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Homework Review
1.Ask the user to enter a 1-letter DNA sequence, for example 

“CTGGGCCACACTGGAAGAACTGTGTTGGGCCACA" 

• Count the number of each nucleotide present in the entered 
sequence (and print the count) 

• Print the reverse complement of the entered sequence
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Programming

• How do we represent the data ? 

• Break the task into small pieces  

• Code each of the pieces
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Programming

• How do we represent the data ? 
• string 
• list 
• bytearray 

• Break the task into small pieces  

• Code each of the pieces
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Homework Review

Tempting:


seq=raw_input("Enter a sequence: ").upper()

cmpl=seq.replace("C","G").replace("G","C").\
replace("A","T").replace("T","A")

print "".join(reversed(cmpl))

… but wrong


print "CAGT".replace("C","G").replace("G","C").\
replace("A","T").replace("T","A")

'CACA'
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Homework Review

Ok, how about:

… but strings are immutable !   …grrr    …now what?

seq=raw_input("Enter a sequence: ").upper()

for i in xrange(len(seq)):
if   seq[i]=="C" : seq[i]="G"
elif seq[i]=="G" : seq[i]="C"
elif seq[i]=="T" : seq[i]="A"
elif seq[i]=="A" : seq[i]="T"
else : print "ERROR with ",seq[i]

print "".join(reversed(seq))
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Homework Review

Build a new string! :
seq=raw_input("Enter a sequence: ").upper()

cmpl=""
for i in xrange(len(seq)):

if   seq[i]=="C" : cmpl=cmpl+"G"
elif seq[i]=="G" : cmpl=cmpl+"C"
elif seq[i]=="T" : cmpl=cmpl+"A"
elif seq[i]=="A" : cmpl=cmpl+"T"
else : 
print "ERROR with ",seq[i]," at ",i

print "".join(reversed(seq))
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Homework Review

Shortcut:
seq=raw_input("Enter a sequence: ").upper()

cmpl=""
for i in xrange(len(seq)):

if   seq[i]=="C" : cmpl+="G"
elif seq[i]=="G" : cmpl+="C"
elif seq[i]=="T" : cmpl+="A"
elif seq[i]=="A" : cmpl+="T"
else :
print "ERROR with ",seq[i]," at ",i

print "".join(reversed(seq))

Works, but unfortunately this is EXTREMELY inefficient in Python.
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Homework Review

Ok, then, let’s make the string into a list:

seq=list(raw_input("Enter a sequence: ").upper())

for i in xrange(len(seq)):
if   seq[i]=="C" : seq[i]="G"
elif seq[i]=="G" : seq[i]="C"
elif seq[i]=="T" : seq[i]="A"
elif seq[i]=="A" : seq[i]="T"
else : print "ERROR with ",seq[i]

print "".join(reversed(seq))

Further improvements ?
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Homework Review

We could use a dictionary instead of all those if’s :

seq=list(raw_input("Enter a sequence: ").upper())

dnamap={"C":"G","G":"C","T":"A","A":"T"}

for i in xrange(len(seq)): seq[i]=dnamap[seq[i]]

print "".join(reversed(seq))

If there is an error due to an illegal letter, the program crashes
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try, except

• A way to avoid having errors crash your program 

• An alternative to lots of ‘if’ statements 

• try: - try to do something 

• except <exception>: - if something specific fails, do this 

• except: - if anything else fails, do this 

• http://docs.python.org/library/exceptions.html
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Homework Review

Better error detection :

seq=list(raw_input("Enter a sequence: ").upper())

dnamap={"C":"G","G":"C","T":"A","A":"T"}

for i in xrange(len(seq)): 
try: seq[i]=dnamap[seq[i]]
except: 
print "Error with",seq[i],"at",i

print "".join(reversed(seq))

If there is an error due to an illegal letter, the program continues
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Homework Review

A variation using the map() function :

seq=list(raw_input("Enter a sequence: ").upper())

dnamap={"C":"G","G":"C","T":"A","A":"T"}
seq=map(dnamap.get,seq)

print "".join(reversed(seq))

13 Lecture4.key - January 16, 2015



Homework Review

“bytearray” is a mutable string, but slightly trickier to use:

seq=bytearray(raw_input("Enter a sequence: ").upper())

dnamap={"C":"G","G":"C","T":"A","A":"T"}

for i in xrange(len(seq)): 
try: seq[i]=dnamap[chr(seq[i])]
except: print "The letter",seq[i],"is unknown"

seq.reverse()
print seq
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Homework Review

Python3 version:

seq=bytearray(input("Enter a sequence: ").upper(),"utf-8")

dnamap={ord("C"):ord("G"),ord("G"):ord("C"),\
ord("T"):ord("A"),ord("A"):ord("T")}

for i in range(len(seq)): 
try: seq[i]=dnamap[seq[i]]
except: print("The letter",seq[i],"is unknown")

seq.reverse()
print(seq.decode())
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Homework Review

Let’s get back to that original approach :

Tempting:


seq=raw_input("Enter a sequence: ").upper()

print seq.replace(“C”,"G").replace("G","C").\
  replace(“A”,"T").replace("T","A")

… but wrong

Maybe we could fix this…
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Homework Review

It works ! :

seq=raw_input("Enter a sequence: ").upper()

cmpl=seq.replace("C","g").replace("G","c").\
  replace("A","t").replace("T","a").upper()
print "".join(reversed(cmpl))
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Homework Review

How about this one ? :

import string
seq=raw_input("Enter a sequence: ").upper()

table=string.maketrans("ACGTacgt","TGCATGCA")

print seq.translate(table)

This is the most efficient program to perform this task !
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Homework Review

2. Write a program to identify the winner of a 
rock,paper,scissors game. Ask the user what player 1 
picked (rock, paper or scissors), then ask what player 2 
picked. Finally, print the winner (player 1, 2 or tie)
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import sys

pick1=raw_input("Player 1 (rock, paper, scissors): ")
if pick1 not in ("rock","paper","scissors"):

print "Bad input!"
sys.exit(1)

pick1=pick1[0].lower()

pick2=raw_input("Player 2 (rock, paper, scissors): ")
if pick2 not in ("rock","paper","scissors"):

print "Bad input!"
sys.exit(1)

pick2=pick2[0].lower()
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Functions
A function is used when some action needs to be 
completed in different parts of a program, or re-
used in multiple programs. It allows code to be 
grouped in a self-contained block, and can also 

make debugging easier.


Generally it is not good practice to make functions 
that are called only one time strictly for 

organizational purposes. Use comments instead.
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Examples
def middle(x): return int(str(x)[1:-1])

def between(lo,val,hi):

"""Checks to see if val is between lo and hi"""

if lo<val and val<hi : return True

else: return False

def cmp(a,b):

"""Compare the second element of list a to list b for 
use with sort(), returns -1, 0 or 1"""

return a[1]-b[1]
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def rps(name):
ret=""
while ret not in ("rock","paper","scissors"):
ret=raw_input(name+" (rock,paper,scissors): ")

return ret[0].lower()

pick1=rps("Player 1")
pick2=rps("Player 2")
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pick1=rps("Player 1")
pick2=rps("Player 2")

if pick1==pick2 : print "Tie!"
elif pick1=="r" and pick2=="p": print "Player 2 wins!"
elif pick1=="p" and pick2=="r": print "Player 1 wins!"
elif pick1=="s" and pick2=="r": print "Player 2 wins!"
elif pick1=="r" and pick2=="s": print "Player 1 wins!"
elif pick1=="p" and pick2=="s": print "Player 2 wins!"
elif pick1=="s" and pick2=="p": print "Player 1 wins!"

24 Lecture4.key - January 16, 2015



pick1=rps("Player 1")
pick2=rps("Player 2")

table={("r","p"):2, ("p","r"):1, ("s","r"):2, … }

print "Player",table[(pick1,pick2)],"wins"
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pick1=rps("Player 1")
pick2=rps("Player 2")

table={ ("p","r"):"Paper covers rock",
("r","s"):"Rock breaks scissors",
("s","p"):"Scissors cuts paper" }

if pick1==pick2 : print "Tie!"

try:
print table[(pick1,pick2)], "Player 1 wins!"

except:
print table[(pick2,pick1)], "Player 2 wins!"
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Read/write files

• handle=open(<filename>,<mode>)   -or-   file(<filename>,<mode>) 
• Valid modes: [r|w|a|U][+][b] 

• r - open file for reading 
• w - truncate file and open for writing 
• a - open file for appending (writing at end of file, platform dependent) 
• U - Universal text file support 
• + - in addition to basic mode, permit writing 
• b - open in binary mode (default is text mode) 

• Different platforms do a newline differently: 
• Unix - '\n' 
• Old mac - '\r' 
• Windows - '/r/n'

27 Lecture4.key - January 16, 2015



File Methods

• string=file.read([len]) - Reads whole file (or [len] bytes) 
• string=file.readline() - Read a single line of text 
• stringlist=file.readlines() - Read whole file as a list of lines 
• file.write(<string>) - Write <string> to file (no automatic /n) 
• file.close() - Close the file (automatic when file object freed) 
• file.flush() - Write output to file immediately (no buffering) 
• int=file.tell() - Current location in the file (use binary mode!) 
• file.seek(<loc>) - Move to a specific position in the file 
• for line in file: print line  - File acts as an iterator for lines 

• sys.stdin, stdout, stderr - Automatic file handles
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String Formatting
• {[field][:format]} 

• format ::=  [[fill]align][sign][#][0][width][,][.precision][type] 

• fill        ::=  <any character> 

• align       ::=  "<" | ">" | "=" | "^" 

• sign        ::=  "+" | "-" | " " 

• width       ::=  integer 

• precision   ::=  integer 

• type        ::=  "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"
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A Few Standard Libraries

sys - System-specific parameters

os - Operating system functions

string - String manipulation

time - Delays, formatting time

datetime - Manipulate dates/times

pprint - Pretty printing

urllib2 - Easy web access
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File Manipulation
os.getcwd() - the current working directory (folder)


os.chdir() - change the current working directory


os.listdir - Lists files in a particular folder


os.stat - info about a file


os.rename - rename (mv) a file


os.mkdir - create a folder


os.remove - delete a file


os.rmdir - remove a directory


os.system - execute a command (mostly mac/linux)
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PyPi
http://pypi.python.org


Note that many packages also have installers available for Windows


easy_install


Comes with Mac


May be in a package called python_setuptools on linux


pip


newer alternative, but not standard on mac
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Homework 2
• Start thinking about a topic for your class projects. Next homework you will need to tell 

me what your planned project is. 

• If you take out a large loan, such as a mortgage on a house, the bank will generate an 
Amortization Schedule for you. This is a table which shows after each payment how 
much you still owe on the loan, and generally also how much of each payment is interest 
and principal. Write a program which asks the user for the amount of the loan, amount of 
the monthly payment, and the annual interest rate. Compute the interest as if it were 1/12 
the annual amount, compounded monthly. Print the amortization schedule until the 
principle falls to zero. You don’t need to deal explicitly with the final month which may 
have a slightly different payment. 

• Lab #1:  Next Monday is a holiday, so we won’t be able to finish Lab 1 then. 
• If your group finished Lab 1 and turned it in, good. You have no second homework 

assignment for next Friday. 
• If you can get your group together again informally sometime, you are welcome to 

finish the lab as it was assigned and turn it in as Lab #1 before next Friday. Amanda 
(TA) will have the list of group assignments if you don’t remember your group. 

• Otherwise, you will need to individually complete either  Task #1 or, if you prefer, the 
combination of Task #3 and #4, and turn it in as Lab #1 before next Friday. 
Remember if you do 3/4 you must do it differently than the way I did it in the 
downloadable program.
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