L ecture 13

Regular Expressions

Parsing
PyQt4

Prof. Steven Ludtke
N410.07, sludtke@bcm.edu

Regular Expressions

e-coll

Find possible coding proteins from an e-coli
plasmid

Shine-Dalgarno consensus sequence (AGGAGQG)

Start (within 3-10 residues):
e 83% ATG (3542/4284)

e 14% GTG (612)

e 3% TTG (103)

Stop: TGA, TAA, TAG

Example

* Write a program to extract potential protein coding
regions from the e-coli genome

ith Strings

seg=open("ecoli.kl2.txt","r").read()

def myfind(str,substr):
r=str.find(substr)
if r<0 : return ""
return r

curloc=0

while True:
sdloc=seq[curloc:].find("AGGAGG")
if sdloc<0 : break

start=curloc+sdloc+6
subseg=seq[start:start+12]
atg=myfind(subseq, "ATG")
gtg=myfind(subseq, "GTG")
ttg=myfind(subseq, "TTG")

if min(atg,gtg,ttg)==""
curloc=start
continue

start+=min(atg,gtg,ttqg)

srch=start
while True:
subseg=seq[srch:srch+3]

print (subseq,end="")
if subseq in ("TGA","TAA","TAG"): break
srch+=3

print ""

curloc=srch

Regular Expressions

Language describing "patterns”

Reasonably standardized across most
programming languages

Often available in applications, eg - search dialogs

Very useful in bioinformatics, tight integration with
PERL one of the reasons popular in that community

Python is largely PERL compatible with a few
extensions

Import re

Regular Expressions

" - any character

[abcd] - match any character in the list, may use -’ or ‘'
\s’ - any whitespace character [\t\n\r\f\v]

|' - or, match either of 2 expressions

(...) - used to group parts of an expression
(?"P<name>...) - a ‘named’ group (see groupdict)
™’ - 0 or more repetitions of the preceding element
'+’ - 1 or more repetitions of the preceding element
“?" - 0 or 1 repetitions of the preceding element
P47)?7? - non greedy version of *, + and 7
{m,n} - match m-n copies of previous expression
‘A’ - start of the string

‘$’ - end of the string

..... there are more

Testing Regular Expressions

 http://cthedot.de/retest/

* http://re-try.appspot.com/ (doesn’t handle space?)

Regular Expressions

re functions:

re.search(pattern,string) - search the entire string for pattern
re.match(pattern,string) - check the beginning of the string only
re.split(pattern,string) - much like string.split()
re.findall(pattern,string) - list of all non-overlapping instances
re.finditer(pattern,string) - Match object for each match

re.sub(pattern,repl,string) - replace matches with repl

Regular Expressions

Match objects:

group(n) - returns the matching part of the string in
group n

groups() - returns a tuple with all subgroups

groupdict() - returns a dictionary of results based
on <> names

start(),end() - index of start or end of match

ith Strings

seg=open("ecoli.kl2.txt","r").read()

def myfind(str,substr):
r=str.find(substr)
if r<0 : return ""
return r

curloc=0

while True:
sdloc=seq[curloc:].find("AGGAGG")
if sdloc<0 : break

start=curloc+sdloc+6
subseg=seq[start:start+12]
atg=myfind(subseq, "ATG")
gtg=myfind(subseq, "GTG")
ttg=myfind(subseq, "GTG")

if min(atg,gtg,ttg)==""
curloc=start
continue

start+=min(atg,gtg,ttqg)

srch=start
while True:
subseg=seq[srch:srch+3]

print (subseq,end="")
if subseq in ("TGA","TAA","TAG"): break
srch+=3

print ""

curloc=srch

e-coll

Find possible coding proteins from an e-coli
plasmid

Shine-Dalgarno consensus sequence (AGGAGQG)

Start (within 3-10 residues):
e 83% ATG (3542/4284)

e 14% GTG (612)

e 3% TTG (103)

Stop: TGA, TAA, TAG

—quivalent with Regex

import re
seg=open("ecoli.kl2.txt","r").read()

pat="(AGGAGG) (.{3,10}) (ATG|TTG|GTG) (([CATG]..)+?) (TGA|TAA|TAG)"

matches=re.findall (pat,seq)

for match in matches: print(match[2],match[3],match[-1])

Parsers

@ Compilers/Interpreters
@ Mathematical expressions

@ Natural language

Parsing Math
2%3%-25+4"3

SO 5 Gl e

Parsing Math

2%3%-25+4"3

+

e
a0 N
2 X 4 3

TN\

3 -25

Parsing Math

2*(3%_254+4"3)

b 4

i

2 +
e

O\ =GN

3 -25 4 3

How do we generate this ?

Regular expressions ? http://re-try.appspot.com

Natural Language

S

Adj N mp

Fruit flies like Det N

| |

a banana

I run fast.
I'm going to go for a run.
The run queue on the computer is full.

Parsers

@ Lexical analysis

@ Search for tokens
@ Parsing or Syntactic Analysis

@ Relate tokens to a formal grammar’
@ Evaluate Parse Tree

® Recursion !

Parsing

@ http://en.wikipedia.org/wiki/
Comparison_of_parser_generators

@ C/C++
@ LEX/YACC
@ Bison

@ Python

@ http://wiki.python.org/moin/LanguageParsing

@ PLY (Python Lex/YACC, http://www.dabeaz.com/ply)

@ PLYPLUS (https://github.com/erezsh/plyplus)

@ http://erezsh.wordpress.com/2012/11/18/how-to-write-
a-calculator-in-50-python-lines-without-eval

Back to GUI Programming

Qt 4.x

e Qt:

e http://www.qt.io/

» Docs: http://doc.qt.io/at-4.8/index.html

» Ref: http://doc.qt.io/gt-4.8/classes.html

« PyQt:
* http://www.riverbankcomputing.co.uk/software/pyqt/
Intro

 docs: http://www.riverbankcomputing.co.uk/static/
Docs/PyQt4/html/classes.html

* Note that Qt5 has been out for some time, but Qt4 is still
more widely used.

Graphical Layout Design

e Qt Creator - GUI design (separate install)

uic - Build C++ code from designs

e pyuic4 - Build python code from designs

« Gallery: http://doc.at.io/gt-4.8/gallery-macintosh.html|

Signals and Slots

Object1

signall

signal2

Object3

signali

slot1

connect(Object1, signal1, Object2, slot1)
connect(Object1, signal1, Object2, slot2)

Object2

signali

P slot1
slot2

connect(Object1, signal2, Object4, slot1)

Object4

—

connect(Object3, signal1, Objectd, slot3)

Simple Qt4 Application

from PyQt4 import QtCore, QtGui

This is a class representing the main window for the application
class MyGuiWindow(QtGui.QWidget):

def __init__ (self,parent=None):

QtGui.QWidget.__init__ (self,parent)
setup widgets

def respond(self,value):
pass

do something

This is the actual program.

Create an Application object, set up widgets, and exec()
app = QtGui.QApplication([])

window = MyGuiWindow()

window.show()

app.exec()

Button

Public Slots
e void animateClick (int msec = 100)
* void click ()
* void setChecked (bool)
* void setlconSize (const QSize & size)
« void toggle ()

Signals
* void clicked (bool checked = false)
e void pressed ()
e void released ()
« void toggled (bool checked)

Simple Qt4 Application

from PyQt4 import QtCore, QtGui

class MyGuiWindow(QtGui.QWidget):
def __init__ (self,parent=None):
QtGui.QWidget.__init__(self,parent)

organizes the widgets into a grid
self.gbl = QtGui.QGridLayout(self)

create a PushButton and add it to the window
self.but = QtGui.QPushButton("Push Me")
self.gbl.addwWidget(self.but,0,0)

connect the 'clicked' signal to the respond() method
self.but.clicked.connect(self.respond)

def respond(self,value):
QtGui.QMessageBox.information(None,"Ouch","That hurt! Why did you do that?")

app = QtGui.QApplication([])
window = MyGuiWindow()
window. show()

app.exec()

CLASS PROJECT PRESENTATIONS

Monday, Feb 29

9 AM (usual class time & location)

We have the room until 11:30, but shouldn't need it
You will have 10 minutes total:
e Set up your presentation (1 minute) - TEST LAPTOP BEFORE FEB 29!!!
e Give your talk (7 minutes)
 What does your software do, and why did you write it
e Inputs and outputs
* Demonstration
* Questions (2 minutes)

1/3 of your grade will be for the presentation, and 2/3 for the program itself.
Combined this is 1/2 of your final grade in the class.

The program MUST WORK to get a good grade. Better to turn in something that
doesn't do everything you wanted, but works, than something broken

CLASS PROJECTS

Must do something useful in some specific context
Not be trivial

If you have past programming experience | will expect more

Please follow these instructions exactly:

Your class project MUST be submitted by 11:59 PM on Sat, Feb 27. No revisions will
be accepted after this time. You can use Sunday to prepare your oral presentation

Your submission should consist of:
one or more .py files (should have sufficient comments to figure out how they work)
any necessary additional files to demonstrate that the program works

A PDF file with a brief description of your program, what inputs the program takes,
what outputs the program produces, and what it is supposed to do.

The final item in the PDF should be a command-line to use in running the program,
and any necessary instructions to demonstrate that it works.

Combine all files into a .zip file named: Familyname_Givenname_project_2016.zip

Email sludtke@bcm.edu with the subject "Class project submission®, and attach
the .zip file

