', 'ggc'], 'f':['ttt', 'ttc'],
'i':['atc', 'ata', 'att'], 'h':['cat', 'cac'],
'k':['aaa', 'aag'], 'm':['atg'],
'l':['tta', 'ttg', 'ctt', 'ctg', 'cta', 'ctc'],
'n':['aac', 'aat'], 'q':['cag', 'caa'],
'p':['cct', 'ccg', 'cca', 'ccc'],
's':['tct', 'tcg', 'tcc', 'tca', 'agc', 'agt'],
'r':['cgt', 'agg', 'cga', 'cgc', 'cgg', 'aga'],
't':['acc', 'act', 'aca', 'acg'], 'w':['tgg'],
'v':['gta', 'gtc', 'gtg', 'gtt'], 'y':['tat', 'tac']}

21 Lecture3.key - January 13, 2014

Represent as Dict
xlate={ "ttt":"f","ttc":"f","tta":"l","ttg":"l",
"ctt":"l","ctc":"l","cta":"l","ctg":"l","att":"i",
"atc":"i","ata":"i","atg":"m","gtt":"v","gtc":"v",
"gta":"v","gtg":"v","tct":"s","tcc":"s","tca":"s",
"tcg":"s","cct":"p","ccc":"p","cca":"p","ccg":"p",
"act":"t","acc":"t","aca":"t","acg":"t","gct":"a",
"gcc":"a","gca":"a","gcg":"a","tat":"y","tac":"y",
"taa":"0","tag":"0","cat":"h","cac":"h","caa":"q",
"cag":"q","aat":"n","aac":"n","aaa":"k","aag":"k",
"gat":"d","gac":"d","gaa":"e","gag":"e","tgt":"c",
"tgc":"c","tga":"0","tgg":"w","cgt":"r","cgc":"r",
"cga":"r","cgg":"r","agt":"s","agc":"s","aga":"r",
"agg":"r","ggt":"g","ggc":"g","gga":"g","ggg":"g"}

22 Lecture3.key - January 13, 2014

How does this influence the code ?
• DNA triplet -> Amino Acid

• Dict keyed by amino acid:

• for each key

• for each value of that key

• if match stop and return key

• Dict keyed by DNA triplet:

• Look up triplet, return value for key

23 Lecture3.key - January 13, 2014

Programming

• How do we represent the data ?

• Break the task into small pieces

• Code each of the pieces

24 Lecture3.key - January 13, 2014

Steps

• Get data filename

• Open file & read data

• Preprocess data (just the letters we want)

• Loop over the data 3 elements at a time

• Translate

• Print results

25 Lecture3.key - January 13, 2014

Arguments

• myprogram.py file1.txt file2.txt

• python myprogram.py file1.txt file2.txt

!

• from sys import argv

• len(argv) -> 3

• argv[0] -> myprogram.py

• argv[1] -> file1.txt

!

Note: Can’t do this if you start by clicking on the program

26 Lecture3.key - January 13, 2014

Get Filename

from sys import argv
fsp=argv[1]
!
-or-
!
fsp=raw_input(“Filename:")
!
-or, for the adventurous-
!
import tkFileDialog
tkFileDialog.askopenfilename()

27 Lecture3.key - January 13, 2014

Read/write files

• handle=open(<filename>,<mode>) -or- file(<filename>,<mode>)
• Valid modes: [r|w|a|U][+][b]

• r - open file for reading
• w - truncate file and open for writing
• a - open file for appending (writing at end of file, platform dependent)
• U - Universal text file support
• + - in addition to basic mode, permit writing
• b - open in binary mode (default is text mode)

• Different platforms do a newline differently:
• Unix - '\n'
• Old mac - '\r'
• Windows - '/r/n'

28 Lecture3.key - January 13, 2014

File Methods

• string=file.read([len]) - Reads whole file (or [len] bytes)
• string=file.readline() - Read a single line of text
• stringlist=file.readlines() - Read whole file as a list of lines
• file.write(<string>) - Write <string> to file (no automatic /n)
• file.close() - Close the file (automatic when file object freed)
• file.flush() - Write output to file immediately (no buffering)
• int=file.tell() - Current location in the file (use binary mode!)
• file.seek(<loc>) - Move to a specific position in the file
• for line in file: print line - File acts as an iterator for lines

!
• sys.stdin, stdout, stderr - Automatic file handles

29 Lecture3.key - January 13, 2014

Read Data & Preprocess

dna=file(fsp,"r").read() # read the entire file into ram!
!
This uses the 'deletechars' option of the string translate!
method to remove characters we don't want. Technically!
we could also replace 'None' with an upper->lower conversion!
dna=dna.translate(None,"0123456789 \t\n\r").lower()

30 Lecture3.key - January 13, 2014

Loop & Translate

out=(fsp+".prot","w")!
!
for i in xrange(0,len(dna),3):!
triplet=dna[i:i+3]!
try: amino=xlate[triplet]!
except:!
print "Unknown triplet: ",triplet!
sys.exit(1)!

out.write(amino)!
!
out.write("\n")

31 Lecture3.key - January 13, 2014

Put it all together

import sys!
!
xlate={"ttt":"f" ... "ggg":"g"}!
!
fsp=sys.argv[1]!
dna=file(fsp,"r").read()!
dna=dna.translate(None,"0123456789 \t\n\r").lower()!
out=(fsp+".prot","w")!
!
for i in xrange(0,len(dna),3):!
triplet=dna[i:i+3]!
try: amino=xlate[triplet]!
except:!
print "Unknown triplet: ",triplet!
sys.exit(1)!

out.write(amino)!
!
out.write("\n")

32 Lecture3.key - January 13, 2014

Nested Loops

• a loop inside a loop
for i in range (10):!

for j in range(10):!

print i,j!

• Continue/break - interrupting the flow of a loop
for i in range(20):!

if i==5 : continue!

if i>17 : break!

print i

33 Lecture3.key - January 13, 2014

While Loops

• While loop - continues as long as a condition is met  

a=0!

while a<10:!

!! a=a+0.1!

!! print a

34 Lecture3.key - January 13, 2014

