Lab 4

Networking

Prof. Steven Ludtke
N410.07, sludtke@bcm.edu

1

lecture10.key - February 9, 2015

Simple Python Webserver

This will serve files from the current directory

we use port 8080 because port 80 is restricted

from BaseHTTPServer import *
from SimpleHTTPServer import *
httpd=HTTPServer(("",8080),SimpleHTTPRequestHandler)

httpd.serve forever()

2 lecture10.key - February 9, 2015

Socket Module

gethostname() - name of the current machine

gethostbyname() - given a name, returns an IP address

gethostbyaddr() - given an address, returns names and other info

socket() - create a new socket

listen(n) - waits for incoming connections on a socket n>1

accept() - accepts an incoming connection, returns tuple with socket
connect((host,port)) - connects to a remote socket

send(), recv() - send and receive data

sendall() - send until success or error

makefile() - make a file-like object for the socket

bind() - bind a socket to an address

select() - from select module, lets you wait for activity on set of sockets

3 lecture10.key - February 9, 2015

UDP

#receiver

import socket

s=socket.socket (socket.AF INET,socket.SOCK DGRAM)
s.bind(("",40000))

print s.recv(1000) # up to 1000 bytes

#sender

s=socket.socket (socket.AF INET,socket.SOCK DGRAM)
s.bind((“"”,40000))

s .setsockopt (socket.SOL SOCKET, socket.SO BROADCAST, 1)
s.sendto(“Hello there”, (“<broadcast>",40000))

4 lecture10.key - February 9, 2015

Making Connections

Recelver/server
import socket

sock=socket.socket () # default is to make a normal internet
socket

sock.bind((“"”,40000)) # Nothing magic about 40000

sock.listen(1) # Wait for 'connect' requests
sock2=sock.accept() # accept the connection (new socket)
print sock2[0].recv(256) # receive 256 bytes of data

Sender

import socket
sock=socket.socket () # default socket

sock.connect((target,40000)) # connect to someone listen()ing

sock.send(“Hello there”) # send a string

5 lecture10.key - February 9, 2015

Socket vs File Ob;.

e Socket:

e send - will transmit data immediately

* recv - specifies maximum amount to receive. May not
get all sent data in one call. Call multiple times until you
have what you expected

* File:

e write - buffers. Need to call flush() for immediate
transmission.

* read/readline - Reads the full amount expected. Multiple
calls not required.

6 lecture10.key - February 9, 2015

Chat Program

Write a multiuser chat program, where anything typed by
one user iIs displayed on all other users's displays

client <-> server

7 lecture10.key - February 9, 2015

Chat Program

e Server
 Make a socket, bind to port
» Loop forever, listening for connections
« Add the new socket from the connection to a list
* Loop forever to all of the sockets in the list
* When text comes in on a socket, send it back out to others
* Client
 Make a socket, connect to server
* Loop forever
 Read input from user
e Send to server on socket
e Quit if correct string is typed
* Loop forever
* Read from server socket
e print received string
e Quit if correct string is received

8 lecture10.key - February 9, 2015

Threads

How to do more than one thing at a time:

from threading import Thread
def func():
for i in range(30):
time.sleep(1l)
print i
thread=Thread(target=func,args=(1,2,3...)) # create a new thread

thread.start()

9 lecture10.key - February 9, 2015

Lab 4

Download the 3 sample programs from the class website, and
the PDF of the lecture (for reference)

Connect to the "IP15" wireless network. You will not have general
network access, this will only allow you to communicate with
other computers in the room.

run udp_chat.py. You can type messages which will appear on
your own screen as well as your neighbors. When you're done,
type 'exit’

Look over udp_chat.py to get a feel for how it works.

There are 2 programs to modify today: tcp_send.py and
tcp_receive.py. Pick the most experienced programmer in your
group to do tcp_receive. The others can work on tcp_send.

10 lecture10.key - February 9, 2015

Lab 4

e Testtcp_send and tcp_receive. Have one person run tcp_receive. This will print a
network address on the screen. The others run tcp_send, and enter this address,
then a message. The messages should appear on the receiver's machine. When
someone sends the receiver an 'exit' message, the receiver will quit.

* Modify tcp_send and tcp_receive to act as a simple file transfer system. It should
only transfer small (few thousand characters) files.

e tcp_receive should accept the name of a file to write to (feel free to limit this in
appropriate ways for security if you like), followed by the file itself. It can exit
after each file, or continue.

* tcp_send should send one transmission with the filename, then a second
transmission containing the contents of the file. The file may be a real file on

the sending computer, or just a string with a made up filename. (remember
sendall)

* Note - this will be trickier than it seems at first. You will need to do something
about denoting the end of the filename and the start of the file.

11 lecture10.key - February 9, 2015

