
Lab 4
Networking

Prof. Steven Ludtke
N410.07, sludtke@bcm.edu

1 lecture10.key - February 9, 2015

Simple Python Webserver
This will serve files from the current directory

we use port 8080 because port 80 is restricted

from BaseHTTPServer import *

from SimpleHTTPServer import *

httpd=HTTPServer(("",8080),SimpleHTTPRequestHandler)

httpd.serve_forever()

2 lecture10.key - February 9, 2015

Socket Module
• gethostname() - name of the current machine
• gethostbyname() - given a name, returns an IP address
• gethostbyaddr() - given an address, returns names and other info
• socket() - create a new socket

• listen(n) - waits for incoming connections on a socket n>1
• accept() - accepts an incoming connection, returns tuple with socket
• connect((host,port)) - connects to a remote socket
• send(), recv() - send and receive data
• sendall() - send until success or error
• makefile() - make a file-like object for the socket

• bind() - bind a socket to an address
• select() - from select module, lets you wait for activity on set of sockets

3 lecture10.key - February 9, 2015

UDP

#receiver

import socket

s=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

s.bind(("",40000))

print s.recv(1000) # up to 1000 bytes

#sender

s=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

s.bind((“”,40000))

s.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)

s.sendto(“Hello there”,(“<broadcast>”,40000))

4 lecture10.key - February 9, 2015

Making Connections
Receiver/server

import socket

sock=socket.socket() # default is to make a normal internet
socket

sock.bind((“”,40000)) # Nothing magic about 40000

sock.listen(1) # Wait for 'connect' requests

sock2=sock.accept() # accept the connection (new socket)

print sock2[0].recv(256) # receive 256 bytes of data

Sender

import socket

sock=socket.socket() # default socket

sock.connect((target,40000)) # connect to someone listen()ing

sock.send(“Hello there”) # send a string

5 lecture10.key - February 9, 2015

Socket vs File Obj.
• Socket:

• send - will transmit data immediately
• recv - specifies maximum amount to receive. May not

get all sent data in one call. Call multiple times until you
have what you expected

• File:
• write - buffers. Need to call flush() for immediate

transmission.
• read/readline - Reads the full amount expected. Multiple

calls not required.

6 lecture10.key - February 9, 2015

Chat Program

Write a multiuser chat program, where anything typed by
one user is displayed on all other users's displays

client <-> server

7 lecture10.key - February 9, 2015

Chat Program
• Server

• Make a socket, bind to port
• Loop forever, listening for connections

• Add the new socket from the connection to a list
• Loop forever to all of the sockets in the list

• When text comes in on a socket, send it back out to others
• Client

• Make a socket, connect to server
• Loop forever

• Read input from user
• Send to server on socket
• Quit if correct string is typed

• Loop forever
• Read from server socket
• print received string
• Quit if correct string is received

8 lecture10.key - February 9, 2015

Threads

How to do more than one thing at a time:

from threading import Thread

def func():

for i in range(30):

time.sleep(1)

print i

thread=Thread(target=func,args=(1,2,3...)) # create a new thread

thread.start()

9 lecture10.key - February 9, 2015

Lab 4
• Download the 3 sample programs from the class website, and

the PDF of the lecture (for reference)

• Connect to the "IP15" wireless network. You will not have general
network access, this will only allow you to communicate with
other computers in the room.

• run udp_chat.py. You can type messages which will appear on
your own screen as well as your neighbors. When you're done,
type 'exit'

• Look over udp_chat.py to get a feel for how it works.

• There are 2 programs to modify today: tcp_send.py and
tcp_receive.py. Pick the most experienced programmer in your
group to do tcp_receive. The others can work on tcp_send.

10 lecture10.key - February 9, 2015

Lab 4
• Test tcp_send and tcp_receive. Have one person run tcp_receive. This will print a

network address on the screen. The others run tcp_send, and enter this address,
then a message. The messages should appear on the receiver's machine. When
someone sends the receiver an 'exit' message, the receiver will quit.

• Modify tcp_send and tcp_receive to act as a simple file transfer system. It should
only transfer small (few thousand characters) files.

• tcp_receive should accept the name of a file to write to (feel free to limit this in
appropriate ways for security if you like), followed by the file itself. It can exit
after each file, or continue.

• tcp_send should send one transmission with the filename, then a second
transmission containing the contents of the file. The file may be a real file on
the sending computer, or just a string with a made up filename. (remember
sendall)

• Note - this will be trickier than it seems at first. You will need to do something
about denoting the end of the filename and the start of the file.

11 lecture10.key - February 9, 2015

