
Lecture 4
Standard Libraries

More Nested Loops

Prof. Steven Ludtke
N410.07, sludtke@bcm.edu

1 Lecture4.key - January 15, 2016

Start with the simple DNA -> Protein translation program we wrote in class today (you can
download it from the class site). Let's assume that we've dealt with identifying a promotor,
etc, and that the sequence we're getting is within a few residues of being the start of a
coding region of DNA. However, the exact frame hasn't been identified, and clearly if we
start with a frame shift we'll get the wrong sequence. Modify the program to identify the
correct frame by assuming the first ATG we find represents the beginning of the coding
region, then translate only until a stop codon is found. example: if your program were
given 'gatggcagct aaagacgtaa aatgaaaa' it should produce ‘maakdvk'

Homework Review

2 Lecture4.key - January 15, 2016

import sys

xlate={ "ttt":"f",…,"ggg":"g"}

fsp=sys.argv[1]
dna=open(fsp,"r").read()
dna=dna.translate(str.maketrans("","","0123456789 \t\n
\r")).lower()
out=(fsp+".prot","w")

for i in range(0,len(dna),3):
 triplet=dna[i:i+3]
 try: amino=xlate[triplet]
 except:
 print("Unknown triplet: ",triplet)
 sys.exit(1)

 out.write(amino)

out.write("\n")

Homework Review

3 Lecture4.key - January 15, 2016

import sys

xlate={ "ttt":"f",…,"ggg":"g"}

fsp=sys.argv[1]
dna=open(fsp,"r").read()
dna=dna.translate(str.maketrans("","","0123456789 \t\n
\r")).lower()
dna=dna[dna.find(“atg”):]
out=(fsp+".prot","w")

for i in range(0,len(dna),3):
 triplet=dna[i:i+3]
 try: amino=xlate[triplet]
 except:
 print("Unknown triplet: ",triplet)
 sys.exit(1)

 out.write(amino)

out.write("\n")

Homework Review

4 Lecture4.key - January 15, 2016

Represent as Dict
xlate={ "ttt":"f","ttc":"f","tta":"l","ttg":"l",
"ctt":"l","ctc":"l","cta":"l","ctg":"l","att":"i",
"atc":"i","ata":"i","atg":"m","gtt":"v","gtc":"v",
"gta":"v","gtg":"v","tct":"s","tcc":"s","tca":"s",
"tcg":"s","cct":"p","ccc":"p","cca":"p","ccg":"p",
"act":"t","acc":"t","aca":"t","acg":"t","gct":"a",
"gcc":"a","gca":"a","gcg":"a","tat":"y","tac":"y",
"taa":"0","tag":"0","cat":"h","cac":"h","caa":"q",
"cag":"q","aat":"n","aac":"n","aaa":"k","aag":"k",
"gat":"d","gac":"d","gaa":"e","gag":"e","tgt":"c",
"tgc":"c","tga":"0","tgg":"w","cgt":"r","cgc":"r",
"cga":"r","cgg":"r","agt":"s","agc":"s","aga":"r",
"agg":"r","ggt":"g","ggc":"g","gga":"g","ggg":"g"}

5 Lecture4.key - January 15, 2016

import sys

xlate={ "ttt":"f",…,"ggg":"g"}

fsp=sys.argv[1]
dna=open(fsp,"r").read()
dna=dna.translate(str.maketrans("","","0123456789 \t\n
\r")).lower()
dna=dna[dna.find(“atg”):]
out=(fsp+".prot","w")

for i in range(0,len(dna),3):
 triplet=dna[i:i+3]
 try: amino=xlate[triplet]
 except:
 print("Unknown triplet: ",triplet)
 sys.exit(1)

 if amino==“0” : break
 out.write(amino)

out.write("\n")

Homework Review

6 Lecture4.key - January 15, 2016

Write a simplified amortization program, that is, a program that keeps track of how much
you still owe on a loan. We will simplify the math a bit: Assume that each month, the
amount increases by the balance times 1/12 the interest rate and decreases by the
amount of the fixed monthly payment. You should ask the user for the amount of the loan,
the annual percentage interest rate, and the payment amount. For each month, print the
payment number, interest for the month, and the remaining balance on the loan after the
payment. Continue to write out new months until the loan is payed off.

Homework Review

7 Lecture4.key - January 15, 2016

Homework Review

• How do we represent the data ?

• Break the task into small pieces

• Code each of the pieces

8 Lecture4.key - January 15, 2016

Homework Review

• How do we represent the data?
• balance - Balance at the end of each month
• rate - monthly fractional interest rate
• payment - amount of monthly payment

• Break the code into small pieces:
• ask user for values
• convert rate to monthly fraction (/1200)
• if balance*rate > payment then raise error
• loop until balance <=0

• compute interest = balance*rate
• balance = balance + interest - payment
• print values

9 Lecture4.key - January 15, 2016

Amortization
import sys
balance=float(input("Amount of loan:"))
rate=float(input("Rate as a %:"))/1200.0
payment=float(input("Monthly payment:"))

if rate*balance>payment :
print("Insufficient payment !")
sys.exit(1)

month=1
while (balance>0):

print(month,")",balance,”+",rate*balance,"-",payment,"=",
balance+rate*\ balance-payment)

balance+=rate*balance-payment
month+=1

10 Lecture4.key - January 15, 2016

String Formatting
• {[field][:format]}

• format ::= [[fill]align][sign][#][0][width][,][.precision][type]

• fill ::= <any character>

• align ::= "<" | ">" | "=" | "^"

• sign ::= "+" | "-" | " "

• width ::= integer

• precision ::= integer

• type ::= "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"

11 Lecture4.key - January 15, 2016

Simple Examples
3 columns with automatic formatting of an integer, a floating point number and a string
"{}\t{}\t{}".format(int1,float1,string1)

named keywords, which can be reused
"The tree is {tree} ft tall and the house is {house} ft high, the tree is taller at {tree}
ft".format(tree=60,house=30)

formatting numbers
"{num:0.5f}, {num:0.3f} and {num:0.5e} are all the same value, but represented in
different ways".format(num=123.45678)

fixed width
"{str1:8s}{str2:8s}{int1:8.2f}".format("abc","testing",98.2)
"{str1:>8s}{str2:8s}{int1:8.2f}".format("abc","testing",98.2)

12 Lecture4.key - January 15, 2016

Functions
A function is used when some action needs to be
completed in different parts of a program, or re-
used in multiple programs. It allows code to be
grouped in a self-contained block, and can also

make debugging easier.

Generally it is not good practice to make functions
that are called only one time strictly for

organizational purposes. Use comments instead.

13 Lecture4.key - January 15, 2016

Examples
def middle(x): return int(str(x)[1:-1])

def between(lo,val,hi):

"""Checks to see if val is between lo and hi"""

if lo<val and val<hi : return True

else: return False

def cmp(a,b):

"""Compare the second element of list a to list b
for use with sort(), returns -1, 0 or 1"""

return a[1]-b[1]

14 Lecture4.key - January 15, 2016

help()

• help(object) - gives help on the object. Returns the
string immediately following the object definition.

15 Lecture4.key - January 15, 2016

List of Lists

X=[["a","b","c","d"],["e","f","g","h"],

["i","j","k","l"],["m","n","o","p"]]

print(X[1])

["e","f","g","h"]

print(X[1][2])

g

a b c d

e f g h

i j k l

m n o p

0 1 2

3

0

1

2

3

Row-major Ordering

16 Lecture4.key - January 15, 2016

List of Lists

X=[["a","e","i","m"],["b","f","j","n"],

["c","g","k","o"],["d","h","l","p"]]

print(X[1])

["a","e","i","m"]

print(X[1][2])

j

a b c d

e f g h

i j k l

m n o p

0 1 2

3

0

1

2

3

Column-major Ordering

17 Lecture4.key - January 15, 2016

How would you iterate over 2-dimensional data?

0,0 9,0

0,9 9,9

for a in range (100):

y=a//10

x=a%10

print(array[y][x])

18 Lecture4.key - January 15, 2016

How would you iterate over n-dimensional data?

0,0 9,0

0,9 9,9

for a in range (1000):

z=a//100

y=(a%100)//10

x=(a%100)%10

print(array[z][y][x])

0,0 9,0

0,9 9,9

0,0 9,0

0,9 9,9

… (x10)

19 Lecture4.key - January 15, 2016

Nested Loops
(the right answer)

• a loop inside a loop
for y in range(10):

for x in range(10):

print(array[y][x])

0,0 9,0

0,9 9,9

20 Lecture4.key - January 15, 2016

How would you iterate over n-dimensional data?

0,0 9,0

0,9 9,9

0,0 9,0

0,9 9,9

0,0 9,0

0,9 9,9

… (x10)

for z in range(10):

for y in range(10):

for x in range(10):

print(array[z][y][x])

21 Lecture4.key - January 15, 2016

Loop flow

• Continue/break/else - flow of a loop
for i in range(20):

 if i==5 : continue

 if i>17 : break

 print(i)

else: print("done")

• continue - skip the rest of the current iteration

• break - immediately exit the loop entirely

• else - only if the loop finishes without a break

22 Lecture4.key - January 15, 2016

import

• import module

• from module import name,name2,name3

• from module import *

• import module as othername

23 Lecture4.key - January 15, 2016

A Few Standard Libraries

• sys - System-specific parameters

• os - Operating system functions

• string - String manipulation

• time - Delays, formatting time

• datetime - Manipulate dates/times

• pprint - Pretty printing

• urllib - Easy web access

24 Lecture4.key - January 15, 2016

urllib

Web Scraping:

from urllib.request import urlopen

conn=urlopen("http://blake.bcm.edu/dl/test.html")

for line in conn: print(line.decode("utf-8"),end="")

25 Lecture4.key - January 15, 2016

HTML

• http://www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html

• Declarative language

• HTML is a type of XML, XHTML obeys XML rules more completely

• Python HTMLParser module

• ‘commands’ in HTML are denoted by
<command option=value option=value>text</command>

26 Lecture4.key - January 15, 2016

HTML

<HTML>
<HEAD><TITLE>My Page</TITLE></HEAD>
<BODY>
<H3>Hi Everyone</H3>
<P>This is really just some test text to demonstrate how
HTML works. I can do interesting things like
<i>italicize</i> make text bold, or even
<i>both together</i>. ta da
</BODY>
</HTML>

27 Lecture4.key - January 15, 2016

File Manipulation

• os.getcwd() - the current working directory (folder)

• os.chdir() - change the current working directory

• os.listdir - Lists files in a particular folder

• os.stat - info about a file

• os.rename - rename (mv) a file

• os.mkdir - create a folder

• os.remove - delete a file

• os.rmdir - remove a directory

• os.system - execute a command (mostly mac/linux)

28 Lecture4.key - January 15, 2016

PyPi

• http://pypi.python.org

• Note that many packages also have installers available for
Windows

• pip

• included as part of Python 2.7.9 and later

• should be set up in Anaconda

• If using Anaconda, may consider "conda" instead of pip.
Any packages available with conda will be easier to install.

29 Lecture4.key - January 15, 2016

Homework 4
• Install BioPython (http://biopython.org) on your computer, and make sure

you can import it successfully before lab next Friday. If you have
Anaconda set up as you should, you should just be able to type:

conda install biopython

If it is installed properly, you should be able to type this at the python3
prompt and not get an error:

from Bio import SeqIO

• Start thinking about what you might want to do for a class project, I will be
asking for your plan soon.

30 Lecture4.key - January 15, 2016

Homework 4

1) Write a program to print a logarithm table, with nice formatting and labels on
the first row. The columns should be the different log bases. Use 2, e and 10 for
bases. Rows will be the values being taken the log of. Use integers from 1 to 32.

2) Write a program that can read 2-column text files containing numbers.
Assume the 2 numbers on each line are X and Y coordinates. Compute and print
the minimum and maximum x and y value. You should be able to read files
containing numbers on each line separated by any whitespace (any number of
spaces or tabs).
eg-
1 2
2 3.2
2.9 3.9
4.1 5.0
…

31 Lecture4.key - January 15, 2016

