
Lecture 4
Homework Review
Standard Libraries

Prof. Steven Ludtke
N410.07, sludtke@bcm.edu

1 Lecture4.key - January 16, 2015

Homework Review
1.Ask the user to enter a 1-letter DNA sequence, for example

“CTGGGCCACACTGGAAGAACTGTGTTGGGCCACA"

• Count the number of each nucleotide present in the entered
sequence (and print the count)

• Print the reverse complement of the entered sequence

2 Lecture4.key - January 16, 2015

Programming

• How do we represent the data ?

• Break the task into small pieces

• Code each of the pieces

3 Lecture4.key - January 16, 2015

Programming

• How do we represent the data ?
• string
• list
• bytearray

• Break the task into small pieces

• Code each of the pieces

4 Lecture4.key - January 16, 2015

Homework Review

Tempting:

seq=raw_input("Enter a sequence: ").upper()

cmpl=seq.replace("C","G").replace("G","C").\
replace("A","T").replace("T","A")

print "".join(reversed(cmpl))

… but wrong

print "CAGT".replace("C","G").replace("G","C").\
replace("A","T").replace("T","A")

'CACA'

5 Lecture4.key - January 16, 2015

Homework Review

Ok, how about:

… but strings are immutable ! …grrr …now what?

seq=raw_input("Enter a sequence: ").upper()

for i in xrange(len(seq)):
if seq[i]=="C" : seq[i]="G"
elif seq[i]=="G" : seq[i]="C"
elif seq[i]=="T" : seq[i]="A"
elif seq[i]=="A" : seq[i]="T"
else : print "ERROR with ",seq[i]

print "".join(reversed(seq))

6 Lecture4.key - January 16, 2015

Homework Review

Build a new string! :
seq=raw_input("Enter a sequence: ").upper()

cmpl=""
for i in xrange(len(seq)):

if seq[i]=="C" : cmpl=cmpl+"G"
elif seq[i]=="G" : cmpl=cmpl+"C"
elif seq[i]=="T" : cmpl=cmpl+"A"
elif seq[i]=="A" : cmpl=cmpl+"T"
else :
print "ERROR with ",seq[i]," at ",i

print "".join(reversed(seq))

7 Lecture4.key - January 16, 2015

Homework Review

Shortcut:
seq=raw_input("Enter a sequence: ").upper()

cmpl=""
for i in xrange(len(seq)):

if seq[i]=="C" : cmpl+="G"
elif seq[i]=="G" : cmpl+="C"
elif seq[i]=="T" : cmpl+="A"
elif seq[i]=="A" : cmpl+="T"
else :
print "ERROR with ",seq[i]," at ",i

print "".join(reversed(seq))

Works, but unfortunately this is EXTREMELY inefficient in Python.

8 Lecture4.key - January 16, 2015

Homework Review

Ok, then, let’s make the string into a list:

seq=list(raw_input("Enter a sequence: ").upper())

for i in xrange(len(seq)):
if seq[i]=="C" : seq[i]="G"
elif seq[i]=="G" : seq[i]="C"
elif seq[i]=="T" : seq[i]="A"
elif seq[i]=="A" : seq[i]="T"
else : print "ERROR with ",seq[i]

print "".join(reversed(seq))

Further improvements ?

9 Lecture4.key - January 16, 2015

Homework Review

We could use a dictionary instead of all those if’s :

seq=list(raw_input("Enter a sequence: ").upper())

dnamap={"C":"G","G":"C","T":"A","A":"T"}

for i in xrange(len(seq)): seq[i]=dnamap[seq[i]]

print "".join(reversed(seq))

If there is an error due to an illegal letter, the program crashes

10 Lecture4.key - January 16, 2015

try, except

• A way to avoid having errors crash your program

• An alternative to lots of ‘if’ statements

• try: - try to do something

• except <exception>: - if something specific fails, do this

• except: - if anything else fails, do this

• http://docs.python.org/library/exceptions.html

11 Lecture4.key - January 16, 2015

Homework Review

Better error detection :

seq=list(raw_input("Enter a sequence: ").upper())

dnamap={"C":"G","G":"C","T":"A","A":"T"}

for i in xrange(len(seq)):
try: seq[i]=dnamap[seq[i]]
except:
print "Error with",seq[i],"at",i

print "".join(reversed(seq))

If there is an error due to an illegal letter, the program continues

12 Lecture4.key - January 16, 2015

Homework Review

A variation using the map() function :

seq=list(raw_input("Enter a sequence: ").upper())

dnamap={"C":"G","G":"C","T":"A","A":"T"}
seq=map(dnamap.get,seq)

print "".join(reversed(seq))

13 Lecture4.key - January 16, 2015

Homework Review

“bytearray” is a mutable string, but slightly trickier to use:

seq=bytearray(raw_input("Enter a sequence: ").upper())

dnamap={"C":"G","G":"C","T":"A","A":"T"}

for i in xrange(len(seq)):
try: seq[i]=dnamap[chr(seq[i])]
except: print "The letter",seq[i],"is unknown"

seq.reverse()
print seq

14 Lecture4.key - January 16, 2015

Homework Review

Python3 version:

seq=bytearray(input("Enter a sequence: ").upper(),"utf-8")

dnamap={ord("C"):ord("G"),ord("G"):ord("C"),\
ord("T"):ord("A"),ord("A"):ord("T")}

for i in range(len(seq)):
try: seq[i]=dnamap[seq[i]]
except: print("The letter",seq[i],"is unknown")

seq.reverse()
print(seq.decode())

15 Lecture4.key - January 16, 2015

Homework Review

Let’s get back to that original approach :

Tempting:

seq=raw_input("Enter a sequence: ").upper()

print seq.replace(“C”,"G").replace("G","C").\
 replace(“A”,"T").replace("T","A")

… but wrong

Maybe we could fix this…

16 Lecture4.key - January 16, 2015

Homework Review

It works ! :

seq=raw_input("Enter a sequence: ").upper()

cmpl=seq.replace("C","g").replace("G","c").\
 replace("A","t").replace("T","a").upper()
print "".join(reversed(cmpl))

17 Lecture4.key - January 16, 2015

Homework Review

How about this one ? :

import string
seq=raw_input("Enter a sequence: ").upper()

table=string.maketrans("ACGTacgt","TGCATGCA")

print seq.translate(table)

This is the most efficient program to perform this task !

18 Lecture4.key - January 16, 2015

Homework Review

2. Write a program to identify the winner of a
rock,paper,scissors game. Ask the user what player 1
picked (rock, paper or scissors), then ask what player 2
picked. Finally, print the winner (player 1, 2 or tie)

19 Lecture4.key - January 16, 2015

import sys

pick1=raw_input("Player 1 (rock, paper, scissors): ")
if pick1 not in ("rock","paper","scissors"):

print "Bad input!"
sys.exit(1)

pick1=pick1[0].lower()

pick2=raw_input("Player 2 (rock, paper, scissors): ")
if pick2 not in ("rock","paper","scissors"):

print "Bad input!"
sys.exit(1)

pick2=pick2[0].lower()

20 Lecture4.key - January 16, 2015

Functions
A function is used when some action needs to be
completed in different parts of a program, or re-
used in multiple programs. It allows code to be
grouped in a self-contained block, and can also

make debugging easier.

Generally it is not good practice to make functions
that are called only one time strictly for

organizational purposes. Use comments instead.

21 Lecture4.key - January 16, 2015

Examples
def middle(x): return int(str(x)[1:-1])

def between(lo,val,hi):

"""Checks to see if val is between lo and hi"""

if lo<val and val<hi : return True

else: return False

def cmp(a,b):

"""Compare the second element of list a to list b for
use with sort(), returns -1, 0 or 1"""

return a[1]-b[1]

22 Lecture4.key - January 16, 2015

def rps(name):
ret=""
while ret not in ("rock","paper","scissors"):
ret=raw_input(name+" (rock,paper,scissors): ")

return ret[0].lower()

pick1=rps("Player 1")
pick2=rps("Player 2")

23 Lecture4.key - January 16, 2015

pick1=rps("Player 1")
pick2=rps("Player 2")

if pick1==pick2 : print "Tie!"
elif pick1=="r" and pick2=="p": print "Player 2 wins!"
elif pick1=="p" and pick2=="r": print "Player 1 wins!"
elif pick1=="s" and pick2=="r": print "Player 2 wins!"
elif pick1=="r" and pick2=="s": print "Player 1 wins!"
elif pick1=="p" and pick2=="s": print "Player 2 wins!"
elif pick1=="s" and pick2=="p": print "Player 1 wins!"

24 Lecture4.key - January 16, 2015

pick1=rps("Player 1")
pick2=rps("Player 2")

table={("r","p"):2, ("p","r"):1, ("s","r"):2, … }

print "Player",table[(pick1,pick2)],"wins"

25 Lecture4.key - January 16, 2015

pick1=rps("Player 1")
pick2=rps("Player 2")

table={ ("p","r"):"Paper covers rock",
("r","s"):"Rock breaks scissors",
("s","p"):"Scissors cuts paper" }

if pick1==pick2 : print "Tie!"

try:
print table[(pick1,pick2)], "Player 1 wins!"

except:
print table[(pick2,pick1)], "Player 2 wins!"

26 Lecture4.key - January 16, 2015

Read/write files

• handle=open(<filename>,<mode>) -or- file(<filename>,<mode>)
• Valid modes: [r|w|a|U][+][b]

• r - open file for reading
• w - truncate file and open for writing
• a - open file for appending (writing at end of file, platform dependent)
• U - Universal text file support
• + - in addition to basic mode, permit writing
• b - open in binary mode (default is text mode)

• Different platforms do a newline differently:
• Unix - '\n'
• Old mac - '\r'
• Windows - '/r/n'

27 Lecture4.key - January 16, 2015

File Methods

• string=file.read([len]) - Reads whole file (or [len] bytes)
• string=file.readline() - Read a single line of text
• stringlist=file.readlines() - Read whole file as a list of lines
• file.write(<string>) - Write <string> to file (no automatic /n)
• file.close() - Close the file (automatic when file object freed)
• file.flush() - Write output to file immediately (no buffering)
• int=file.tell() - Current location in the file (use binary mode!)
• file.seek(<loc>) - Move to a specific position in the file
• for line in file: print line - File acts as an iterator for lines

• sys.stdin, stdout, stderr - Automatic file handles

28 Lecture4.key - January 16, 2015

String Formatting
• {[field][:format]}

• format ::= [[fill]align][sign][#][0][width][,][.precision][type]

• fill ::= <any character>

• align ::= "<" | ">" | "=" | "^"

• sign ::= "+" | "-" | " "

• width ::= integer

• precision ::= integer

• type ::= "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"

29 Lecture4.key - January 16, 2015

A Few Standard Libraries

sys - System-specific parameters

os - Operating system functions

string - String manipulation

time - Delays, formatting time

datetime - Manipulate dates/times

pprint - Pretty printing

urllib2 - Easy web access

30 Lecture4.key - January 16, 2015

File Manipulation
os.getcwd() - the current working directory (folder)

os.chdir() - change the current working directory

os.listdir - Lists files in a particular folder

os.stat - info about a file

os.rename - rename (mv) a file

os.mkdir - create a folder

os.remove - delete a file

os.rmdir - remove a directory

os.system - execute a command (mostly mac/linux)

31 Lecture4.key - January 16, 2015

PyPi
http://pypi.python.org

Note that many packages also have installers available for Windows

easy_install

Comes with Mac

May be in a package called python_setuptools on linux

pip

newer alternative, but not standard on mac

32 Lecture4.key - January 16, 2015

Homework 2
• Start thinking about a topic for your class projects. Next homework you will need to tell

me what your planned project is.

• If you take out a large loan, such as a mortgage on a house, the bank will generate an
Amortization Schedule for you. This is a table which shows after each payment how
much you still owe on the loan, and generally also how much of each payment is interest
and principal. Write a program which asks the user for the amount of the loan, amount of
the monthly payment, and the annual interest rate. Compute the interest as if it were 1/12
the annual amount, compounded monthly. Print the amortization schedule until the
principle falls to zero. You don’t need to deal explicitly with the final month which may
have a slightly different payment.

• Lab #1: Next Monday is a holiday, so we won’t be able to finish Lab 1 then.
• If your group finished Lab 1 and turned it in, good. You have no second homework

assignment for next Friday.
• If you can get your group together again informally sometime, you are welcome to

finish the lab as it was assigned and turn it in as Lab #1 before next Friday. Amanda
(TA) will have the list of group assignments if you don’t remember your group.

• Otherwise, you will need to individually complete either Task #1 or, if you prefer, the
combination of Task #3 and #4, and turn it in as Lab #1 before next Friday.
Remember if you do 3/4 you must do it differently than the way I did it in the
downloadable program.

33 Lecture4.key - January 16, 2015

