
Lecture 13
Regular Expressions

Parsing
PyQt4

Prof. Steven Ludtke
N410.07, sludtke@bcm.edu

Regular Expressions

e-coli
• Find possible coding proteins from an e-coli

plasmid

• Shine-Dalgarno consensus sequence (AGGAGG)

• Start (within 3-10 residues):
• 83% ATG (3542/4284)
• 14% GTG (612)
• 3% TTG (103)

• Stop: TGA, TAA, TAG

Example

• Write a program to extract potential protein coding
regions from the e-coli genome

With Strings
seq=open("ecoli.k12.txt","r").read()

def myfind(str,substr):
r=str.find(substr)
if r<0 : return ""
return r

curloc=0
while True:

sdloc=seq[curloc:].find("AGGAGG")
if sdloc<0 : break

start=curloc+sdloc+6
subseq=seq[start:start+12]
atg=myfind(subseq,"ATG")
gtg=myfind(subseq,"GTG")
ttg=myfind(subseq,"TTG")

if min(atg,gtg,ttg)=="" :
curloc=start
continue

start+=min(atg,gtg,ttg)

srch=start
while True:

subseq=seq[srch:srch+3]
print(subseq,end="")
if subseq in ("TGA","TAA","TAG"): break
srch+=3

print ""
curloc=srch

Regular Expressions
• Language describing "patterns"

• Reasonably standardized across most
programming languages

• Often available in applications, eg - search dialogs

• Very useful in bioinformatics, tight integration with
PERL one of the reasons popular in that community

• Python is largely PERL compatible with a few
extensions

• import re

Regular Expressions
• ‘.’ - any character
• [abcd] - match any character in the list, may use ‘-’ or ‘^’
• ‘\s’ - any whitespace character [\t\n\r\f\v]
• ‘|’ - or, match either of 2 expressions
• (...) - used to group parts of an expression
• (?P<name>...) - a ‘named’ group (see groupdict)
• ‘*’ - 0 or more repetitions of the preceding element
• ‘+’ - 1 or more repetitions of the preceding element
• ‘?’ - 0 or 1 repetitions of the preceding element
• ‘*?’,’+?’,’??’ - non greedy version of *, + and ?
• {m,n} - match m-n copies of previous expression
• ‘^’ - start of the string
• ‘$’ - end of the string
• there are more

Testing Regular Expressions

• http://cthedot.de/retest/

• http://re-try.appspot.com/ (doesn’t handle space?)

Regular Expressions
re functions:

• re.search(pattern,string) - search the entire string for pattern

• re.match(pattern,string) - check the beginning of the string only

• re.split(pattern,string) - much like string.split()

• re.findall(pattern,string) - list of all non-overlapping instances

• re.finditer(pattern,string) - Match object for each match

• re.sub(pattern,repl,string) - replace matches with repl

Regular Expressions
Match objects:

• group(n) - returns the matching part of the string in
group n

• groups() - returns a tuple with all subgroups

• groupdict() - returns a dictionary of results based
on <> names

• start(),end() - index of start or end of match

With Strings
seq=open("ecoli.k12.txt","r").read()

def myfind(str,substr):
r=str.find(substr)
if r<0 : return ""
return r

curloc=0
while True:

sdloc=seq[curloc:].find("AGGAGG")
if sdloc<0 : break

start=curloc+sdloc+6
subseq=seq[start:start+12]
atg=myfind(subseq,"ATG")
gtg=myfind(subseq,"GTG")
ttg=myfind(subseq,"GTG")

if min(atg,gtg,ttg)=="" :
curloc=start
continue

start+=min(atg,gtg,ttg)

srch=start
while True:

subseq=seq[srch:srch+3]
print(subseq,end="")
if subseq in ("TGA","TAA","TAG"): break
srch+=3

print ""
curloc=srch

e-coli
• Find possible coding proteins from an e-coli

plasmid

• Shine-Dalgarno consensus sequence (AGGAGG)

• Start (within 3-10 residues):
• 83% ATG (3542/4284)
• 14% GTG (612)
• 3% TTG (103)

• Stop: TGA, TAA, TAG

Equivalent with Regex

import re
seq=open("ecoli.k12.txt","r").read()

pat="(AGGAGG)(.{3,10})(ATG|TTG|GTG)(([CATG]..)+?)(TGA|TAA|TAG)"

matches=re.findall(pat,seq)

for match in matches: print(match[2],match[3],match[-1])

Parsers

Compilers/Interpreters

Mathematical expressions

Natural language

Parsing Math
2*3*-25+4^3

(-?[.0-9]*)([*/+^-])?

Parsing Math
2*3*-25+4^3

2

+

*

*

^

3 -25

4 3

Parsing Math
2*(3*-25+4^3)

2 +

*

* ^

3 -25 4 3

How do we generate this ?
Regular expressions ? http://re-try.appspot.com

Natural Language

I run fast.

I’m going to go for a run.

The run queue on the computer is full.

Parsers

Lexical analysis

Search for tokens

Parsing or Syntactic Analysis

Relate tokens to a ‘formal grammar’

Evaluate Parse Tree

Recursion !

Parsing
http://en.wikipedia.org/wiki/
Comparison_of_parser_generators

C/C++

LEX/YACC

Bison

Python

http://wiki.python.org/moin/LanguageParsing

PLY (Python Lex/YACC, http://www.dabeaz.com/ply)

PLYPLUS (https://github.com/erezsh/plyplus)

http://erezsh.wordpress.com/2012/11/18/how-to-write-
a-calculator-in-50-python-lines-without-eval

Back to GUI Programming

Qt 4.x
• Qt:

• http://www.qt.io/

• Docs: http://doc.qt.io/qt-4.8/index.html

• Ref: http://doc.qt.io/qt-4.8/classes.html

• PyQt:

• http://www.riverbankcomputing.co.uk/software/pyqt/
intro

• docs: http://www.riverbankcomputing.co.uk/static/
Docs/PyQt4/html/classes.html

• Note that Qt5 has been out for some time, but Qt4 is still
more widely used.

Graphical Layout Design

• Qt Creator - GUI design (separate install)

• uic - Build C++ code from designs

• pyuic4 - Build python code from designs

• Gallery: http://doc.qt.io/qt-4.8/gallery-macintosh.html

Signals and Slots

http://doc.trolltech.com/4.5/images/abstract-connections.png

Simple Qt4 Application

from PyQt4 import QtCore, QtGui

This is a class representing the main window for the application
class MyGuiWindow(QtGui.QWidget):
 def __init__(self,parent=None):
 QtGui.QWidget.__init__(self,parent)
 # setup widgets

 def respond(self,value):
 pass
 # do something

This is the actual program.
Create an Application object, set up widgets, and exec()
app = QtGui.QApplication([])
window = MyGuiWindow()
window.show()
app.exec()

Button
• Public Slots

• void animateClick (int msec = 100)
• void click ()
• void setChecked (bool)
• void setIconSize (const QSize & size)
• void toggle ()

• Signals
• void clicked (bool checked = false)
• void pressed ()
• void released ()
• void toggled (bool checked)

Simple Qt4 Application
from PyQt4 import QtCore, QtGui

class MyGuiWindow(QtGui.QWidget):
 def __init__(self,parent=None):
 QtGui.QWidget.__init__(self,parent)

 # organizes the widgets into a grid
 self.gbl = QtGui.QGridLayout(self)

 # create a PushButton and add it to the window
 self.but = QtGui.QPushButton("Push Me")
 self.gbl.addWidget(self.but,0,0)

 # connect the 'clicked' signal to the respond() method
 self.but.clicked.connect(self.respond)

 def respond(self,value):
 QtGui.QMessageBox.information(None,"Ouch","That hurt! Why did you do that?")

app = QtGui.QApplication([])
window = MyGuiWindow()
window.show()
app.exec()

CLASS PROJECT PRESENTATIONS
• Monday, Feb 29
• 9 AM (usual class time & location)
• We have the room until 11:30, but shouldn't need it
• You will have 10 minutes total:

• Set up your presentation (1 minute) - TEST LAPTOP BEFORE FEB 29!!!
• Give your talk (7 minutes)

• What does your software do, and why did you write it
• Inputs and outputs
• Demonstration

• Questions (2 minutes)
• 1/3 of your grade will be for the presentation, and 2/3 for the program itself.

Combined this is 1/2 of your final grade in the class.
• The program MUST WORK to get a good grade. Better to turn in something that

doesn't do everything you wanted, but works, than something broken

CLASS PROJECTS
• Must do something useful in some specific context
• Not be trivial
• If you have past programming experience I will expect more

• Please follow these instructions exactly:
• Your class project MUST be submitted by 11:59 PM on Sat, Feb 27. No revisions will

be accepted after this time. You can use Sunday to prepare your oral presentation
• Your submission should consist of:
• one or more .py files (should have sufficient comments to figure out how they work)
• any necessary additional files to demonstrate that the program works
• A PDF file with a brief description of your program, what inputs the program takes,

what outputs the program produces, and what it is supposed to do.
• The final item in the PDF should be a command-line to use in running the program,

and any necessary instructions to demonstrate that it works.
• Combine all files into a .zip file named: Familyname_Givenname_project_2016.zip
• Email sludtke@bcm.edu with the subject "Class project submission", and attach

the .zip file

