
Lecture 11
Network Programming

JavaScript

Prof. Steven Ludtke
N410.07, sludtke@bcm.edu

1 Lecture11.key - February 12, 2016

The Internet

• When I enter www.google.com into my web
browser, what happens?

* - Some addresses are for ‘private networks’. These are 10.*.*.*, 172.16.*.*-172.31.*.*, and 192.168.*.*

2 Lecture11.key - February 12, 2016

The Internet

• My machine opens a connection to the server at
Google and requests the main HTML page

• Google server sends the page

• Browser displays the page

* - Some addresses are for ‘private networks’. These are 10.*.*.*, 172.16.*.*-172.31.*.*, and 192.168.*.*

3 Lecture11.key - February 12, 2016

The Internet

• My machine opens a connection to the server at
Google and requests the main HTML page

• Google server asks who I am (cookie)

• My browser sends my credentials

• Google server sends the (personalized) page

• Browser displays the page

* - Some addresses are for ‘private networks’. These are 10.*.*.*, 172.16.*.*-172.31.*.*, and 192.168.*.*

4 Lecture11.key - February 12, 2016

The Internet

• My machine opens a connection to the server at
Google and requests the main HTML page

• How does my machine connect to
www.google.com?

• Where is this machine?

• How does it connect?

• What does "connect" mean?
* - Some addresses are for ‘private networks’. These are 10.*.*.*, 172.16.*.*-172.31.*.*, and 192.168.*.*

5 Lecture11.key - February 12, 2016

The Internet
• My machine asks my local DNS server for the IP address of the name

"www.google.com"

• DNS server either has the information or gets it by asking other DNS servers.
Sends my machine the address.

• My machine opens a TCP connection to this address on port 80, and sends a
HTTP request for "/" the root page.

• Google looks at the information in my request, including the browser I claim to
be using, sends back its request to my browser for a "cookie" it stored in my
browser the last time I visited the site.

• My browser returns the "cookie" if it has one, or replies that it doesn't have one.

• Google assembles a customized HTML page based on everything it knows
and sends it back to me.

• My browser renders the HTML page, and starts running any embedded
JavaScript programs.* - Some addresses are for ‘private networks’. These are 10.*.*.*, 172.16.*.*-172.31.*.*, and 192.168.*.*

6 Lecture11.key - February 12, 2016

Networking

Physical

Layer

Data Link

Layer

Network

Layer

Transport

Layer

Application

Layer

100-bt

Optical cable

Wireless

IPv4

IPv6

IPsec

ARP

HTTP

FTP

SSH

SMTP

XMLRPC

802.11abgn

Ethernet

PPP

TCP

UDP

DCCP

RSVP

xx:xx:xx:xx:xx:xx

(281 quadrillion)

xx.xx.xx.xx

(4 billion)

xxxx:xxxx:xxxx:xxxx

xxxx:xxxx:xxxx:xxxx

(3x1038)

TCP/IP

7 Lecture11.key - February 12, 2016

Common Services
port service
21 ftp
22 ssh
23 telnet
25 smtp (mail)
79 finger
80 http (web)
110 pop3 (email retrieval)
123 ntp (time)

137-139 Windows file sharing

143 imap (email retrieval)
443 https (secure http)

8 Lecture11.key - February 12, 2016

Sockets (TCP/UDP)

192.168.10.10
4000

192.168.10.11
4000

Data

192.168.10.10 192.168.10.11
4000

Data

UDP

TCP

Data

9 Lecture11.key - February 12, 2016

IPv4 Network Parameters

• IP Address - Computer’s unique* address (x.x.x.x)

• Netmask - defines local ‘subnet’, machines the computer
can speak to ‘directly’

• Router - Address used to contact machines outside subnet

• DNS Server - Address where names can be mapped to
addresses

• Port - For a specific connection 0-65535, 0-1023 reserved
for system services

* - Some addresses are for ‘private networks’. These are 10.*.*.*, 172.16.*.*-172.31.*.*, and 192.168.*.*

10 Lecture11.key - February 12, 2016

http://www.practicallynetworked.com/networking/port_expand.htm
11 Lecture11.key - February 12, 2016

On your laptop
• blake.bcm.edu/IP16

• download udp_chat.py

• Launch Spyder

• connect your laptop to network called "IP"

• note: you will not have other internet access after
doing this.

12 Lecture11.key - February 12, 2016

Socket Module
• gethostname() - name of the current machine
• gethostbyname() - given a name, returns an IP address
• gethostbyaddr() - given an address, returns names and other info
• socket() - create a new socket

• listen(n) - waits for incoming connections on a socket n>1
• accept() - accepts an incoming connection, returns tuple with socket
• connect((host,port)) - connects to a remote socket
• send(), recv() - send and receive data
• sendall() - send until success or error
• makefile() - make a file-like object for the socket

• bind() - bind a socket to an address
• select() - from select module, lets you wait for activity on set of sockets

13 Lecture11.key - February 12, 2016

Making Connections
Receiver/server

import socket

sock=socket.socket() # default is to make a normal internet socket

sock.bind((“”,40000)) # Nothing magic about 40000

sock.listen(1) # Wait for 'connect' requests

sock2=sock.accept() # accept the connection (new socket)

print sock2[0].recv(256) # receive 256 bytes of data

Sender

import socket

sock=socket.socket() # default socket

sock.connect((target,40000)) # connect to someone listen()ing

sock.send(“Hello there”) # send a string

14 Lecture11.key - February 12, 2016

UDP

#receiver

import socket

s=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

s.bind(("",40000))

print s.recv(1000) # up to 1000 bytes

#sender

s=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

s.bind((“”,40000))

s.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)

s.sendto(“Hello there”,(“<broadcast>”,40000))

15 Lecture11.key - February 12, 2016

Socket vs File Obj.
• Socket:

• send - will transmit data immediately
• recv - specifies maximum amount to receive. May not

get all sent data in one call. Call multiple times until you
have what you expected

• File:
• write - buffers. Need to call flush() for immediate

transmission.
• read/readline - Reads the full amount expected. Multiple

calls not required.

16 Lecture11.key - February 12, 2016

Chat Program

Write a multiuser chat program, where anything typed by
one user is displayed on all other users's displays

client <-> server

17 Lecture11.key - February 12, 2016

Chat Program
• Server

• Make a socket, bind to port
• Loop forever, listening for connections

• Add the new socket from the connection to a list
• Loop forever to all of the sockets in the list

• When text comes in on a socket, send it back out to others
• Client

• Make a socket, connect to server
• Loop forever

• Read input from user
• Send to server on socket
• Quit if correct string is typed

• Loop forever
• Read from server socket
• print received string
• Quit if correct string is received

18 Lecture11.key - February 12, 2016

Threads
How to do more than one thing at a time:

from threading import Thread

import time

def func(): # This is the thread function

 for i in range(10):

 time.sleep(1.2)

 print("\tThread 2: ",i)

thread=Thread(target=func) # create a new thread

thread.start() # start the thread running, returns immediately

for i in range(8): # do something in the main program

 time.sleep(1.7)

 print("Thread 1: ",i)

thread.join() # wait for the second thread to finish

19 Lecture11.key - February 12, 2016

#!/usr/bin/env python
import socket
from threading import Thread
import time

global doexit,sock
doexit=False
sock=None

def receive():
"""This will listen for messages until the global 'doexit' is set"""
global doexit,sock

sock=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) # create socket
sock.bind(("",40000)) # attach to port 40000
sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
while True:

if doexit : break
msg=sock.recvfrom(1000) # receive up to 1000 characters
print(msg[1][0],": ",str(msg[0],'utf-8'))

This starts a separate thread for listening for messages
thread=Thread(target=receive)
thread.start()

sender

while True:
txt=input()
sock.sendto(bytes(txt,'utf-8'),("<broadcast>",40000)) # broadcast on port 40000
if txt=="quit" or txt=="exit" : break # if the user wants to quit

doexit=True
time.sleep(1)

20 Lecture11.key - February 12, 2016

The Internet

• What happens when I go to http://
maps.google.com ?

* - Some addresses are for ‘private networks’. These are 10.*.*.*, 172.16.*.*-172.31.*.*, and 192.168.*.*

21 Lecture11.key - February 12, 2016

Simple Python Webserver
This will serve files from the current directory

we use port 8080 because port 80 is restricted

from http.server import *

httpd = HTTPServer(("",8080),SimpleHTTPRequestHandler)

httpd.serve_forever()

22 Lecture11.key - February 12, 2016

Scripting, Server vs. Client

• Serverside scripting depends on the webserver you use
• Many choices
• May put load on server

• Clientside
• Java - often available, but many issues
• Flash - Almost ubiquitous, but rapidly fading
• HTML5 - provides many dynamic capabilities
• Javascript built in to most browsers

• AJAX - Asynchronous Javascript and XML
• AJAJ - Asynchronous Javascript and JSON

23 Lecture11.key - February 12, 2016

Javascript - Button

<HTML><HEAD><TITLE>Hi there</TITLE></HEAD>
<BODY>
<h3>Here is a title</h3>
And some text
<p>
<input type="button" value="Push Me" onclick="alert('You pushed me too far')">
</p>
</body>

24 Lecture11.key - February 12, 2016

Javascript - mouseover

<HTML><HEAD><TITLE>Hi there</TITLE></HEAD>
<BODY>
<h3>Here is a title</h3>
And some text
<p>
Red
Green</
a>
Blue
White</
a>
</p>
</body>

25 Lecture11.key - February 12, 2016

Javascript Calculator
<HTML><HEAD><TITLE>Hi there</TITLE></HEAD>
<BODY>
<h3>Calculator</h3>
<input type=text name='data' onkeypress='compute(event)' />

<input type=text name='result' readonly=true />
<script>
function compute(event) {
if (event.keyCode!=13) { return; }
data=document.getElementsByName('data')[0];
result=document.getElementsByName('result')[0];
result.value=eval(data.value);
}
</script>
</body>

26 Lecture11.key - February 12, 2016

Javascript - Calculator #2
<HTML><HEAD><TITLE>Hi there</TITLE></HEAD>

<BODY>

<h3>Calculator</h3>

<form name=calc onsubmit=compute()>

<input type=text name=data value="0"></input>

<table><tr>

<td><input type="button" value="7" onclick="num('7')"></td>

<td><input type="button" value="8" onclick="num('8')"></td>

<td><input type="button" value="9" onclick="num('9')"></td>

<td><input type="button" value="X" onclick="fn('*')"></td></tr><tr>

<td><input type="button" value="4" onclick="num('4')"></td>

<td><input type="button" value="5" onclick="num('5')"></td>

<td><input type="button" value="6" onclick="num('6')"></td>

<td><input type="button" value="-" onclick="fn('-')"></td></tr><tr>

<td><input type="button" value="1" onclick="num('1')"></td>

<td><input type="button" value="2" onclick="num('2')"></td>

<td><input type="button" value="3" onclick="num('3')"></td>

<td><input type="button" value="+" onclick="fn('+')"></td></tr><tr>

<td colspan=3><input type="button" value="0" onclick="num('0')"></td>

<td><input type="button" value="=" onclick="eql()"></td>

</tr> </table> </form>

27 Lecture11.key - February 12, 2016

Javascript - Calculator #2
<script>

xpr=""

rst=1

function num(val) {

 xpr+=val

 if (rst) {

 rst=0

 document.calc.data.value=""

 }

 document.calc.data.value+=val

}

function fn(val) {

 xpr+=val

 rst=1

}

function eql() {

 document.calc.data.value=eval(xpr)

 xpr=""

 rst=1

}

</script>

</body>

28 Lecture11.key - February 12, 2016

Javascript - Statements
var name[=value],name[=value]
function f(x,y) statement
if (expression) statement; else statement;
do statement while (expression)
while (expression) statement
for (var in array) statement
for (init; update; test) statement
switch (expr) {
case const:

statements
break

default:
statements

}

29 Lecture11.key - February 12, 2016

Javascript - Events

• onclick
• onfocus, onblur
• onmousedown, up, move, over,out
• onkeydown, up, press
• onreset
• onsubmit
• onload, unload

30 Lecture11.key - February 12, 2016

References

• http://www.w3.org/TR/html4/
• http://www.w3.org/TR/html4/index/elements.html
• http://htmlhelp.com/reference/html40/olist.html

• http://www.javascriptkit.com/jsref
• http://www.w3schools.com/jsref/default.asp

31 Lecture11.key - February 12, 2016

CLASS PROJECT PRESENTATIONS
• Monday, Feb 29
• 9 AM (usual class time & location)
• We have the room until 11:30, but shouldn't need it
• You will have 10 minutes total:

• Set up your presentation (1 minute) - TEST LAPTOP BEFORE FEB 29!!!
• Give your talk (7 minutes)

• What does your software do, and why did you write it
• Inputs and outputs
• Demonstration

• Questions (2 minutes)
• 1/3 of your grade will be for the presentation, and 2/3 for the program itself.

Combined this is 1/2 of your final grade in the class.
• The program MUST WORK to get a good grade. Better to turn in something that

doesn't do everything you wanted, but works, than something broken

32 Lecture11.key - February 12, 2016

CLASS PROJECTS
• Must do something useful in some specific context
• Not be trivial
• If you have past programming experience I will expect more

• Please follow these instructions exactly:
• Your class project MUST be submitted by 11:59 PM on Sat, Feb 27. No revisions will

be accepted after this time. You can use Sunday to prepare your oral presentation
• Your submission should consist of:
• one or more .py files (should have sufficient comments to figure out how they work)
• any necessary additional files to demonstrate that the program works
• A PDF file with a brief description of your program, what inputs the program takes,

what outputs the program produces, and what it is supposed to do.
• The final item in the PDF should be a command-line to use in running the program,

and any necessary instructions to demonstrate that it works.
• Combine all files into a .zip file named: Familyname_Givenname_project_2016.zip
• Email sludtke@bcm.edu with the subject "Class project submission", and attach

the .zip file

33 Lecture11.key - February 12, 2016

