
Introduction to
Programming for

Scientists
Prof. Steven Ludtke

N410.07, sludtke@bcm.edu

Lecture 2:
Conditions, Loops & Variables

Reminder

• Class material at:

http://blake.bcm.edu/IP16

• If you missed the first lecture, it is archived on
the site above.

Python
• Data storage

• ‘simple’ types - numbers, strings, ...
• compound types - lists, dictionaries, sets, ...

• Operate on data
• statements - a=b*10, print(b*5+3, ...
• functions - sin(a), len(x), ...
• methods (functions on an object) - “abc”.count(“b”)

• Program Flow
• for ... in ...
• if, else
• while ()

• Interact with the outside world
• User interactions - raw_input()
• Disk and other device access - file i/o

Type conversion
Type Creation Conversion

integer int()

floating point decimal point float()
boolean True or False bool()

complex x+yj complex()

string " ", ' ', """ """, ''' ''' str()

list [a,b,…] list()

tuple (a,b,…) tuple()
set {a,b,...} set()

dict {a:b,c:d,...} dict()

Python
• Data storage

• ‘simple’ types - numbers, strings, ...
• compound types - lists, dictionaries, sets, ...

• Operate on data
• statements - a=b*10, print(b*5+3, ...
• functions - sin(a), len(x), ...
• methods (functions on an object) - “abc”.count(“b”)

• Program Flow
• for ... in ...
• if, else
• while ()

• Interact with the outside world
• User interactions - raw_input()
• Disk and other device access - file i/o

Functions vs. Methods
• Functions : sin(x), cos(y), len(s)

• normally return a value

• Not type-specific

• Methods : st.upper(), lst.append(5), lst.sort()

• functions applied to a specific “object”

• don't always return anything

• methods are type-specific

Some Built-in functions

• input
• range - makes a list (or iterator) covering a range
• len
• max,min
• reversed, sorted
• print((actually a statement in Python2)

Methods of Strings
• Remember strings are immutable !

• upper, lower, title, capitalize

• count, find, rfind, index

• replace

• split

• join

• in (not really a method)

Lists
[item1,item2,item3,...] # items can be anything

(item1,item2,item3,...) # A tuple is an immutable
list

a=[0,1,2,3,4,5,6] # A list of 7 numbers

a[n] # nth element in list

a[n:m] # sublist elements n to m-1

a[-n] # nth item from the end

a[3] -> 3

a[1:4] -> [1,2,3]

a[-2] -> 5

a[2:-2] -> [2,3,4]

a[2]=”x” -> [0,1,”x”,3,4,5,6]

List Methods

• append, extend

• del, remove

• count

• index

• reverse, sort

Sets
• Sets have no order and elements are unique

• set([1,2,3,4,5])

• methods:

• add, remove, discard, clear

• issubset, issuperset

• union, intersection, difference

Dictionaries
• keys must be immutable, values can be any type
• { k1:v1, k2:v2, k3:v3, ... }

Example:

a={ 1:2,2:3,”a”:”b”,2.0:3.2,(1,2):”really?” }

a[1] -> 2

a[(1,2)] -> “really?”

a[2] -> 3.2
• Methods:

• keys, values, items
• has_key

• set_default

Programs you can Run
• Do NOT use a word-processor like Word, Pages, etc. You must use a simple 'text

editor’. The Spyder editor in Anaconda is a good choice.

• Once you save the file to disk (use a .py extension):

• Just type ‘python program.py’ -or- :

• for unix/mac, put:

#!/usr/bin/env python3

on the first line of the file, and type:

chmod a+x file.py

• NOTE: on windows, as soon as the program exits, the window showing the
output will close. If you put a raw_input() at the end of your program, it will wait
until you press enter before closing the window so you can see the output.

Writing Actual Programs

• How would you display a table of x vs sin(x) for x
from 0 to 2π in steps of π/4 ?

from math import *

print(0,sin(0))
print(pi/4,sin(pi/4))
print(pi/2,sin(pi/2))
print(3*pi/4,sin(3*pi/4))
print(pi,sin(pi))
print(5*pi/4,sin(5*pi/4))
print(3*pi/2,sin(3*pi/2))
print(7*pi/4,sin(7*pi/4))
print(2*pi,sin(2*pi))

Suboptimal, but functional

from math import *
x=[0,pi/4,2*pi/4,3*pi/4,4*pi/4,5*pi/4,6*pi/4,7*pi/4,8*pi/4]

print(x[0],sin(x[0]))
print(x[1],sin(x[1]))
print(x[2],sin(x[2]))
print(x[3],sin(x[3]))
print(x[4],sin(x[4]))
print(x[5],sin(x[5]))
print(x[6],sin(x[6]))
print(x[7],sin(x[7]))
print(x[8],sin(x[8]))

Umm... slightly better ?

Now What ?

• How would you display a table of x vs sin(x) for x
from 0 to 2π in steps of π/64 ?

Python
• Data storage

• ‘simple’ types - numbers, strings, ...
• compound types - lists, dictionaries, sets, ...

• Operate on data
• statements - a=b*10, print(b*5+3, ...
• functions - sin(a), len(x), ...
• methods (functions on an object) - “abc”.count(“b”)

• Program Flow
• for ... in ...
• while ()
• if, else

• Interact with the outside world
• User interactions - raw_input()
• Disk and other device access - file i/o

Program Flow

• for i in list:
• if condition :

• Boolean operators
• >, <, <=, >=, ==, !=, and, or, not, in

• elif condition :
• else :
• while condition :

for Loops
• Execute 'code' for each item in list, assigning the element

to 'var' in each cycle:
for var in list:

code

Example:
a=[1,2,3,4,5]
for i in a:

print(i,i*2)

Blocks of Code
j=0
for i in x:

j=j+i
print(i,j)

for i in x: print(i)

from math import *
x=[0,pi/4,2*pi/4,3*pi/4,4*pi/4,5*pi/4,6*pi/4,7*pi/4,8*pi/4]

print(x[0],sin(x[0]))
print(x[1],sin(x[1]))
print(x[2],sin(x[2]))
print(x[3],sin(x[3]))
print(x[4],sin(x[4]))
print(x[5],sin(x[5]))
print(x[6],sin(x[6]))
print(x[7],sin(x[7]))
print(x[8],sin(x[8]))

Umm... slightly better ?

from math import *
x=[0,pi/4,2*pi/4,3*pi/4,4*pi/4,5*pi/4,6*pi/4,7*pi/4,8*pi/4]

for i in x:
print(i,sin(i))

Better !

from math import *
x=range(9)

for i in x:
j=i*pi/4
print(j,sin(j))

More improvement...

from math import *
x=range(9)
for i in x: i=i*pi/4

for i in x:
print(i,sin(i))

Would this work ?

from math import *
x=range(9)
for i in range(len(x)): x[i]*=pi/4

for i in x:
print(i,sin(i))

Try this instead

Oops, can't modify range() iterators!

from math import *
x=list(range(9))
for i in range(len(x)): x[i]=x[i]*pi/4

for i in x:
print(i,sin(i))

Try this instead

Works, but not very satisfying...

List Generators
• A for loop inside a list definition !

• [x... for x in y]

example:

a=[0,1,2,3,4,5,6,7]

a=[i**2 for i in a]

print(a)

[0,1,4,9,16,25,36,49]

from math import *

for i in [i*pi/4 for i in range(9)]:
print(i,sin(i))

Much Better !

Writing Actual Programs

• How would you display a table of x vs sin(x) for x
from 0 to 4π in steps of π/8, but only include
values where sin(x) > 0 ?

from math import *
x=[i*pi/8 for i in range(33)]

for i in x:
print(i,sin(i))

Start with this

But what about the sin(x) > 0 requirement ?

The if statement

• Boolean operators
• >, <, <=, >=, ==, !=, and, or, not, in

• if condition :
• elif condition :
• else :

from math import *
x=[i*pi/8 for i in range(33)]

for i in x:
if sin(i)>0 :

print(i,sin(i))

Tack in our if

Comments

• Anything after ‘#’ on a line is a comment

from math import *
This generates our x-values
x=[i*pi/8 for i in range(33)]

for i in x: # loop over x-values
if sin(i)>0 : # only print(if sin(x)>0

print(i,sin(i))

Tack in our if

from math import *

print("".join(["{:1.2f}\t{:1.2f}\n".format(x*pi/8,sin(x*pi/8)) for x in range(33)])

1-line solution

Homework #1
For all homework assignments, you are free to consult others on concepts, but
the final code you turn in should be your own. If you are just learning
programming for the first time, I would suggest that you try to spend at least 30
min thinking about each problem before seeking assistance. Even then, the first
few assignments may be frustrating and time consuming, but if you don't practice
the fundamentals now, you may be in real trouble later in the class. The only way
to learn programming is by doing it. There are many possible solutions to each of
these problems. If you need help, you can contact the TA or email me at any time,
or find me any time my office door is open (mornings are usually better). While it
may be possible to Google answers to some of these homework assignments,
you won't learn much if you solve them this way. We will go over the solutions at
the beginning of each class, so the homework must be emailed before then !

To hand in your homework: For each problem, create a ".py" file containing the
program that solves it. This should not be a Word doc, or a PDF, but a text file you
could execute directly. Use comments to document your programs!

Submit homework by email with the subject "Homework N” to
James.Bell@bcm.edu with a cc to sludtke@bcm.edu.

Practice #1
The homework (next page) is due Monday. If you are just starting out it would be
a good idea to get a little practice with data types, conversion and manipulation.
These small exercises should not be turned in, but I strongly encourage you try
and do them yourself over the weekend to gain a little experience. Set aside an
hour and try to solve each one for ~10 minutes. After trying yourself, download
the solutions (online) and make sure you understand them all:

1) Create a list of numbers from 5 to 15 inclusive stepping by 0.5.

2) Start with the string "this is a short test string" and create a new string with the
letters sorted alphabetically

3) Create a string containing only the unique letters in "abracadabra"

4) Start with s="1 2 4 8 16". Convert the string to a list of integers and take the
log base 2 of each number.

Homework #1

1. Ask the user to enter a 1-letter DNA sequence, for example
“CTGGGCCACACTGGAAGAACTGTGTTGGGCCACA"

• Count the number of each nucleotide present in the entered sequence
(and print(the count)

• Print(the reverse complement of the entered sequence

