
Introduction to Programming for Scientists

Prof. Steven Ludtke

N410, sludtke@bcm.edu

Lecture 3:
Writing Programs

1 Lecture3.key - January 11, 2016

Homework Review
1.Ask the user to enter a 1-letter DNA sequence, for example

“CTGGGCCACACTGGAAGAACTGTGTTGGGCCACA"

• Count the number of each nucleotide present in the entered
sequence (and print the count)

• Print the reverse complement of the entered sequence

2 Lecture3.key - January 11, 2016

Programming

• How do we represent the data ?

• Break the task into small pieces

• Code each of the pieces

3 Lecture3.key - January 11, 2016

Programming

• How do we represent the data ?
• string
• list
• bytearray

• Break the task into small pieces

• Code each of the pieces

4 Lecture3.key - January 11, 2016

Programming

• How do we represent the data ?
• Break the task into small pieces

• Read the string from the user
• Convert to upper case
• C↔G and A↔T
• Reverse order

• Code each of the pieces

5 Lecture3.key - January 11, 2016

Homework Review

Tempting:

seq=input("Enter a sequence: ").upper()

cmpl=seq.replace("C","G").replace("G","C").\
replace("A","T").replace("T","A")

print("".join(reversed(cmpl)))

… but wrong

print "CAGT".replace("C","G").replace("G","C").\
replace("A","T").replace("T","A")

'CACA'

6 Lecture3.key - January 11, 2016

Homework Review

Ok, how about:

… but strings are immutable ! …grrr …now what?

seq=input("Enter a sequence: ").upper()

for i in range(len(seq)):
if seq[i]=="C" : seq[i]="G"
elif seq[i]=="G" : seq[i]="C"
elif seq[i]=="T" : seq[i]="A"
elif seq[i]=="A" : seq[i]="T"
else : print("ERROR with ",seq[i])

print("".join(reversed(seq)))

7 Lecture3.key - January 11, 2016

Homework Review

Build a new string! :
seq=input("Enter a sequence: ").upper()

cmpl=""
for i in range(len(seq)):

if seq[i]=="C" : cmpl=cmpl+"G"
elif seq[i]=="G" : cmpl=cmpl+"C"
elif seq[i]=="T" : cmpl=cmpl+"A"
elif seq[i]=="A" : cmpl=cmpl+"T"
else :
print("ERROR with ",seq[i]," at ",i)

print("".join(reversed(seq)))

8 Lecture3.key - January 11, 2016

Homework Review

Shortcut:
seq=input("Enter a sequence: ").upper()

cmpl=""
for i in range(len(seq)):

if seq[i]=="C" : cmpl+="G"
elif seq[i]=="G" : cmpl+="C"
elif seq[i]=="T" : cmpl+="A"
elif seq[i]=="A" : cmpl+="T"
else :
print("ERROR with ",seq[i]," at ",i)

print("".join(reversed(cmpl)))

Works, but unfortunately this is EXTREMELY inefficient in Python.

9 Lecture3.key - January 11, 2016

Homework Review

Ok, then, let’s make the string into a list (data representation):

seq=list(input("Enter a sequence: ").upper())

for i in range(len(seq)):
if seq[i]=="C" : seq[i]="G"
elif seq[i]=="G" : seq[i]="C"
elif seq[i]=="T" : seq[i]="A"
elif seq[i]=="A" : seq[i]="T"
else : print("ERROR with ",seq[i])

print("".join(reversed(seq)))

Further improvements ?

10 Lecture3.key - January 11, 2016

Homework Review

We could use a dictionary instead of all those if’s :

seq=list(input("Enter a sequence: ").upper())

dnamap={"C":"G","G":"C","T":"A","A":"T"}

for i in range(len(seq)):
seq[i]=dnamap[seq[i]]

print("".join(reversed(seq)))

If there is an error due to an illegal letter, the program crashes 😞

11 Lecture3.key - January 11, 2016

try, except

• A way to avoid having errors crash your program

• An alternative to lots of ‘if’ statements

• try: - try to do something

• except <exception>: - if something specific fails, do this

• except: - if anything else fails, do this

• http://docs.python.org/library/exceptions.html

12 Lecture3.key - January 11, 2016

Homework Review

Better error detection :

seq=list(input("Enter a sequence: ").upper())

dnamap={"C":"G","G":"C","T":"A","A":"T"}

for i in range(len(seq)):
try: seq[i]=dnamap[seq[i]]
except:
print("Error with",seq[i],"at",i)

print("".join(reversed(seq)))

If there is an error due to an illegal letter, the program continues

13 Lecture3.key - January 11, 2016

Homework Review

A variation using the map() function :

seq=list(input("Enter a sequence: ").upper())

dnamap={"C":"G","G":"C","T":"A","A":"T"}
seq=list(map(dnamap.get,seq))

print("".join(reversed(seq)))

If there is an error due to an illegal letter, it dies again. We could use try/except on
map(), but error detection would be less precise and wouldn't continue

14 Lecture3.key - January 11, 2016

Homework Review

seq=bytearray(input("Enter a sequence: ").upper(),"utf-8")

dnamap={ord("C"):ord("G"),ord("G"):ord("C"),\
ord("T"):ord("A"),ord("A"):ord("T")}

for i in range(len(seq)):
try: seq[i]=dnamap[seq[i]]
except: print("The letter",chr(seq[i]),"is unknown")

seq.reverse()
print(seq.decode())

“bytearray” is a mutable string, but slightly trickier to use:

15 Lecture3.key - January 11, 2016

Homework Review

Let’s get back to that original approach :

Tempting:

seq=input("Enter a sequence: ").upper()

print seq.replace(“C”,"G").replace("G","C").\
 replace(“A”,"T").replace("T","A")

… but wrong

Maybe we could fix this…

16 Lecture3.key - January 11, 2016

Homework Review

It works ! :

seq=input("Enter a sequence: ").upper()

cmpl=seq.replace("C","g").replace("G","c").\
 replace("A","t").replace("T","a").upper()

print("".join(reversed(cmpl)))

17 Lecture3.key - January 11, 2016

Homework Review

How about this one ? :

seq=input("Enter a sequence: ")

table="".maketrans("ACGTacgt","TGCATGCA")

print("".join(reversed(seq.translate(table))))

This is the most efficient program to perform this task !

18 Lecture3.key - January 11, 2016

DNA → Protein

• Write a program to convert a file containing a DNA
sequence to its corresponding protein sequence*.

* - ignoring post-translational modifications, splicing, and other issues, just a straight translation

19 Lecture3.key - January 11, 2016

Programming

• How do we represent the data ?

• Break the task into small pieces

• Code each of the pieces

20 Lecture3.key - January 11, 2016

Genbank Example

 1 atggcagcta aagacgtaaa attcggtaac gacgctcgtg tgaaaatgct gcgcggcgta
 61 aacgtactgg cagatgcagt gaaagttacc ctcggtccga aaggccgtaa cgtagttctg
 121 gataaatctt tcggtgcacc gaccatcacc aaagatggtg tttccgttgc tcgtgaaatc
 181 gaactggaag acaagttcga aaacatgggt gcgcagatgg tgaaagaagt tgcctctaaa
 241 gcgaacgacg ctgcaggcga cggtaccacc actgcaaccg tactggctca ggctatcatc
 301 actgaaggtc tgaaagctgt tgctgcgggc atgaacccga tggacctgaa acgtggtatc
 361 gacaaagctg ttaccgctgc agttgaagaa ctgaaagcgc tgtccg

21 Lecture3.key - January 11, 2016

Data Representation

• DNA sequence

• A string ?

• Strip out whitespace, numbers, etc ?

• Error checking ?

• Protein Sequence

• A string ?

• Translation Table

• Dictionary (?)

22 Lecture3.key - January 11, 2016

23 Lecture3.key - January 11, 2016

Represent as Dict

{0:['tag', 'taa', 'tga'], 'a':['gca', 'gcc', 'gcg', 'gct'],
'c':['tgt', 'tgc'], 'e':['gag', 'gaa'], 'd':['gat', 'gac'],
'g':['ggt', 'ggg', 'gga', 'ggc'], 'f':['ttt', 'ttc'],
'i':['atc', 'ata', 'att'], 'h':['cat', 'cac'],
'k':['aaa', 'aag'], 'm':['atg'],
'l':['tta', 'ttg', 'ctt', 'ctg', 'cta', 'ctc'],
'n':['aac', 'aat'], 'q':['cag', 'caa'],
'p':['cct', 'ccg', 'cca', 'ccc'],
's':['tct', 'tcg', 'tcc', 'tca', 'agc', 'agt'],
'r':['cgt', 'agg', 'cga', 'cgc', 'cgg', 'aga'],
't':['acc', 'act', 'aca', 'acg'], 'w':['tgg'],
'v':['gta', 'gtc', 'gtg', 'gtt'], 'y':['tat', 'tac']}

24 Lecture3.key - January 11, 2016

Represent as Dict
xlate={ "ttt":"f","ttc":"f","tta":"l","ttg":"l",
"ctt":"l","ctc":"l","cta":"l","ctg":"l","att":"i",
"atc":"i","ata":"i","atg":"m","gtt":"v","gtc":"v",
"gta":"v","gtg":"v","tct":"s","tcc":"s","tca":"s",
"tcg":"s","cct":"p","ccc":"p","cca":"p","ccg":"p",
"act":"t","acc":"t","aca":"t","acg":"t","gct":"a",
"gcc":"a","gca":"a","gcg":"a","tat":"y","tac":"y",
"taa":"0","tag":"0","cat":"h","cac":"h","caa":"q",
"cag":"q","aat":"n","aac":"n","aaa":"k","aag":"k",
"gat":"d","gac":"d","gaa":"e","gag":"e","tgt":"c",
"tgc":"c","tga":"0","tgg":"w","cgt":"r","cgc":"r",
"cga":"r","cgg":"r","agt":"s","agc":"s","aga":"r",
"agg":"r","ggt":"g","ggc":"g","gga":"g","ggg":"g"}

25 Lecture3.key - January 11, 2016

How does this influence the code ?
• DNA triplet -> Amino Acid

• Dict keyed by amino acid:

• for each key

• for each value of that key

• if match stop and return key

• Dict keyed by DNA triplet:

• Look up triplet, return value for key

26 Lecture3.key - January 11, 2016

Programming

• How do we represent the data ?

• Break the task into small pieces

• Code each of the pieces

27 Lecture3.key - January 11, 2016

Steps

• Get data filename

• Open file & read data

• Preprocess data (just the letters we want)

• Loop over the data 3 elements at a time

• Translate

• Print results

28 Lecture3.key - January 11, 2016

Arguments

• myprogram.py file1.txt file2.txt

• python myprogram.py file1.txt file2.txt

• from sys import argv

• len(argv) -> 3

• argv[0] -> myprogram.py

• argv[1] -> file1.txt

Note: Can’t do this if you start by clicking on the program

29 Lecture3.key - January 11, 2016

Get Filename

from sys import argv
fsp=argv[1]

-or-

fsp=input(“Filename:")

30 Lecture3.key - January 11, 2016

Read/write files

• handle=open(<filename>,<mode>)
• Valid modes: [r|w|a|U][+][b]

• r - open file for reading
• w - truncate file and open for writing
• a - open file for appending (writing at end of file, platform dependent)
• U - Universal text file support
• + - in addition to basic mode, permit writing
• b - open in binary mode (default is text mode)

• Different platforms do a newline differently:
• Unix - '\n'
• Old mac - '\r'
• Windows - '/r/n'

31 Lecture3.key - January 11, 2016

File Methods

• string=file.read([len]) - Reads whole file (or [len] bytes)
• string=file.readline() - Read a single line of text
• stringlist=file.readlines() - Read whole file as a list of lines
• file.write(<string>) - Write <string> to file (no automatic /n)
• file.close() - Close the file (automatic when file object freed)
• file.flush() - Write output to file immediately (no buffering)
• int=file.tell() - Current location in the file (use binary mode!)
• file.seek(<loc>) - Move to a specific position in the file
• for line in file: print line - File acts as an iterator for lines

• sys.stdin, stdout, stderr - Automatic file handles

32 Lecture3.key - January 11, 2016

Read Data & Preprocess

dna=open(fsp,"r").read() # read the entire file into ram

This uses the 'deletechars' option of the string translate
method to remove characters we don't want. Technically
we could also add an upper->lower conversion
dna=dna.translate(str.maketrans("CAGT","cagt","0123456789 \t\n
\r"))

33 Lecture3.key - January 11, 2016

Loop & Translate

out=(fsp+".prot","w")

for i in range(0,len(dna),3):
triplet=dna[i:i+3]
try: amino=xlate[triplet]
except:
print("Unknown triplet: ",triplet)
sys.exit(1)

out.write(amino)

out.write("\n")

34 Lecture3.key - January 11, 2016

Put it all together
import sys

xlate={"ttt":"f" ... "ggg":"g"}

fsp=sys.argv[1]
dna=open(fsp,"r").read()
dna=dna.translate(str.maketrans("","","0123456789 \t\n
\r")).lower()
out=open(fsp+".prot","w")

for i in range(0,len(dna),3):
triplet=dna[i:i+3]
try: amino=xlate[triplet]
except:
print("Unknown triplet: ",triplet)
sys.exit(1)

out.write(amino)

out.write("\n")

35 Lecture3.key - January 11, 2016

Nested Loops

• a loop inside a loop
for i in range (10):

for j in range(10):

print i,j

• Continue/break - interrupting the flow of a loop
for i in range(20):

if i==5 : continue

if i>17 : break

print i

36 Lecture3.key - January 11, 2016

While Loops

• While loop - continues as long as a condition is met  

a=0

while a<10:

a=a+0.1

print a

37 Lecture3.key - January 11, 2016

Homework #3
1. Start with the simple DNA -> Protein translation program we wrote in class today (you can download

it from the class site). Let's assume that we've dealt with identifying a promotor, etc, and that the
sequence we're getting is within a few residues of being the start of a coding region of DNA.
However, the exact frame hasn't been identified, and clearly if we start with a frame shift we'll get the
wrong sequence. Modify the program to identify the correct frame by assuming the first ATG we find
represents the beginning of the coding region, then translate only until a stop codon is found.
example: if your program were given 'gatggcagct aaagacgtaa aatgaaaa' it should produce ‘maakdvk'

2. Write a simplified amortization program, that is, a program that keeps track of how much you still
owe on a loan. We will simplify the math a bit: Assume that each month, the amount increases by the
balance times 1/12 the interest rate and decreases by the amount of the fixed monthly payment. You
should ask the user for the amount of the loan, the annual percentage interest rate, and the payment
amount. For each month, print the payment number, interest for the month, and the remaining
balance on the loan after the payment. Continue to write out new months until the loan is payed off.

To hand in your homework: Create a ".py" file containing each program. Do not create a .zip file. You
do not need to provide the output from the programs, just the programs themselves. If you need to
write any comments or description of what you did, best to put them in the .py file as "#" comments.
Please include your name in the filename, eg - smith_homework_3_mortgage.py

38 Lecture3.key - January 11, 2016

